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Introduction: Licorice has significant medicinal and ecological importance. 
However, prolonged overharvesting has resulted in twofold damage to wild 
licorice resources and the ecological environment. Thus, precisely determining 
the distribution and growth condition of wild licorice is critical. Traditional 
licorice resource survey methods are unsuitable for complex terrain and do 
not meet the requirements of large-scale monitoring. 

Methods: In order to solve this problem, this study constructs a new dataset of 
wild licorice that was gathered using Unmanned Aerial Vehicle (UAV) and 
proposes a novel detection network named ALPD-Net for identifying wild 
licorice. To improve the model’s performance in complex backgrounds, an 
Adaptive Background Suppression Module (ABSM) was designed. Through 
adaptive channel space and positional encoding, background interference is 
effectively suppressed. Additionally, to enhance the model’s attention to licorice 
at different scales, a Lightweight Multi-Scale Module (LMSM) using multi-scale 
dilated convolution is introduced, significantly reducing the probability of missed 
detections. At the same time, a Progressive Feature Fusion Module (PFFM) is 
developed, where a weighted self-attention fusion strategy is employed to 
effectively merge detailed and semantic information from adjacent layers, 
thereby preventing information loss or mismatches. 

Results and discussion: The experimental results show that ALPD-Net achieves 
good detection accuracy in wild licorice identification, with precision 73.3%, 
recall 76.1%, and mean Average Precision at IoU=0.50 (mAP50) of 79.5%. Further 
comparisons with mainstream object detection models show that ALPD-Net not 
only provides higher detection accuracy for wild licorice, but also dramatically 
reduces missed and false detections. These features make ALPD-Net a potential 
option for large-scale surveys and monitoring of wild licorice resources using 
UAV remote sensing. 
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1 Introduction 

Licorice is known as the ‘National Herb’ in China and is a 
perennial herb of the legume family, genus Glycyrrhiza, primarily 
growing in regions such as Xinjiang, Inner Mongolia, Gansu, and 
Ningxia. It has wide medicinal and ecological value (Ding et al., 
2022; Dang et al., 2024; Khaitov et al., 2022). There are many species 
of licorice, among which Glabrous licorice, Spreading fruit licorice, 
and Ural licorice are the original plants of traditional Chinese 
medicinal licorice (Jiang et al., 2020). Due to the enormous 
market demand, wild licorice has been over-harvested for a long 
time, leading to the dual destruction of wild licorice resources and 
the ecological environment (Yan et al., 2023). The traditional survey 
methods are mainly used to determine the distribution of wild 
licorice resources through a combination of walk-through surveys 
and sample surveys (Li et al., 2024a), and use sample plant methods 
or projection coverage methods to assess the reserves of wild 
medicinal plants. This method is well established but has poor 
applicability in areas with complex ecological environments. Wild 
licorice typically grows in arid sandy lands, riverbank sandy soils, 
hillside grasslands, and salinized soils, and only professionals can 
carefully distinguish licorice species. As a result, the survey work on 
wild licorice faces issues such as slow progress, long cycles, and 
difficulty achieving full coverage (Pohjanmies et al., 2021). 

In recent years, multi-level remote sensing technology assisted 
by Unmanned Aerial Vehicle (UAV) lowaltitude remote sensing 
has provided a new approach for the investigation of licorice 
resources (Wongsuk et al., 2024). UAV remote sensing has good 
mobility and strong timeliness, allowing for more efficient and 
flexible acquisition of near-surface remote sensing images (Al­
lQubaydhi et al., 2024). Since UAV technology enables large-scale 
operations at a low cost, it finds widespread applications in resource 
surveys (Williams, 2024) and automatic species identification (Feng 
et al., 2024). At the same time, deep learning gradually develops and 
provides a technical foundation for resource surveys, making field 
resource surveys more efficient and accurate. Ding et al. (2023) used 
UAV and deep learning technology to detect and assess the yield of 
wild medicinal plants. They combine ResNet101 and Mask R-CNN 
to design a detection model, enabling the accurate detection and 
monitoring management of the Lamioplomis rotata Kudo 
medicinal plant population. Wang et al. (2024c) used YOLOv7 
and YOLOv5 models to train on field UAV images of G. szechenyii 
flower and G. veitchiorum flower, achieving accurate identification 
and yield statistics for the flowers of these two wild medicinal 
plants. Drawing on the ideas of the outstanding researchers 
mentioned above, this paper combines deep learning object 
detection technology with UAV remote sensing images to provide 
a solution for the survey and monitoring of wild licorice resources. 

Deep learning-based object detection algorithms can be divided 
into two categories: two-stage algorithms and single-stage 
algorithms (Kaur and Singh, 2024). Two-stage algorithms 
primarily consist of two main phases: candidate box generation 
and object classification and localization (Manakitsa et al., 2024; 
Rostami et al., 2024). This two-stage separation design makes the 
model more flexible and scalable, and it performs well in target 
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localization for small objects and complex scenes (Fan et al., 2024). 
However, the generation of a large number of candidate boxes 
results in higher computational complexity and slower detection 
speed (Li et al., 2024c; Cai et al., 2024). Traditional two-stage 
detection frameworks, such as R-CNN, Fast R-CNN, and Faster 
R-CNN (Ren et al., 2017), are characterized by their sequential 
process of generating region proposals followed by classification 
and bounding box refinement. In contrast, single-stage algorithms 
directly predict both the object category and bounding box during 
the forward pass, without the need for generating candidate regions 
(Hou et al., 2022). Since single-stage algorithms directly predict the 
object boxes on each cell or anchor box, they may fail to accurately 
capture the location information of the object in complex scenes, 
leading to relatively low target localization accuracy. Additionally, 
their receptive field is relatively large, which results in poor 
detection performance for small-sized objects and an increased 
likelihood of missing detections (Wang et al., 2023, 2024e). 
However, Single-stage algorithms offer faster detection speeds, 
making them ideal for applications with strict real-time 
constraints (Yang et al., 2024b). Popular single-stage object 
detection models include You Only Look Once (YOLO) (Jiang 
et al., 2022), Single-Shot Detector (SSD) (Zhai et al., 2020), 
and others. 

Due to the high inference speed, short model training time, and 
high accuracy of single-stage algorithms, which significantly reduce 
computation time and cost, they are suitable for rapid detection of 
large-scale wild licorice resources. Therefore, this paper adopts a 
single-stage detection algorithm. Compared to other networks, the 
residual structure of the ResNet network outperforms other 
traditional deep convolutional neural networks in recognizing 
objects in complex backgrounds (Cheng et al., 2017; Freitas et al., 
2022). It extracts key features from complex data through multi­

level nonlinear transformations (Genze et al., 2022), which helps to 
compensate for the shortcomings of single-stage algorithms in 
complex scenarios. Considering the impact of network depth and 
width on detection accuracy and speed, and balancing both factors, 
the ResNet34 network combined with the decoupled detection head 
of the single-stage detection algorithm is selected as the base model 
for this study, referred to as ResNet34-D. 

There is a wide variety of weeds in the wild, which shade each 
other from licorice, and the complex background resulting poses a 
great challenge for licorice detection (Wang et al., 2021). Fang et al. 
(2022) proposed a new network architecture, HCA-MFFNet, aimed 
at addressing the issue of corn leaf disease recognition under 
complex backgrounds. The network extracted features from corn 
leaf disease images by applying a Hard Coordination Attention 
(HCA) mechanism at different spatial scales, thereby reducing the 
interference of complex backgrounds on recognition. However, 
HCA-MFFNet lacks the ability to extract detailed target 
information in more complex backgrounds, which may lead to 
false detections. The contextual information helped the model 
better distinguish between objects and backgrounds. Xi et al. 
(2022) introduced a module that could simultaneously capture 
both local and global information of the target, and adaptively 
combine this information to enhance object detection in complex 
frontiersin.org 
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backgrounds. However, feature maps in the network contain 
redundant background information, resulting in higher 
computational overhead for the network. The above researchers 
optimize the model structure for complex background issues, but 
most of the detections are performed on a single complex 
background with less background interference. When faced with 
more complex wild backgrounds, there may be issues with weak 
extraction of target detail information and information redundancy, 
which affects the model’s computational speed. 

Under different soil environments and climatic conditions, the 
growth scale of licorice may vary significantly due to factors such as 
temperature, humidity, and soil composition. Due to the differences 
in the representation of objects with different scales in the feature 
layer, the model may not be able to simultaneously capture the key 
information of both small-scale and large-scale targets (Wu et al., 
2025). Therefore, in wild licorice detection, smaller licorice may be 
overlooked due to blurred features, while larger licorice may lead to 
overly concentrated features, making it difficult to accurately 
distinguish the details of the target. This can result in false and 
missed detection, thus reducing the detection accuracy of licorice 
(Ren et al., 2024). To address the multi-scale issue, Li et al. (2024b) 
designed the multi-scale feature selection block, used varying 
receptive fields to extract rich multi-scale features, and effectively 
fused features of different scales by adaptively adjusting the 
receptive field size, significantly improving the network’s 
recognition ability. Jiang et al. (2024) designed the multiscale 
feature extraction module, extracted rich and valuable multi-scale 
feature information by performing convolutions of different scales 
on multiple branches. Although the model’s detection accuracy 
improves, this module requires a large number of parameters, 
which reduces the model’s detection efficiency. 

Based on the above issues, this study proposes a wild licorice 
detection model, ALPD-Net, to achieve efficient and accurate 
detection of Glycyrrhiza uralensis (G. uralensis), Glycyrrhiza 
glabra (G. glabra), and Glycyrrhiza inflata (G. inflata) in wild 
scenes. The contributions of this paper are as follows: 
Fron
1. The Adaptive Background Suppression Module (ABSM): 
To enhance the model’s ability to capture detail features of 
licorice in more complex wild backgrounds, the multi-head 
self-attention mechanism is combined with spatial 
coordinate feature encoding. This approach removes 
redundant information while suppressing interference 
from  complex  background  information,  thereby  
improving the model’s detection accuracy. 

2. The Lightweight Multi-Scale Module (LMSM): LMSM is 
designed to address the issue of poor model performance 
when there are significant scale differences in licorice. It 
uses fewer computations to enhance the model’s ability to 
recognize multi-scale licorice. 

3. The Progressive Feature Fusion Module (PFFM): PFFM is 
designed to enhance the model’s capability to differentiate 
between various types of licorice and weeds. It gradually 
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integrates features using Weighted Self-Attention Fusion 
(WSAF),  thereby  further  enhancing  the  overall  
performance of the model. 

4. A brand-new	 wild licorice dataset was constructed, on 
which ALPD-Net achieved a mAP50 of 79.5%. Compared 
to other mainstream detection models, ALPD-Net 
demonstrated superior detection performance. 
2 Materials and methods 

The workflow of this study is illustrated in Figure 1. First, wild 
licorice data were collected in Xinjiang using a UAV equipped with 
a camera and subsequently processed through a series of steps, 
including data cropping, annotation,  partitioning,  and  
augmentation, resulting in a comprehensive wild licorice dataset. 
Detailed procedures are described in subsections 2.1 and 2.2. Next, 
the dataset was input into the constructed ALPD-Net model for 
training; the training environment and parameter settings are 
detailed in subsections 2.4, while the architecture and module 
composition of the ALPD-Net model are elaborated in subsection 
2.3. Finally, the trained ALPD-Net model was comprehensively 
evaluated using multiple metrics such as precision and recall. The 
evaluation metrics are introduced in subsections 2.5, and detailed 
evaluation and detection results are presented in section 3. 
2.1 Data sources 

In this study, drones were used to capture images of wild G. 
uralensis, G. glabra, and G. inflata in the wild. The collection sites 
are located in Xinjiang Uygur Autonomous Region, specifically in 
Halajun Township, Artux City, Kizilsu Kyrgyz Autonomous 
Prefecture; Jinhuyang Town, Tumushuke City; and Wensu 
County, Aksu Prefecture. These areas belong to a temperate 
continental arid climate, characterized by dry and infrequent 
rainfall. The vertical distribution range of the three wild licorice 
species is between 0 and 2000 meters above sea level, and they are 
suitable for growth in calcareous soils with a PH value of 6.0-8.5 
(Bao et al., 2024). 

The DJI M300 is a high-performance UAV launched by DJI, 
offering centimeter-level positioning accuracy, capable of 
performing precise flight missions. The Zenmuse P1 is a full-
frame camera with 45 million pixels, providing high-resolution 
images (8192×5460) that capture more detailed ground data 
(Kersten et al., 2022). Therefore, the UAV DJI M300, equipped 
with the DJI Zenmuse P1 camera, was used to capture images of 
wild licorice in the wild from July 6 to 8, 2024. The UAV flies at 
altitudes of 20 meters, 30 meters, and 40 meters, with ground 
resolutions of 0.24 cm, 0.36 cm, and 0.49 cm, respectively. The UAV 
flight path was planned with an 80% forward overlap and a 90% side 
overlap to ensure accurate data calibration and stitching. 
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2.2 Data processing 

The images were cropped to a size of 640×640. To ensure the 
accuracy of the annotations, RTK positioning tools (Stempfhuber 
and Buchholz, 2012) were used during data collection to mark some 
samples of the three types of wild licorice on the ground, enabling 
accurate identification of licorice on the images, thus reducing 
annotation errors. To ensure the consistency of sample 
annotations, cropped images are annotated by the same person 
using the Labelimg tool (https://github.com/tzutalin/labelImg). The 
label categories for G. uralensis, G. glabra, and G. inflata are 
uralensis, glabra, and inflata, respectively. 

To avoid data leakage, the labeled dataset was initially split into 
training, validation, and test sets in an 8:1:1 ratio. After the split, data 
augmentation was applied to further enhance the dataset. This includes 
random rotations, mirroring, brightness transformation, translation, etc 
(Mumuni and Mumuni, 2022). The data annotation and augmentation 
process is illustrated in Figure 2. A total of 10,260 augmented licorice 
images are obtained, including 8,208 for the training set, 1,026 for the 
validation set, and 1,026 for the test set, as shown in Table 1. 
2.3 Construction of the ALPD-Net model 

To improve the performance of the base model ResNet34-D in 
licorice detection under challenges such as complex backgrounds, 
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multi-scale targets, and high similarity between licorice and 
backgrounds, ALPD-Net is built, with the model architecture 
shown in Figure 3. The workflow of the model is as follows: 
 

1. The preprocessed licorice images are input into the ResNet-
AL backbone network for feature extraction. ResNet-AL is 
designed based on ResNet34 (Hu et al., 2018), consisting of 
multiple Blocks modules and LMSM modules stacked 
together. Each Blocks module is composed of n 
BasicBlocks, where each BasicBlock contains an ABSM 
module and a residual connection structure, which not 
only suppresses interference from complex background 
information but also alleviates the vanishing and 
exploding gradient problems in deep neural networks. 

2. The multi-scale feature maps output by ResNet-AL are fed 
into the PFFM. PFFM is a feature fusion structure that uses 
a progressive strategy to gradually merge adjacent feature 
layers, enhancing the ability to differentiate between 
different types of licorice and weeds, further improving 
the detection performance of ALPD-Net. 

3. The fused feature maps are finally input into the Head part 
to produce the final detection results. The Detect module 
consists of two parallel branches, each containing two 
standard convolution layers and one 2D convolution, 
responsible for generating the bounding boxes, class 
labels, and confidence scores of the targets. 
FIGURE 1 

Overall workflow diagram of the study. 
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2.3.1 ABSM 
In the wild environment, there are many types of weeds that 

grow together with licorice, blocking each other, creating a complex 
background. This background can interfere with the model’s ability 
to extract licorice features, making it difficult to accurately identify 
the target and greatly increasing the difficulty of licorice detection. 
Moreover, during feature extraction, as the network layers increase, 
the number of channels in the feature maps also gradually increases. 
Although deep networks can capture more feature information, 
these feature maps may contain a large amount of redundant and 
irrelevant information in complex backgrounds (Liu et al., 2024b). 
This irrelevant information not only increases computational 
complexity but may also reduce the model’s ability to capture 
critical licorice information in subsequent processing stages, 
affecting the model’s accuracy and robustness, and even causing 
false and missed detections (Zhang et al., 2024). 

To address the above issues, ABSM was designed to reduce the 
impact of redundant information on the model’s performance, 
while enhancing the model’s ability to capture detailed features of 
Frontiers in Plant Science 05 
licorice in complex backgrounds, thereby improving the model’s 
detection performance in complex scenes. The network structure of 
ABSM is shown in Figure 4. 

ABSM uses a compression strategy on the input feature map by 
applying a 7×7 convolution to reduce the feature map size. This 
helps retain key channel information while lowering the 
computational complexity of the module. The compressed feature 
map is then input into the Multi-Head Self-Attention (MHSA) 
mechanism with depthwise convolution, which efficiently computes 
the similarity between channels while significantly reducing 
computational costs. This alleviates the semantic differences 
within channels and aids in accurately filtering out redundant 
background information. After global average pooling, the 
channel weights are obtained using the softmax function. The 
weights are then multiplied by the original feature map to filter 
out redundant background information, resulting in the channel 
feature map F1. 

The average pooling and max pooling operations are applied to 
the channels of the channel feature map F1 to obtain the spatial 
information map of the features. Horizontal and vertical spatial 
pooling operations are used to accurately capture the coordinate 
information of the licorice features, and the results are input into 
the sigmoid function to obtain the coordinate weights. These 
coordinate weights help the model accurately locate the licorice 
feature regions in complex backgrounds. The coordinate weights 
are then multiplied by the spatial feature map to obtain the spatial 
coordinate feature map F2. F2 contains both the spatial information 
encoding of the features and the positional information encoding, 
TABLE 1 Wild licorice dataset. 

Type Training set Validation set Test set 

G. uralensis 2112 264 264 

G. inflata 4320 540 540 

G. glabra 1776 222 222 
FIGURE 2 

(a) shows the annotated image, while (b) presents the augmented images. In (b), A represents the original image, B is the mirror-augmented image, 
C is the rotation-augmented image, D is the brightness augmented image, and E is the translation-augmented image. 
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enhancing the model’s focus on the licorice detail features while 
suppressing interference from irrelevant information such as 
complex backgrounds. Through 1×1 convolution and the sigmoid 
function, the spatial coordinate weights are obtained, and these 
weights are multiplied by the channel feature map F1 to produce the 
final feature map, further enhancing the network’s ability to extract 
and represent features. 
Frontiers in Plant Science 06
2.3.2 LMSM 
Wild licorice exhibits significant variation in scale due to the 

influence of its growth environment. In the detection task of this 
study, especially when there are large variations in the target scale, the 
model may fail to extract key information of licorice at all sizes from 
the feature layers, leading to missed detection (Liu et al., 2024a). 
Multi-scale feature extraction can help address this challenge of target 
FIGURE 4 

The network structure of the ABSM. 
FIGURE 3 

The architecture diagram of the ALPD-Net model. 
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scale variation to some extent, thereby improving the model’s 
accuracy, robustness, and generalization capability. 

Therefore, LMSM was designed. LMSM can extract licorice 
features from different scales with minimal computational cost, 
helping the model quickly and accurately recognize licorice of 
various sizes, thereby reducing the probability of missed detections. 
Moreover, single-scale feature extraction may not effectively recognize 
some or all regions of the licorice. However, LMSM captures licorice 
features at different scales using multi-scale dilated convolutions. This 
allows the model to capture both local detail features (such as leaf 
shape, texture, etc.) and global features (such as the overall structure or 
distribution pattern of the licorice), better overcoming the problem of 
weed occlusion and improving the accuracy of licorice detection. The 
network structure of LMSM is shown in Figure 5. 

LMSM consists of two branches. The first branch first focuses 
on the local information in the feature map using local average 
pooling, and then uses global average pooling to obtain the channel 
information of the licorice. 1D convolution is used to integrate the 
channel information, further reducing the impact of irrelevant 
channel information on licorice recognition, and an anti-pooling 
operation is applied to restore it to its original size. 

The second branch further extracts licorice features through 
1×1 convolution and divides them into four parts along the channel 
dimension. Each part obtains multi-scale features of licorice 
through dilated convolutions of different scales, and the results 
are merged using the concat operation, thus further enriching the 
model’s ability to recognize licorice at different scales. Dilated 
convolutions expand the receptive field with fewer parameters, 
capturing a larger range of contextual information. This is 
particularly helpful when licorice overlaps or is occluded  by
surrounding weeds or other plants, allowing the model to acquire 
more information from different scales and enhancing its ability to 
integrate both detailed and global information. 
Frontiers in Plant Science 07 
The features extracted by the two branches are fused, which 
helps the model better capture the features of licorice at multiple 
scales while integrating channel information, and also helps to 
address the occlusion problem to some extent. LMSM has fewer 
parameters and lower computational cost, improving the model’s 
detection performance and robustness while maintaining 
computational efficiency. 

2.3.3 PFFM 
In the wild licorice detection task, weeds are similar to licorice, 

and different types of licorice are also very similar to each other, 
which greatly increases the detection difficulty. Shallow features 
contain rich detail information, which helps the model recognize 
subtle differences in the target, while deep features contain rich 
semantic information, helping the model understand the overall 
shape and category of the target (Gao et al., 2024). Fusing deep and 
shallow features helps the model more accurately distinguish 
between different types of licorice and weeds, thereby improving 
detection accuracy. 

Therefore, the PFFM was designed. Compared to other 
traditional feature fusion modules, PFFM’s progressive strategy 
gradually introduces information from more layers, which helps 
to solve the feature alignment problem to some extent and prevents 
information loss or incorrect matching. Traditional fusion methods 
mostly involve simple concatenation or addition, which may not 
effectively combine the advantages of deep and shallow features, 
resulting in the model failing to learn useful features (Dai et al., 
2024). The WSAF method designed in this study balances the 
relationship between detail information and semantic information, 
fully leveraging the strengths of both, and captures long-range 
dependencies through a MHSA mechanism, reducing the 
likelihood of misidentifying weeds as licorice, and improving 
licorice detection performance. 
FIGURE 5 

The network structure of the LMSM. 
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The network structure of PFFM is shown in Figure 6. As the 
network deepens, the size of the feature maps gradually decreases, 
and the amount of semantic information gradually increases. The 
adjacent feature maps b and c are initially fused using the WSAF 
fusion method, and the resulting feature map b1 contains rich detail 
information. Correspondingly, the feature maps a and b are fused to 
obtain feature map a1, which contains rich semantic information. 
Then, a1 is fused again with the feature map c, which itself contains 
detail information, resulting in feature map C, which contains both 
rich semantic and detail information. 

The process of the progressive fusion strategy is shown in 
Equations 1–3: 

A = WSAF(a, WSAF(b, c)) (1) 

B = WSAF(WSAF(a, b), WSAF(b, c)) (2) 

C = WSAF(c, WSAF(a, b)) (3) 

Where A, B, and C are the feature maps ultimately input into 
the detection head. By gradually introducing information from 
adjacent layers, this method better preserves and transmits both 
detail and semantic information, thus preventing information loss 
and incorrect matching. 

The principle of the WSAF fusion method is shown in Figure 6. 
W1 and W2 are learnable parameters, which can flexibly adjust the 
weights of the input feature maps during the training process. After 
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adjustment, the feature maps are fused by addition, effectively 
integrating detail and semantic information to enhance the 
model’s performance. The process is shown in Equation 4: 

F1 = F01 ∗ W1 + F02 ∗ W2 (4) 

Where F01 and F02 are the feature maps to be fused, and F1 is the 
output feature map after addition. Due to the potential generation 
of redundant information during the fusion process, global average 
pooling, sigmoid, and multiplication operations are used to filter 
out the redundant information. To prevent gradient vanishing or 
gradient explosion during training, the feature map obtained from 
the above process is added to F1. Finally, the feature map is input 
into the multi-head self-attention mechanism, where rich 
multiperspective information is obtained from different heads. 
This enhances the model’s ability to capture details and express 
features, thereby improving the differentiation between different 
types of licorice and weeds. The process is shown in Equation 5: 

F2 = MHSA(Sigmoid(AvgPool(F1)) ∗ F1 + F1) (5) 
2.4 Experimental environment 

The experiments were conducted using PyTorch 2.4.0 as the 
deep learning framework on an Ubuntu 20.04 operating system. 
The hardware configuration included an Intel(R) Xeon(R) Gold 
FIGURE 6 

The network structure of the PFFM. 
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5320 CPU and an NVIDIA A30 GPU. The training process of the 
proposed model was conducted under a well-defined set of 
hyperparameter  configurations  to  ensure  stability  and  
reproducibility. The input images were uniformly resized to 
640×640 pixels. The model was trained for 200 epochs with a 
batch size of 8, and a fixed random seed of 0 was set to maintain 
consistency across experiments. The Stochastic Gradient Descent 
(SGD) optimizer was used for model optimization, with an initial 
learning rate of 0.001, a momentum coefficient of 0.937, and a 
weight decay of 0.0005 to prevent overfitting (Tian et al., 2023). The 
training employed an early stopping strategy with a patience of 50 
epochs, which means that training would terminate if no 
improvement was observed over 50 consecutive epochs. 
2.5 Evaluation metrics 

The evaluation metrics selected in this study are: Precision, 
Recall, mAP50 (mean Average Precision at IoU = 0.50), mAP50-95 
(mean Average Precision averaged over IoU thresholds from 0.50 to 
0.95 (step=0.05)), and GFLOPs (Giga Floating Point Operations per 
Second) (Sun et al., 2024; Jegham et al., 2024). Among them, 
Precision is used to assess the probability that the detected positive 
samples are true positive samples, while Recall is used to evaluate the 
proportion of correctly predicted positive samples to all true positive 
samples. mAP is the average accuracy across multiple categories of 
the model. mAP50 represents the mAP value at an IOU threshold of 
0.5, while mAP50–95 represents the average mAP value over an IOU 
threshold range of [0.5, 0.95] with a step size of 0.05. GFLOPs is an 
indicator of computational arithmetic operations, representing the 
number of floating-point operations that need to be executed per 
second during the processing. Therefore, the higher the Precision, 
Recall, mAP50, and mAP50-95, and the lower the GFLOPs, the better 
the overall performance of the model. The formulas are as follows: 

TP 
Precision = (6) 

TP + FP 

TP 
Recall = (7) 

TP + FN 

Z 1 

AP = P(R)dR (8) 
0 

noi=1AP(i)mAP = (9) 
n 

  n nGFLOPs = O oi=1Ki 
2
*Ci

2 
−1*Ci + oi=1M

2
*Ci (10) 

In Equations 6, 7, TP stands for true positive, FP stands for false 
positive, and FN stands for false negative. In Equation 8, P(R) 
represents the Precision-Recall (P-R) curve. In Equation 9, n is the 
total number of detection categories. In Equation 10, O represents the 
order of magnitude, K is the kernel size, C is the number of channels, 
M is the feature map size, and i denotes the iteration number. 
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3 Results 

3.1 Comparison of results before and after 
model improvements 

To evaluate the performance changes of the baseline model 
ResNet34-D before and after improvement, an F1-confidence curve 
was plotted, as shown in Figure 7. The F1 score, as a comprehensive 
metric, reflects the balance between correctly identifying targets and 
minimizing both false detection and missed detection. Therefore, 
the F1-confidence curve effectively illustrates the model’s 
performance fluctuations under varying confidence thresholds. As 
observed in the figure, the average F1 score across all categories 
reaches 0.72 when the confidence threshold is set to 0.282 in the 
original model. After the model is improved, the average F1 score 
increases to 0.75 at a higher threshold of 0.294. This shift clearly 
indicates an overall enhancement in detection performance, with 
particularly notable improvements in detecting G. uralensis and 
G. inflata. 

The P-R curves before and after the model improvements are 
shown in Figure 7. The P-R curve is used to evaluate the model’s 
precision performance under varying recall levels, offering a visual 
representation of the trade-off between correct predictions and both 
false detection and missed detection. As illustrated in the figure, 
after the model was improved, the P-R value for G. uralensis 
increased from 0.658 to 0.696, while that for G. inflata rose from 
0.894 to 0.909. Similarly, the P-R value for G. glabra improved from 
0.749 to 0.779. Overall, ALPD-Net achieved a higher level of 
precision and recall across all categories, with the average P-R 
value increasing to 0.795. This suggests that the refined model 
achieves a better balance between precision and recall, thereby 
enhancing the detection performance of ALPD-Net in complex wild 
field environments. 

The detection results of wild licorice before and after model 
enhancement are shown in Figure 8. In the detection results for G. 
uralensis, it is evident that ResNet34-D exhibits inadequate 
attention to largescale licorice plants. In the first image, only a 
portion of the licorice is correctly identified, while the second image 
demonstrates instances of missed detections in densely populated 
regions. In contrast, the incorporation of the LMSM multi-scale 
module significantly improves ALPD-Net’s ability to attend to 
targets of varying scales, enabling successful detection of large-
scale licorice specimens and reducing the incidence of missed 
detections. In the detection results for G. glabra, ResNet34-D 
produces redundant detections in the second image. ALPD-Net, 
on the other hand, benefits from the coordinated interaction among 
its constituent modules, allowing for more accurate localization and 
recognition of licorice plants, thereby mitigating the occurrence of 
such redundant detections to some extent. From the detection 
results for G. inflata, it is observed that ResNet34-D misclassifies 
G. inflata as G. glabra in the first image. This type of 
misclassification is effectively reduced by ALPD-Net due to the 
presence of the PFFM module, which enhances the model’s 
capability to distinguish between different licorice species and 
 frontiersin.org 

https://doi.org/10.3389/fpls.2025.1617997
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http:step=0.05


Yang et al. 10.3389/fpls.2025.1617997 
surrounding weeds, thus improving classification accuracy and 
reducing false detection. 
3.2 Ablation experiment 

To ensure the effectiveness of the designed modules on the 
model, ablation experiments were conducted. Based on the baseline 
model ResNet34-D, the ABSM, LMSM, and PFFM modules were 
sequentially added to form the models ResNet34-AD, ResNet34­
ALD, and ALPD-Net, respectively. 

3.2.1 Analysis of the ablation experiment results 
The overall evaluation metrics of the model during the 

improvement process are shown in Table 2. Integrating ABSM 
into the ResNet34 ’s backbone enhances ResNet34-AD ’s 
performance by minimizing the influence of redundant 
information and suppressing interference from weed background. 
This leads to improved detection accuracy in more complex 
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environments, with a 1.3 percentage point increase in mAP50 and 
a 1 percentage point increase in mAP50-95. This is particularly 
evident in G. uralensis images, which have more weeds and a more 
complex background. As shown in Table 2, after adding ABSM, 
ResNet34-AD’s Precision, Recall, mAP50, and mAP50–95 for G. 
uralensis detection improved by 2.1, 1.3, 2.2, and 1.2 percentage 
points, respectively, significantly improving the model’s 
detection accuracy. 

After further adding LMSM, ResNet34-ALD enhances its focus 
on the multi-scale features of licorice through the use of multi-scale 
dilated convolutions. This improvement further boosts Precision 
and Recall, leading to a 0.6 percentage point increase in mAP50. 
Since LMSM has very few parameters, the model’s GFLOPs only 
increase by 0.13%. 

After further adding PFFM, its progressive fusion strategy better 
maintains the transmission of feature information, and the WSAF 
fusion method effectively integrates detail and semantic 
information. This significantly improves ALPD-Net’s capacity to 
differentiate between various types of licorice and weeds, resulting 
FIGURE 7 

F1-confidence and Precision-Recall curves before and after model improvements: the upper part of the figure shows the F1-confidence curves, 
while the lower part presents the Precision-Recall curves. 
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in a further increase of 1.4 percentage points in Recall, with mAP50 
reaching 79.5% and mAP5095 reaching 39.2%. This is more 
pronounced in the detection of G. glabra, where after adding 
PFFM, the model’s Recall for G. glabra detection increases by 
2.6%, reducing the probability of misidentifying G. glabra as other 
types of licorice or weeds. The Recall for G. uralensis and G. inflata 
also increases by 1.5 and 0.4 percentage points, respectively. 

The improved model shows a significant increase in precision 
and recall for licorice detection, reducing the probability of false and 
missed detections. This indicates that ALPD-Net can more 
effectively identify licorice, leading to better performance in wild 
licorice detection tasks. 

3.2.2 Analysis of the model’s result visualization 
To better illustrate how different modules affect the model’s 

learning ability during the improvement process, Grad-CAM 
visualization is employed to compare the features extracted by the 
model, as shown in Figure 9. 

From the heatmaps of the three types of licorice on ResNet34-D 
in Figure 9, it can be seen that the model does not pay enough 
attention to licorice features, and even in the G. inflata heatmap, 
there is still attention to the weed background information. After 
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adding ABSM, the feature extraction ability of ResNet34-AD in 
complex backgrounds is enhanced, making the extraction of licorice 
detail features more complete, and the error in extracting weed 
background information in the G. inflata heatmap is significantly 
improved. After adding LMSM, from the licorice heatmap of 
ResNet34-ALD, it can be seen that, regardless of whether the 
licorice is large or small in size, the model can accurately extract 
licorice features, thanks to the multi-scale dilated convolution. After 
adding PFFM, the semantic and detail information are fully fused, 
enabling the model to precisely distinguish weeds from different 
types of licorice, making the contours of the licorice feature areas in 
the heatmap clearer. 
3.3 Comparison with mainstream multi-
scale modules 

The LMSM module proposed in this paper is compared with 
mainstream multi-scale modules, including Multi-Scale 
Convolutional Attention (MSCA) (Ding, 2023), Spatial Pyramid 
Pooling - Fast (SPPF) (Jocher et al., 2023), and Multi-Scale Dilated 
Attention (MSDA) (Jiao et al., 2023), to demonstrate its 
FIGURE 8 

The detection results of wild licorice before and after model improvement are illustrated. Section (a) shows images of Glycyrrhiza uralensis, section 
(b) corresponds to Glycyrrhiza glabra, and section (c) presents Glycyrrhiza inflata. Red circles indicate missed detections, green circles represent 
duplicate detections, and orange circles denote false detection. 
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FIGURE 9 

Heatmap visualization of detection results for G. uralensis, G. glabra, and G. inflata during the model improvement process. 
TABLE 2 Evaluation metrics of the model during the improvement process. 

Models Class Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs 

ResNet34-D 

G. uralensis 66.3 60.1 65.8 27.3 

72.9 
G. glabra 67.7 73.1 74.9 34.3 

G. inflata 81.0 86.5 89.4 50.0 

All 71.7 73.2 76.7 37.2 

ResNet34-AD 

G. uralensis 68.4 61.4 68.0 28.5 

75.6 
G. glabra 67.9 74.1 75.6 34.4 

G. inflata 81.5 87.3 90.4 51.8 

All 72.6 74.2 78.0 38.2 

ResNet34-ALD 

G. uralensis 68.2 63.6 69.5 28.8 

75.7 
G. glabra 68.4 73.6 75.8 35.0 

G. inflata 82.4 86.7 90.4 51.3 

All 73.0 74.7 78.6 38.4 

ALPD-Net 

G. uralensis 67.9 65.1 69.6 29.0 

83.1 
G. glabra 69.9 76.2 77.9 36.5 

G. inflata 82.1 87.1 90.9 52.0 

All 73.3 76.1 79.5 39.2 
F
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effectiveness in multi-scale feature extraction under wild 
background conditions. All experiments were conducted based on 
ResNet34-AD. As shown in Table 3, the mAP@50 scores after 
integrating MSCA, SPPF, and MSDA are 78.2%, 78.1%, and 78.2% 
respectively, which are slightly inferior to the result achieved with 
the LMSM module. MSCA captures multi-scale information 
through multi-branch depth-wise strip convolutions; SPPF 
enhances multi-scale feature extraction using max pooling 
operations; and although MSDA utilizes multi-scale dilated 
convolutions, its self-attention mechanism requires significant 
computational resources. In contrast, LMSM integrates multi-

scale dilated convolutions with 1D convolutions, enabling the 
model to better focus on licorice roots of varying sizes with 
minimal computational cost. As also shown in the table, the 
computational load with LMSM is only 75.7%, which is lower 
than that of MSCA (76.0%), SPPF (76.7%), and MSDA (77.6%). 
3.4 Comparison with mainstream fusion 
modules 

To verify the effectiveness of the proposed WSAF in feature 
fusion, it is compared with several mainstream fusion modules, 
including the Cross-Attention Fusion Module (CAFM) (Zhou et al., 
2023), Efficient Feature Fusion (EFF) (Li et al., 2023), Dynamic 
Feature Fusion (DFF) (Yang et al., 2024a), and iterative Attentional 
Feature Fusion (iAFF) (Dai et al., 2021). All comparative 
experiments were conducted based on ResNet34-ALD, and the 
results are shown in Table 4. 

CAFM enhances information interaction between different 
feature layers through cross-channel attention and spatial 
attention mechanisms, thereby improving the representation of 
target features. This method demonstrates stable performance on 
the licorice image dataset, achieving a mAP50 of 79.3%, slightly 
lower than WSAF. The EFF module integrates multi-scale features 
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using multiple attention mechanisms; however, it suffers from 
information loss when handling object boundary details, resulting 
in a mAP50 of only 78.6%. DFF adaptively fuses local features based 
on global information, but its discriminative power is limited when 
faced with highly similar background regions, yielding a mAP50 of 
78.7%. The iAFF module enhances the robustness of initial fusion 
results through iterative application of attention mechanisms, 
which helps alleviate feature misalignment issues to some extent, 
reaching a mAP50 of 78.9%. In contrast, WSAF combines adaptive 
weighting with multi-head self-attention mechanisms to better 
balance detail and semantic information during fusion. This 
enhances the model’s discriminative ability for licorice targets 
under complex backgrounds, ultimately achieving a mAP50 of 
79.5%, outperforming all aforementioned comparison modules 
a n d  d emon s t r a t i n g  s u p e r i o r  f e a t u r e  f u s i o n  a n d  
detection performance. 
3.5 Comparison with mainstream 
backbone networks 

To better demonstrate the excellent feature extraction ability of 
the backbone network ResNet-AL in more complex backgrounds, a 
comparison is made between the mainstream backbone networks 
and ResNet-AL under the same dataset, experimental parameters, 
and detection head. The comparison results are shown in Table 5. 

ResNet18, ResNet34, ResNet50, ResNet101, and SENet (Hu 
et al., 2018) are convolutional neural networks with residual 
connections (He et al., 2016; Alzubaidi et al., 2021). They perform 
well in simple backgrounds, but their feature extraction ability may 
not be fully utilized when handling more complex backgrounds or 
when the background and target are highly similar, which affects 
detection accuracy. However, ABSM in ResNet-AL suppresses the 
interference of complex background information, making it 
superior to the aforementioned backbone networks in terms of 
TABLE 3 Comparison results between LMSM and mainstream multi-scale modules. 

Models Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs 

ResNet34-AD+MSCA 73.5 74.1 78.2 38.6 76.0 

ResNet34-AD+SPPF 71.5 74.6 78.1 38.1 76.7 

ResNet34-AD+MSDA 73.7 74.6 78.2 38.4 77.6 

ResNet34-ALD(+LMSM) 73.0 74.7 78.6 38.4 75.7 
TABLE 4 The impact of WSAF and mainstream fusion modules on licorice detection. 

Models Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs 

ResNet34-ALD+CAFM 73.3 76.1 79.3 38.9 78.5 

ResNet34-ALD+EFF 72.1 76.0 78.6 38.9 78.6 

ResNet34-ALD+DFF 71.8 76.7 78.7 39.0 80.6 

ResNet34-ALD+iAFF 73.2 76.3 78.9 39.2 80.7 

ALPD-Net(+WSAF) 73.3 76.1 79.5 39.2 83.1 
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Precision, Recall, mAP50, and mAP50-95. DenseNet121 (Huang 
et al., 2017) is a densely connected convolutional neural network 
with better feature extraction ability in complex backgrounds, and 
its Precision is 0.6 percentage points higher than that of ResNet-AL 
in this paper. However, its ability to distinguish between different 
types of licorice and weeds is weak, resulting in a lower recall rate. 
Additionally, DesNet121 has a large GFLOPs, 2.4 times that of 
ResNet-AL. ConvNeXt V2 (Woo et al., 2023) performs excellently 
on standard datasets, but the cluttered information in wild 
backgrounds may interfere with the model’s extraction of fine-
grained features. Its Precision and Recall only reach 68.0% and 
70.1%, making its detection performance in wild scenarios inferior 
to ResNet-AL. RepViT (Wang et al., 2024a), EfficientViT (Liu et al., 
2023), and Swin Transformer (Liu et al., 2021) are Transformer-

based models that perform well in handling long-range 
dependencies and complex background information. However, 
wild environments are more complex, and various factors 
interfere with each other, which may result in these models 
having difficulty handling local details or separating targets from 
the background, leading to suboptimal detection performance. 

The experimental results in Table 5 provide a clear justification 
for selecting ResNet34 as the backbone network in this study. As 
shown, ResNet34, SENet, and DenseNet121 all achieve an identical 
mAP50 of 76.7%. However, ResNet34 demonstrates superior 
performance in mAP50–95, reflecting enhanced accuracy under 
more stringent evaluation thresholds. Furthermore, although 
ResNet34 incurs slightly higher GFLOPs than SENet, it remains 
significantly more computationally efficient than DenseNet121. 
These findings indicate that ResNet34 strikes an effective balance 
between detection accuracy and computational cost, making it a 
well-suited foundational backbone for the proposed model. 

In summary, ResNet-AL effectively reduces the impact of 
complex wild background information, improving the capacity to 
extract detailed licorice features. It achieves a mAP50 of 78.6%, a 
mAP50–95 of 38.4%, and a significantly lower GFLOPs compared 
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to ResNet50, ResNet101, DenseNet121, and Swin Transformer, 
leading to superior detection performance. 
3.6 Comparison with classic models 

This paper compares the model ALPD-Net with mainstream 
object detection models YOLOv5x (Cheng et al., 2024), YOLOv6x 
(Li et al., 2022), YOLOv8x (Jocher et al., 2023), YOLOv9e (Wang 
et al., 2024d), YOLOv10x (Wang et al., 2024b), YOLOv11x 
(Khanam and Hussain, 2024), MAF-YOLOm (Yang et al., 2024c), 
Hyper-YOLOx (Feng et al., 2025), and RT-DETR (Zhao et al., 
2024). All the models are single-stage object detection models. Due 
to the many sizes of the comparison models, the largest size model 
is selected for training comparison to highlight the excellent licorice 
detection performance of ALPD-Net. The dataset, experimental 
configuration, and experimental parameters during the training 
process remain consistent. The comparison results are shown 
in Table 6. 

YOLOv5x, YOLOv6x, YOLOv8x, YOLOv9e, YOLOv10x, and 
YOLOv11x are mainstream versions of the YOLO series, with each 
version showing varying degrees of performance improvement. 
YOLOv5x focuses on the efficiency of the model, YOLOv6x 
further optimizes the network structure and enhances multi-scale 
detection capabilities, while YOLOv8x and YOLOv9e innovate the 
model to improve robustness in complex scenarios. YOLOv10x and 
YOLOv11x optimize the balance between inference speed and 
accuracy, making them suitable for applications that require high 
performance and precision. Compared to the above models, 
ResNet34-ALPD outperforms them in mAP50 by 2.2, 2.3, 1.8, 0.4, 
2.5, and 1.2 percentage points, respectively. Among them, 
YOLOv9e’s overall performance is comparable to ResNet34ALPD, 
and its Recall and mAP50–95 are even 1.3 and 1 percentage points 
higher than those of this paper. However, it is worth noting that the 
GFLOPs of ResNet34-ALPD are smaller, accounting for 33.8%, 
TABLE 5 Comparison results of ResNet-AL with mainstream backbone networks. 

Backbone Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs 

ResNet18 71.0 73.7 76.4 36.4 42.6 

ResNet34 71.7 73.2 76.7 37.2 72.9 

ResNet50 69.5 74.0 75.8 36.2 183.1 

ResNet101 71.8 71.4 75.9 36.5 244.1 

SENet 71.0 73.1 76.7 36.8 68.7 

DenseNet121 73.6 72.2 76.7 35.8 179.2 

ConvNeXt V2 68.0 70.1 72.7 34.6 31.0 

RepViT 67.8 70.6 74.1 35.1 46.8 

EfficientViT 69.4 70.1 74.2 34.8 44.3 

Swin Transformer 68.0 68.5 72.0 32.1 90.4 

Ours(ResNet-AL) 73.0 74.7 78.6 38.4 75.7 
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13.7%, 32.3%, 43.9%, 48.9%, and 42.7% of theirs, respectively. 
ResNet34-ALPD consumes fewer computational resources while 
achieving higher detection performance. 

MAF-YOLOm model contains a multi-branch auxiliary feature 
pyramid network that facilitates the fusion of shallow feature 
information while achieving a multi-scale receptive wild. 
Although its GFLOPs are slightly lower than ResNet34-ALPD, 
ResNet34-ALPD achieves 3.1 and 1 percentage points higher in 
mAP50 and mAP50-95, respectively. This enhancement is due to 
the ABSM, which minimizes background interference during 
feature extraction, enabling the fusion module to process feature 
maps containing rich details and semantic information of licorice 
targets, thus boosting ResNet34-ALPD’s detection accuracy. The 
Hyper-YOLOx model integrates hypergraph computation to 
capture complex higher-order correlations between visual 
features, performing excellently on the COCO dataset, but its 
detection performance declines in complex wild scenarios, with 
mAP50 being 1.8 percentage points lower than the model in this 
paper. RT-DETR is an end-to-end detection framework based on 
Transformer, capable of real-time detection. In challenging wild 
environments, where distinguishing various types of licorice is 
crucial, the need for real-time processing may restrict the model’s 
complexity, hindering its ability to handle such complex scenarios 
and resulting in suboptimal performance in wild licorice detection. 

The licorice detection results of the comparison models are 
shown in Figure 10. In images of G. uralensis and G. inflata, the 
comparison models generally experience false and missed 
detections due to the presence of complex backgrounds and the 
high similarity between various types of licorice and weeds. On the 
other hand, the ABSM module in ResNet34-ALPD improves the 
capability to capture detailed features of licorice in complex 
environments, while PFFM, by merging detailed and semantic 
information,  enhances  ResNet34-ALPD ’s  capability  to  
differentiate between licorice and weeds, effectively reducing both 
false and missed detections. In G. glabra images, models like 
YOLOv6x, YOLOv9e, and YOLOv10x fail to detect large-scale 
licorice. However, ResNet34-ALPD performs well in detecting 
large-scale licorice, mainly due to the outstanding multi-scale 
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feature extraction ability of LMSM, which significantly lowers the 
rate of missed detection. 

Overall, the ResNet34-ALPD model demonstrates both high 
detection accuracy and low computational cost, showcasing strong 
licorice detection capabilities in complex wild scenarios. 
4 Discussions and conclusions 

This study constructed a novel wild licorice dataset and 
conducted an in-depth analysis of the improvement process of 
ALPD-Net, comparing it with single-stage object detection models. 
The experimental results show that the improved ALPD-Net 
achieved 73.3% in Precision, 76.1% in Recall, 79.5% in mAP50, 
and 39.2% in mAP50-95. These results consistently outperformed 
other object detection models across multiple evaluation metrics, 
demonstrating ALPD-Net’s strong capability in detecting licorice 
targets in complex wild environments. 

The wild scenarios addressed in this study differ from single, 
fixed complex environments. The three types of wild licorice grow 
in distinct habitats, resulting in diverse and highly complex visual 
scenes. Additionally, wild environments often contain dense weed 
coverage, with significant occlusion between licorice and 
surrounding vegetation, which adds substantial difficulty to 
accurate licorice detection (Wang et al., 2021). To address 
challenges posed by complex backgrounds, several researchers 
have proposed architectural improvements. For instance, Sun 
et al. (2024) incorporated the Simple Attention Module (SimAM) 
to enhance feature extraction of tobacco pests in cluttered scenes. 
However, their background complexity was relatively limited, with 
minimal interference, potentially weakening the model’s ability to 
capture fine-grained details in more intricate natural environments. 
Similarly, Yang et al. (2024b) employed cross-modal transformer 
attention to improve feature extraction across channel and spatial 
dimensions under complex backgrounds, achieving more accurate 
detection. Nonetheless, their method did not adequately address the 
presence of redundant and irrelevant information. In contrast, the 
ABSM module proposed in this study encodes spatial positional 
TABLE 6 Comparison results of different models. 

Models Precision/% Recall/% mAP50/% mAP50-95/% GFLOPs 

YOLOv5x 71.1 74.6 77.3 38.1 246.0 

YOLOv6x 71.9 73.5 77.2 38.4 610.3 

YOLOv8x 71.4 74.8 77.7 38.4 257.4 

YOLOv9e 71.8 77.4 79.1 40.2 189.1 

YOLOv10x 72.9 72.3 77.0 38.4 169.8 

YOLOv11x 71.2 73.8 78.3 39.2 194.4 

MAF-YOLOm — — 76.4 38.2 76.7 

Hyper-YOLOx 70.7 74.9 77.7 38.9 328.8 

RT-DETR 60.4 60.0 59.6 16.5 222.5 

Ours(ResNet34-ALPD) 73.3 76.1 79.5 39.2 83.1 
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information in the feature maps to mitigate the influence of 
redundant data on model performance, while simultaneously 
enhancing the ALPD-Net’s ability to capture fine-grained features 
of licorice in highly complex wild scenes. 

Wild licorice exhibits considerable variation in morphology and 
target size across natural environments. Under such conditions, a 
single feature layer may struggle to effectively capture key 
information for licorice targets of different scales (Wu et al., 
2025). To address the challenge of multi-scale object detection, 
Ding (2023) designed the MSCA module, and Jiao et al. (2023) 
proposed the MSDA module. While these approaches have 
improved detection performance for multi-scale objects to some 
extent, they often come with significant computational overhead, 
which adversely affects overall inference efficiency. In contrast to 
Frontiers in Plant Science 16 
these methods, the LMSM module proposed in this study adopts a 
multi-scale dilated convolution structure. By introducing only a 
minimal number of parameters, it effectively enhances ALPD-Net’s 
ability to perceive licorice targets with large scale variations, 
achieving a better balance between accuracy and efficiency. 
Finally, the PFFM module was designed in this paper. Since some 
weeds in the wild are very similar to licorice, there is a possibility of 
confusing licorice with background weeds. The PFFM module 
adopts a progressive strategy and uses the WSAF fusion method 
to fully integrate detail and semantic information. Compared to 
traditional feature fusion modules introduced in subsection 3.4, 
such as CAFM, EFF, and others, the PFFM module not only 
effectively addresses the issue of incorrect information matching 
but also significantly enhances the model’s ability to distinguish 
FIGURE 10 

The detection results of ALPD-Net and mainstream models on G. uralensis, G. glabra, and G. inflata. 
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between licorice and weeds. Under the combined effect of these 
three modules, ALPD-Net demonstrates excellent licorice detection 
capability in challenging wild scenarios. 

Although ALPD-Net demonstrates strong accuracy and 
efficiency in detecting wild licorice under natural field conditions, 
several limitations remain. First, the dataset utilized in this study 
was collected exclusively from three locations in Xinjiang and 
focuses solely on licorice during the flowering stage. Given the 
diversity and complexity of field environments, licorice of the same 
species may exhibit varying visual characteristics across different 
regions, climatic conditions, and phenological stages. This 
constraint may limit the model’s generalization capability and 
robustness in broader applications. To address this, future 
research should aim to build a more diverse and representative 
dataset by including samples from multiple geographic regions and 
various growth stages, thereby enabling a more comprehensive 
evaluation of the model ’s  cross-regional  and  temporal  
generalizability. Second, although the model exhibits high 
detection efficiency, it currently lacks real-time processing 
capability—a critical requirement for practical deployment on 
UAV platforms. To improve real-time applicability, future efforts 
should explore model compression techniques such as pruning and 
quantization, along with hardware acceleration strategies. These 
enhancements would help reduce computational complexity while 
preserving accuracy, facilitating deployment on resource-
constrained embedded systems for real-time field monitoring. 
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