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SiCST1, a novel plant-specific
protein of foxtail millet, confers
cold stress tolerance in plants
Fan Yang1, Jiaqi Qiao1, Xiao Zhang1, Zhuoya Zhang1

and Dongao Huo1,2*

1College of Biological Sciences and Technology, Taiyuan Normal University, Taiyuan, China, 2Modern
Agricultural Development Center, Jincheng Agricultural and Rural Bureau, Jincheng, China
Foxtail millet (Setaria italica) is a significant cereal crop, but its yield is limited by

extreme temperature, particularly cold stress. In this study, we identified a novel

plant-specific gene, SiCST1 (Cold Stress Tolerance in Setaria italica 1) in foxtail

millet, through transcriptome deep sequencing (RNA-Seq) of cold-stressed

seedlings. We generated a CRISPR/Cas9-mediated knockout mutant of rice

homolog of SiCST1 (designated oscst1). Compared to wild-type rice, oscst1

mutant seedlings exhibited cold sensitivity with a 46% survival rate reduction

under cold stress. This impaired cold stress tolerance was rescued by

complementation with SiCST1, indicating the vital role of SiCST1 in cold

stress tolerance. SiCST1 consists of a single exon and contains a predicted

ribonuclease H-like domain. Further analysis revealed that SiCST1 was

significantly up-regulated in response to cold stress and was localized in

nucleus. Additionally, our findings suggested that SiCST1 interacted with the

OVATE family protein SiOFP1. The lamina joint bending assays were employed

to investigate whether mutation of rice homolog of SiCST1 affected the

brassinolide (BR) signaling pathways. It was found that oscst1 exhibited

insensitivity to exogenous BR treatment. We propose a regulatory

mechanism in which SiCST1 interacted with SiOFP1 to release its inhibition of

BR signaling transcription complex, thereby activating BR signaling pathways

and conferring cold stress tolerance. Our study provides evidence that SiCST1 is

a novel plant-specific protein with an essential function involved in cold stress

resistance in foxtail millet.
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1 Introduction

Foxtail millet (Setaria italica (L.) Beauv.), a cultivated species within the genus Setaria

in the Poaceae family, originated in China approximately 8700 years ago, having been

domesticated from its wild relative, Setaria viridis (Bettinger et al., 2010). Foxtail millet is a

significant crop and a staple component of human diets, ranking second in the global millet
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production (Anonymous, 2023). The completion of the whole-

genome sequencing of foxtail millet revealed a relatively small

genome size (approximately 490 Mb) with a low DNA repetition

rate (24%) (Bennetzen et al., 2012). Furthermore, compared to its

ancestral grass lineages, the genome structure of foxtail millet is

highly conserved, making it an ideal model species for genetic and

molecular studies (Devos et al., 1998; Jayaraman et al., 2008;

Bennetzen et al., 2012). Additionally, due to its close phylogenetic

relationship with important biofuel crops such as switchgrass,

napiergrass, and pearl millet, foxtail millet is also regarded as a

suitable model for research on these crops (Doust et al., 2009).

During its growth cycle, foxtail millet is highly sensitive to cold

stress, particularly during the seedling and booting stages, where

cold stress can significantly hinder growth and reduce final yield

(Lyons, 1973; Thakur et al., 2010; Liu et al., 2020; Zhang et al., 2022;

Huang et al., 2023b). Cold stress tolerance in foxtail millet is a

crucial determinant of its growing season length and geographical

distribution. Therefore, enhancing its cold stress tolerance has

become a primary objective in breeding programs. To achieve this

goal, it is particularly vital to profoundly investigate the regulatory

mechanisms of cold signaling pathways in foxtail millet.

An adaptive response called cold acclimation has evolved in

temperate plants to enhance their cold stress tolerance

(Thomashow, 1999; Ding and Yang, 2022). Cold acclimation in

Arabidopsis is primarily mediated by three CBF/DREB1 genes that

play central and redundant roles (Novillo et al., 2007; Jia et al., 2016;

Zhao et al., 2016; Wang et al., 2023a). Under cold stress, CBF genes

are rapidly and highly induced, and the proteins they encode

activate the expression of COR (COLD REGULATED) genes. This

lead to the accumulation of protective substances such as osmolytes

and cold-protective proteins, ultimately facilitating cold acclimation

and increasing cold stress tolerance (Thomashow, 1999; Shi et al.,

2018; Ding et al., 2020). The regulation of CBF gene expression

involves various transcription factors. ICE1 and its homologous

protein ICE2 positively regulate the expression of CBFs and cold

stress tolerance (Chinnusamy et al., 2003; Fursova et al., 2009; Tang

et al., 2020; Wang et al., 2023b). The circadian clock is closely

associated with the cold stress response (Lu et al., 2020; Poikela

et al., 2021). The rhythmic expression of CBFs is regulated by core

components of the circadian clock, including CCA1, LHY, and

PRRs (Kidokoro et al., 2021). The cold signaling pathways are also

modulated by light and photoperiod (Franklin andWhitelam, 2007;

Jiang et al., 2017; Wang et al., 2019). Plant hormones also play roles

in plant response to cold stress, including BR (brassinosteroid),

ethylene, and JA (jasmonic acid), among others (Hu et al., 2013;

Huang et al., 2023a; He et al., 2024; Wang et al., 2024a, b; Zeng

et al., 2025).

BR signaling constitutes a pivotal pathway in the acquisition of

cold stress tolerance by plants. During cold stress, an elevation in

endogenous BR content was observed in plants. When tomato

(Solanum lycopersicum L.) leaves were exposed to 8°C for 8 h,

three detectable BRs (brassinolide (BL), castorosterone (CS), and

28-norCS) were found to exhibit increased levels (Fang et al., 2019).

Investigation into receptor kinases and transcription factors

involved in BR signaling have demonstrated that the
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overexpression of positive components of BR signaling enhances

cold stress tolerance, whereas the overexpression of negative

components impairs it. In Arabidopsis, the overexpression of

BRI1 markedly improves plant survival under cold stress

condition, whereas the survival of bri1–1 and bri1–301 mutant

plants was significantly compromised (Eremina et al., 2016). BIN2

functions as a negative component within BR signaling pathways.

Notably, triple mutant plants of BIN2 exhibit enhanced stress cold

resistance, whereas the overexpression of BIN2 in plants leads to

decreased cold stress resistance (Li et al., 2017). Studies have further

indicated that the exogenous application of BR increases the

expression of COR genes and thereby enhances cold stress

tolerance (Kagale et al., 2007).

In our study, based on RNA-Seq analysis of cold-stressed foxtail

millet seedlings, SiCST1 (LOC101781117) was selected as one of the

most significantly up-regulated genes for functional validation. This

study demonstrated its role as a key regulator of cold stress

tolerance and revealed the underlying molecular mechanism. The

discovery of the interaction between SiCST1 and SiOFP1, as well as

its implication for BR signaling and cold stress tolerance, offers new

avenues for research into genetic and molecular basis of crop stress

resilience. The findings have the potential to facilitate the rapid

development of new varieties with enhanced cold stress tolerance.
2 Materials and methods

2.1 Plant material

Plants were grown under natural condition in Jinzhong (36°85’

N, 111°77’ E), Shanxi province, China. Yugu1 (Setaria italica cv.

Yugu1), a sequenced wild-type foxtail millet variety with a complete

reference genome (Bennetzen et al., 2012), was employed in

this study.

The pYLCRISPR was used to construct CRISPR vector targeting

OsCST1 (rice homolog of SiCST1), which were subsequently

employed for genetic transformation of rice variety Zhonghua11

(Oryza sativa L. ssp. japonica Zhonghua11). CRISPR-P 2.0 was

utilized to design the base-pairing sequence of the sgRNA (5′-
GCATCAGCAGCAGACGCCAC-3′) targeting the single exon

of OsCST1.

To complement oscst1 mutant, genomic fragments of SiCST1

(3609 bp) were cloned into pCAMBIA1301 vector. The resulting

construct was transformed into Agrobacterium tumefaciens

EHA105 and subsequently transformed into rice callus induced

from mature seeds of oscst1 mutant.
2.2 Cold stress treatment

Cold stress treatment were implemented as previously

described (Ma et al., 2009). The rice seedlings were cultivated in

Kimura B nutrient solution under controlled condition (day/night

temperature: 30°C/25°C and light/dark photoperiod: 10 h/14 h)

until they reached the three-leaf stage. Subsequently, the seedlings
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were subjected to cold stress (4°C) for 96 h. After a recovery period

of 7 days at 30°C/25°C (day/night), seedling survival rate were

assessed. Three biological replicates were established, each

comprising 32 rice seedlings.
2.3 RNA-seq and gene expression analysis

For RNA-Seq analysis under cold stress, three-leaf-stage foxtail

millet seedlings grown at 28°C/24°C (day/night) were transferred to

4°C. After 24 h of treatment, both cold-treated and untreated

seedlings were harvested, immediately frozen in liquid nitrogen,

and stored at -80°C for subsequent RNA isolation. Total RNA was

extracted from three biological replicates (each comprising five

pooled seedlings). High-throughput sequencing was performed on

HiSeq 2500 (Novogene, Beijing). Clean reads were aligned to

Setaria italica reference genome (v2.2, Phytozome).

For SiCST1 expression analysis during cold stress treatment,

foxtail millet seedlings cultivated to the three-leaf stage at 28°C/24°

C (day/night) were exposed to 4°C. The seedlings were collected at

0, 1, 3, 6, 12, and 24 h post-treatment, immediately frozen in liquid

nitrogen, and stored at -80°C for RNA extraction. Total RNA was

extracted from three biological replicates, with each consisting of a

pooled sample of five seedlings.

Total RNA was extracted from tissues using the RNeasy plant

mini kit (QIAGEN). The isolated RNA was reverse transcribed

using SuperScript III reverse transcriptase (Invitrogen).

Quantitative RT-PCR (RT-qPCR) was performed utilizing SYBR

Green Real-Time PCR Master Mixes (Invitrogen). Gene expression

level was normalized with foxtail millet actin gene (Seita.7G294000).

Primers used for RT-qPCR are listed in Supplementary Table S1.
2.4 Subcellular localization

The full-length cDNA of SiCST1 was cloned into pBI221-GFP

vector to create fusion protein with GFP at the C-terminus of

SiCST1. SiCST1-GFP and the nucleus marker H2B-mCherry were

co-transformed into foxtail millet protoplasts via the polyethylene

glycol-mediated transformation method, as previously described

(Chen et al., 2006). After culturing at 25°C for 16 h in darkness, the

transformed protoplasts were observed using a confocal

scanning microscope.
2.5 Yeast two-hybrid analysis

For bait construction, the full-length SiCST1 cDNA was cloned

into pGBKT7 (Clontech) and transformed into yeast strain

Y2HGold. For prey cDNA library construction, total RNA was

isolated from 2-week-old foxtail millet seedlings (Yugu1) using the

RNeasy Plant Kit (QIAGEN). Synthesized cDNA was co-

transformed with linearized pGADT7-Rec vector (Clontech) into

Saccharomyces cerevisiae strain Y187 via the Make Your Own Mate

& Plate Library System (Clontech).
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For Y2H screening, bait strain Y2HGold (harboring pGBKT7-

SiCST1) and prey strain Y187 (containing the cDNA library) were

mated in YPDA liquid medium at 30°C for 24 h with 40 rpm

shaking. Mating diploids were then plated onto SD/-Leu/-Trp/-

His/-Ade + X-a-Gal plates. Following 7-day incubation at 30°C,

colonies exhibiting blue coloration were restreaked for

confirmation. Validated positive clones underwent PCR

amplification of insert fragments, followed by DNA sequencing.

Sequence alignment against Setaria italica genome using BLASTn

identified SiOFP1 (LOC101755245) as a high-confidence interactor

detected in 12 out of 20 sequenced clones.
2.6 Bimolecular fluorescence
complementation analysis

The full-length cDNA of SiCST1 was cloned into pUC-

SPYNE173 vector and the full-length cDNA of SiOFP1 was

cloned into pUC-SPYCE (M) vector. To evaluate potential false

positives, the pUC-SPYNE173-SiCST1 construct was co-

transformed with the empty pUC-SPYCE (M) vector as a

negative control.

Protoplasts were isolated from 10-day-old etiolated foxtail

millet leaves (Yugu1) by enzymatic digestion. Leaves were sliced

into 0.5-mm strips and incubated in digestion solution [1.5% (w/

v) Cellulase R10, 0.4% (w/v) Macerozyme R10, 0.5 M D-mannitol,

20 mM KCl, 20 mM MES (pH 5.7), 10 mM CaCl2, 0.1% BSA] at

28°C for 4 h with gentle shaking (40 rpm). Protoplasts were

filtered through 75-mm nylon mesh, washed twice with W5

solution [154 mM NaCl, 125 mM CaCl2, 5 mM KCl, 2 mM

MES (pH 5.7)], and resuspended in MMg solution [0.5 M

mannitol, 15 mM MgCl2, 4 mM MES (pH 5.7)] at a density of 1

- 5 × 106 cells/mL.

For transformation, 10 mg each of pUC-SPYNE173-SiCST1 (N-

terminal YFP fragment) and pUC-SPYCE(M)-SiOFP1 (C-terminal

YFP fragment) plasmids were added to 100 mL protoplast

suspension, followed by 110 mL PEG solution (40% PEG4000, 0.4

M mannitol, 0.1 M CaCl2). After 15-min incubation at 25°C,

reactions were quenched with 1 mL W5 solution. Transfected

protoplasts were cultured in WI solution [0.5 M D-mannitol, 4

mM MES (pH 5.7), 20 mM KCl] at 25°C for 16 h in darkness

(Walter et al., 2004). Following incubation, YFP fluorescence was

observed using a confocal scanning microscope.
2.7 Co-immunoprecipitation

The pA7-SiOFP1-GFP and FLAG-SiCST1 plasmids were co-

transformed into foxtail millet protoplasts with FLAG-SiCST1 and

the empty pA7-GFP vector serving as control to assess false

positives. Transfected protoplasts were incubated at 25°C in

darkness for 14–16 h. Upon microscopic confirmation of GFP

fluorescence expression, the protoplasts were lysed with 400 mL
IP buffer (10 mM HEPES, 100 mM NaCl, 1 mM EDTA, 10%

glycerol, 0.5% Triton X-100, 1×protease inhibitor cocktail, pH 7.5).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1618053
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1618053
The lysate was centrifuged at 5,000 g for 5 min at 4°C. The resultant

supernatant was incubated overnight at 4°C with 20 mL of anti-

FLAG agarose beads (MBL). The beads were collected and washed

five times with IP buffer, followed by boiling in SDS buffer. The

samples were examined by western blotting using anti-GFP or anti-

FLAG antibody.
2.8 Lamina joint bending assays

Lamina joint bending assays were performed on the second

fully expanded leaves of two-week-old WT and oscst1 rice

seedlings as previously described (Feng et al., 2016). Excised leaf

segments were placed in media supplemented with 0, 0.01, 0.1, or

1 mM 24-epibrassinolide, with three biological replicates per

concentration and five seedlings per replicate. After 48 h

incubation in darkness at 28°C, the lamina joint angle was

quantified using ImageJ software.
2.9 Statistical analysis

Significant differences between control and treatment were

analyzed using Student’s t-test within SPSS version 25 software

(IBM SPSS Statistics). Differences were considered significant at P <

0.05 and highly significant at P < 0.01.
3 Results

3.1 SiCST1 exhibits the ability to confer
cold stress tolerance

To identify genes associated with cold stress tolerance in foxtail

millet at the seedling stage, we conducted transcriptome deep

sequencing (RNA-Seq) analysis on three-leaf-stage seedlings of

Yugu1, which were exposed to 4°C cold stress for 24 h. We thus

identified SiCST1 (LOC101781117) was up-regulated 4-fold by cold

stress treatment. To explore the possible involvement of SiCST1 in cold

stress tolerance, we developed CRISPR/Cas9 knockout mutant line,

oscst1, targeting the homolog of SiCST1 in rice (OsCST1, LOC4329262).

OsCST1 was identified by conducting a blastp search of SiCST1 protein

sequence against rice protein database (Oryza sativa ssp. japonica).

Genomic analysis confirmed that OsCST1 is a single-copy gene in rice.

Knockout of OsCST1 yielded oscst1 mutant. Sequencing of PCR

products from oscst1 T1 generation plants confirmed a 1-bp

insertion in the single exon of OsCST1, causing a frameshift and

premature termination (Supplementary Figures S1A–C). The

truncated protein consisting of 405 amino acids lacks the C-terminal

domain (Supplementary Figure S1D).

We then proceeded to evaluate the cold stress tolerance of T1

generation plants of oscst1 by exposing seedlings to 4°C cold stress

followed by recovery at 30°C. We defined plants possessing cold

stress tolerance as those that displayed continued leaf growth or

newly differentiated leaves upon being returned to normal
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condition following cold stress treatment. A significant

difference in survival rate (percentage of seedlings that survived

the treatment) and seedling height was observed between wild-

type (WT) and oscst1 mutant (Figures 1A–C; Supplementary

Figure S2). Notably, oscst1 mutant seedlings demonstrated cold

sensitivity compared to WT. Furthermore, we genetically

transformed oscst1 with FLAG-tagged genomic fragments of

SiCST1. The resultant complementary line (Cp) rescued the

impaired cold stress tolerance observed in oscst1 (Figures 1D–F;

Supplementary Figure S2). Taken together, these findings imply a

pivotal regulatory role for SiCST1 in modulating cold

stress tolerance.
3.2 SiCST1 is a plant‐specific protein with a
ribonuclease H‐like domain

A full-length SiCST1 cDNA was synthesized using total RNA

extracted from two-week-old seedlings of foxtail millet (Yugu1).

Sequence analysis revealed that SiCST1 consists of a single exon and

has an open reading frame (ORF) encoding 798 amino acid

residues, with predicated molecular weight of 87032.1 and

isoelectric point of 8.6. Domain analysis revealed that SiCST1

possesses a ribonuclease H‐like (RNase H‐like) domain, which

was conserved in SiCST1 and its homologs (Figure 2). Sequence

homology searches indicated the presence of SiCST1 homologs in

various spermatophytes, but notably absent in animals.

Phylogenetic analysis distinctly categorized these sequences into

separate clades corresponding to monocots and dicots (Figure 3),

suggesting that the emergence of these sequences may be associated

with the differentiation of spermatophytes.

To identify the subcellular localization of SiCST1, we performed

transient protoplast transformation of foxtail millet using constructs

of either ubi::SiCST1-GFP (maize ubiquitin promoter-driven

fusion) or H2B-mCherry (constituting a nucleus marker). We

observed complete overlap between SiCST1-GFP and H2B-

mCherry fluorescence signals (Figure 4A), indicating that SiCST1

is localized in nucleus. Constitutive expression of SiCST1 was

observed in all examined tissues, with particularly high expression

level detected in young tissues (Figure 4B). Additionally, exposure

to cold stress (4°C) induced SiCST1 expression, with expression

level more than three times higher after 24 h of treatment compared

to the untreated control (Figure 4C). This discovery was consistent

with the involvement of this gene in seedling cold stress tolerance.
3.3 SiCST1 interacts with SiOFP1

To elucidate how SiCST1 regulates cold stress tolerance,

potential SiCST1-interacting proteins were identified using prey

cDNA library generated from foxtail millet seedling RNA and a bait

expressing the full-length cDNA of SiCST1. The yeast two-hybrid

system (Y2H) revealed a potential interaction between SiCST1 and

SiOFP1 (LOC101755245) (Figure 5A). The OFPs are a group of

OVATE family transcription factors characterized by a conserved
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OVATE domain. This interaction was further verified via

bimolecular fluorescence complementation (BiFC) and co-

immunoprecipitation (CoIP) assays. In BiFC assay, SiCST1 and

SiOFP1 were fused to the N- and C-termini of YFP, respectively,

generating SiCST1-nYFP and SiOFP1-cYFP constructs. Co-

expression of these constructs in foxtail millet protoplasts resulted

in fluorescence signals, confirming the interaction between SiCST1

and SiOFP1 through YFP reconstitution. Conversely, protoplasts

co-expressing SiCST1-nYFP and the control construct cYFP failed

to generate any fluorescence signals (Figure 5B). In CoIP assay, co-

expression of FLAG-SiCST1 and GFP-SiOFP1 in foxtail millet

protoplasts revealed co-precipitation of FLAG-SiCST1 and GFP-

SiOFP1, confirming that SiCST1 directly interacts with SiOFP1 in

vivo (Figure 5C).
3.4 SiCST1 was involved in BR signaling
pathways

Several studies have reported that OFPs play regulatory roles in

phytohormone signaling and biosynthesis pathways, particularly in
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BR signaling (Snouffer et al., 2020), leading us to formulate the

speculation that SiCST1 might be implicated in BR signaling

pathways. To rigorously test this hypothesis, a series of lamina

joint bending assays were conducted on both oscst1 mutant and

WT. The results revealed that in WT, the lamina joint angle

gradually increased with rising concentrations of 24-

epibrassinolide (epiBL). In contrast, oscst1 mutant demonstrated

reduced sensitivity to exogenous BR treatment, even at high

concentrations of epiBL (Figures 6A, B). These observations

provide preliminary evidence supporting the involvement of

SiCST1 in BR signaling pathway.
4 Discussion

4.1 Identification and function of SiCST1 in
cold stress tolerance

The exploration of cold stress tolerance in foxtail millet has

become a central focus in agricultural research, driven by the

urgent need to enhance crop resilience in the face of global climate
FIGURE 1

SiCST1 is essential for cold stress tolerance. (A, D) Nontreatment control. (B, E) Cold stress treatment. (C, F) Survival rate was assessed following cold
stress treatment at 4°C for 96 h and subsequent recovery at 30°C for 7 days. WT, wild-type; Cp, complementary line. Scale bar, 1 cm. Student’s t-
test, **P < 0.01.
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FIGURE 2

Multiple sequence alignments were performed using MEGA software. These homolog sequences used are LOC4329262 from Oryza sativa (Os),
At1g12380 from Arabidopsis thaliana (At), LOC103626874 from Zea mays (Zm), SPT15897 from Triticum aestivum (Ta), LOC102579963 from
Solanum tuberosum (St), LOC100266895 from Vitis vinifera (Vv) and TKR91110 from Polulus alba (Pa). The RNase H‐like domain was marked with a
blue underline.
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change. To date, most research efforts concentrated on elucidating

the physiological changes, transcriptomic response, and metabolic

adaptations that occur in foxtail millet following cold stress

exposure (Ananthi et al., 2023; Zhang et al., 2023; Zhao et al.,

2023). These studies provided invaluable insights into the

multi faceted nature of foxtai l mil let ’s cold tolerance

mechanisms. Physiological studies demonstrated that foxtail

millet underwent a series of adaptive physiological changes in

response to cold stress (Ananthi et al., 2023). Transcriptomic

analysis further complemented these findings by revealing a

complex network of genes that were either up- or down-

regulated in response to cold stress, hinting at the intricate

regulatory pathways involved in cold stress tolerance (Zhang

et al., 2023). Additionally, metabolic profiling studies identified

specific metabolites that accumulated or decreased under cold

stress, offering clues into the metabolic reprogramming that

occurred in foxtail millet to cope with cold stress (Zhao

et al., 2023).

While previous studies have significantly expanded our

understanding of foxtail millet cold stress tolerance, a critical gap

persists in our knowledge of the underlying molecular mechanisms.

This limitation hinders the development of targeted genetic

engineering or breeding strategies to enhance cold tolerance.
Frontiers in Plant Science 07
In this context, the identification of SiCST1 as a novel plant-

specific gene with a predicted ribonuclease H-like domain in

foxtail millet represents a significant step forward in our

understanding of cold stress tolerance mechanisms. Our results

demonstrated that SiCST1 played a crucial role in conferring cold

stress tolerance, as evidenced by the significant decrease in survival

rate observed in oscst1 knockout mutant following cold stress

treatment compared to WT and restored cold stress tolerance in

complemented plants. Furthermore, we propose a potential

molecular mechanism of SiCST1, suggesting its involvement in

regulating key molecular processes during cold stress.

To bridge this discovery toward crop improvement, we propose

two translational strategies: genetic engineering and marker-

assisted selection (MAS) breeding (Xiaodi et al., 2023; Zhang

et al., 2024; Wang et al., 2025b). Specifically: (1) We will

construct ubiquitin promoter-driven SiCST1 overexpression lines

in rice and foxtail millet to enhance cold tolerance; (2) Through

haplotype analysis of diverse germplasm, we will develop SiCST1-

linked molecular markers for efficient identification of cold-tolerant

varieties via MAS. Thus, SiCST1 will serve as both a

biotechnological target and a molecular breeding anchor bridging

mechanistic insights in cold stress tolerance with practical crop

resilience enhancement.
FIGURE 3

Phylogenetic tree of SiCST1 and its homologs across different species. The construction of the phylogenetic tree was accomplished utilizing MEGA11
software, employing the maximum-likelihood method with 1000 bootstrap replicates.
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4.2 Interaction between SiCST1 and
SiOFP1: implication for BR signaling

SiCST1 encodes a plant-specific protein harboring a

conserved RNase-H-like domain. Proteins within the RNase-H-

like superfamily (RNHLS), categorized as exonucleases or

endonucleases, function in critical nucleic acid metabolism

processes including DNA replication or repair, homologous

recombination, and RNA interference (Majorek et al., 2014).

Intriguingly, recent studies identified Reduced height 8 (Rht8), a

key “Green Revolution” gene in wheat, as encoding an RNHLS

protein that modulated plant architecture through gibberellin

biosynthesis regulation (Lingling et al., 2022) (Hongchun et al.,

2022). Notably, orthologs of Rht8 in Arabidopsis and maize

exhibited conserved roles in height determination (Lingling et al.,

2022). In our study, the identification of SiOFP1 as an interactor of

SiCST1 through Y2H screening provided critical insights into the

molecular mechanism underlying SiCST1-mediated cold stress

tolerance. Recent studies have implicated OFPs in various aspects

of plant growth, development, as well as response to biotic and

abiotic stresses (Wang et al., 2007, 2011; An et al., 2024). The OFPs
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were implicated in BR signaling pathways, which are known to

play pivotal roles in plant growth, development, and stress response

(Xiao et al., 2020; Cheng et al., 2023; Wang et al., 2025a; Zhou et al.,

2025). Notably, several OFPs have been demonstrated to interact

with components of the BR signaling pathways, such as DLT and

BES1/BZR1 transcription factors (Yang et al., 2016, 2018; Xiao et al.,

2020). These OFPs act as negative regulators of BR response by

inhibiting these BR-signaling transcriptional complexes (Yang et al.,

2016, 2018; Xiao et al., 2020). These studies suggest that OFPs may

function as regulator of BR signaling, modulating the downstream

response to BR. We propose that SiCST1 indirectly participates in

BR signaling pathways by interacting with SiOFP1.
4.3 The role of CST1, OFP1 and BR
signaling in cold stress tolerance

Accumulating evidence suggests that BR signaling pathways

were involved in the regulation of cold stress tolerance in plants (He

et al., 2024). BR treatment has been shown to enhance the

expression of cold-responsive genes and improve plant cold stress
FIGURE 4

Subcellular localization and expression pattern of SiCST1. (A) Nucleus localization of SiCST1 in foxtail millet protoplasts. Scale bar, 5 mm. (B) Tissue-
specific expression of SiCST1. Total RNA was extracted from young roots (YR), mature roots (MR), young stems (YSt), mature stems (MSt), young
leaves (YL), mature leaves (ML), young inflorescences (YI), mature inflorescences (MI), young seeds (YS), and mature seeds (MS), respectively. (C)
Accumulation of SiCST1 transcripts in response to cold stress treatment. Values represented means ± SE (n = 15).
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tolerance (Kagale et al., 2007; Anwar et al., 2018; Xia et al., 2018).

Conversely, mutants defective in BR signaling exhibit reduced cold

stress tolerance (Planas-Riverola et al., 2019; Chaudhuri et al.,

2022). These findings collectively indicate that BR signaling plays

a positive role in conferring cold stress tolerance. In our study, we

speculate that SiCST1 may regulate cold stress tolerance by

interacting with SiOFP1 and modulating BR signaling. The model

is as follows: In WT plants, CST1 interacts with OFP1, to release its

inhibition of BR signaling transcription complex, thereby activating
Frontiers in Plant Science 09
BR signaling pathways and conferring cold stress tolerance. On the

other hand, in mutant, the mutated CST1 fails to interact with

OFP1, allowing OFP1 to maintain its inhibition of BR signaling

transcription complex, which renders the mutant plants sensitive to

cold stress (Figure 7). Future studies aimed at elucidating the precise

molecular mechanisms underlying the interaction between SiCST1

and SiOFP1, as well as their roles in BR signaling and cold stress

tolerance, will be crucial for advancing our understanding of this

important regulatory pathway.
FIGURE 5

SiCST1 interacts with SiOFP1. (A) Interaction between SiCST1 and SiOFP1 in Y2H assay. (B) BiFC in foxtail millet protoplasts confirmed the interaction
between SiCST1 and SiOFP1. Scale bar, 5 mm. (C) CoIP analysis further verified the interaction between SiCST1 and SiOFP1. FLAG-SiCST1 was
precipitated from transfected protoplast lysates using anti-FLAG agarose beads, and the interaction was detected by western blotting with anti-GFP
or anti-FLAG antibody.
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FIGURE 6

oscst1 exhibited reduced sensitivity to BR. (A) The lamina joint bending response was assessed in WT and oscst1 following application of various
concentrations (mM) of epiBL, utilizing the excised leaf segment method. (B) Quantification of lamina joint angles shown in (A). Values represented
means ± SD (n = 15).
FIGURE 7

The model of CST1-OFP1 interaction coordinating BR signaling and cold stress tolerance.
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