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Design and testing of a
RealSense-based variable
spraying control system
for field kale
Yahui Luo, Wen Li, Pin Jiang, Kaiwen Tang, Zhiluo Liang
and Yixin Shi*

College of Mechanical and Electrical Engineering, Hunan Agricultural University,
Changsha, China
Precision PWM variable spray technology and target detection, identification, and

localization technology are key to solving the pesticide waste associated with

traditional constant application methods and to improving pesticide utilization

for achieving precise application. To address the problems of high pesticide

dosage, low application efficiency, and poor kale pest and disease control in

traditional upland gap sprayers, a variable spray control system was designed in

the study. The system utilizes binocular vision sensors to detect kale targets in the

field in real time and achieves accurate pesticide application through pulse-width

modulation technology. An improved target detectionmodel based on YOLOv8n

is presented, with experimental results showing a detection accuracy of up to

88.7% for field-grown kale. The system was also tested for accuracy-responsive

variable spraying in recognition detection tasks, with a 0.2% reduction in the

central atomized deposition density coefficient of variation (CV) compared to

constant spraying. A flow on/off test model was designed for the solenoid valve

duty cycle, determining the correlation decision coefficient for spraying. The

correlation coefficient of the flow model exceeded 0.9958 when the duty cycle

was in the range of 20–90%, and the actual and theoretical flow rates at the spray

terminals were strongly linearly correlated, with a maximum error of only 4.1%.

The spraying effect of the system was evaluated through field tests. The results

show that the theoretical spray volume of the variable spray control system aligns

well with the actual spray volume. In field atomization deposition tests,

compared with constant-rate spraying, the target center atomization density in

variable spraying mode reached 34.42%. Although droplet deposition and

coverage around the crop were slightly reduced, pest and disease control

around kale remained effective. In addition, the variable-rate spraying control

system further improved pesticide utilization, with a maximum pesticide savings

of 26.58%. This study demonstrates the feasibility of binocular vision sensor-

guided spraying operations in field environments and provides a reference for its

application in field pest control.
KEYWORDS

pulse width modulation, variable spraying, improved YOLOv8n algorithm, atomization
deposition density, binocular vision sensor
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1 Introduction

Field kale is susceptible to soft rot, downy mildew, cabbage

greenfly, aphids, and other pests and diseases during the growth

process, which seriously affects its yield and quality, and poses a

challenge to farmers’ economic returns and production stability

(Zhao et al., 2019). As a cruciferous crop, kale has a short growth

cycle and dense foliage, making it easy for pests and diseases to

spread rapidly, and turning their control into a core aspect of field

management (Wan et al., 2025). According to statistics, the kale

growing period requires frequent pesticide spraying, with the

number of applications in some areas reaching as high as 6 to 12

times per year, accounting for 25% to 40% of the total labor input

for field management (Lan et al., 2022). Traditional chemical

control mainly relies on backpack sprayers or manual spray bars

for full-coverage spraying, where the liquid is dispersed into tiny

droplets on the surface of the plant through high pressure (Jin et al.,

2016; Li W. et al., 2023). However, this “uniform coverage,

thorough wetting” model of rough application often ignores

differences in canopy structure at different growth stages of kale,

resulting in excessive spraying and associated environmental

pollution (He, 2020). Studies have shown that under conventional

continuous spraying conditions, the liquid has difficulty penetrating

the inner leaf bulb due to leaf shading, resulting in overspray on the

outer layer and underspray on the inner layer. Meanwhile, the

runoff and drift ratio of the liquid can reach 30% to 50%, increasing

production costs and risking soil contamination and pesticide

residues (Zhai et al., 2018; Salcedo et al., 2020). During the

precise pesticide application process, the hydrophobic nature of

kale leaves poses a potential challenge that must be addressed. As

the growing season progresses, the Leaf Area Index (LAI) of kale

exhibits an upward trend, which is critical for adapting the spraying

rate to match the plant’s developmental stage. Furthermore, in the

early stages of growth, the lower kale leaves, which are closer to the

ground, are particularly vulnerable to pest and disease infestations.

Achieving comprehensive spray coverage, especially on these lower

leaves, presents a significant difficulty that needs to be overcome.

Addressing these issues is essential for optimizing the precision

spraying system. Therefore, optimizing precision application

strategies based on the dynamic growth characteristics of kale has

become a key research direction to enhance pest control efficiency

and promote sustainable agricultural development.

Variable-rate spraying technology is an intelligent application

method that dynamically senses crop canopy parameters and

adjusts the pesticide amount in real time (Han et al., 2024). As a

precision plant protection technology, it can significantly reduce

pesticide waste and environmental pollution in kale cultivation

under the traditional continuous spraying model through

differentiated application (Zhang et al., 2017). Current research

on variable-rate spraying focuses on two main areas: (1) canopy

feature recognition using multi-source sensors, including real-time

monitoring of kale plant density, leaf bulb maturity, and canopy

volume index through LiDAR, spectral sensors, or machine vision

systems (Jiang et al., 2019; Shu et al., 2020; Xue et al., 2022); and (2)

execution control systems that calculate target application rates
Frontiers in Plant Science 02
based on pest and disease levels and canopy characteristics, using

PWM to achieve variable spraying (Dai et al., 2019; Fan et al., 2021).

This approach enables precise output for different flow rates and

adaptive droplet size adjustment, optimizing coverage of the outer

leaves and penetration into inner layers (Zhao et al., 2022). Current

technical bottlenecks include limited sensor feature extraction

accuracy in dense leaf bulb environments, and challenges in

dynamically matching application systems to agricultural

machinery speed, which require further breakthroughs to achieve

fully intelligent kale spraying (Wang et al., 2022).

The core of variable-rate application technology lies in the

precise acquisition of crop canopy characteristics. Current target

detection technologies mainly integrate machine vision, laser

sensors, ultrasonic sensors, radar localization sensors, and multi-

sensor fusion (Yuan et al., 2020; Gu et al., 2021; Dou et al., 2022;

Yang et al., 2022). Laser sensors, though capable, are hindered by

their sensitivity to humidity and dust in the kale field environment

(Yan et al., 2021). While LiDAR can reconstruct canopy structure

via high-precision point clouds, it is poorly suited to field conditions

due to low adaptability to dynamic scenes, complex data processing,

and high power consumption (Wang et al., 2023). Ultrasonic

sensors, which detect distance via acoustic time-of-flight, show

canopy volume measurement errors of 12%–18% during kale

nodulation due to uneven leaf bulb surfaces causing multipath

reflections (Zhai et al., 2022). Although they have a longer detection

range than LiDAR, their slower response time makes them

unsuitable for real-time detection (Luo et al., 2024). In contrast,

machine vision can achieve over 90% plant recognition accuracy

under the same conditions through sub-pixel edge detection and

millisecond-level image processing, making it more adaptable to

high-density, dynamic field applications (Tewari et al., 2020; Wang

G. et al., 2024). The Intel RealSense family of binocular vision

sensors combines infrared-assisted and laser-assisted modules,

enabling accurate volume detection of kale leaf bulbs and real-

time monitoring of crop growth. This integration of infrared, laser,

and machine vision technologies enhances its performance in

complex field environments (Zhao et al., 2022; Qiao et al., 2024;

Xu et al., 2024).

In variable-rate spraying systems, fusing canopy feature sensing

with dynamic flow regulation models provides an efficient solution

for precise pest and disease control in kale (Li Y. et al., 2023). A

decision coefficient model based on leaf wall area and canopy

density has been shown to quantify the impact of the laminated

leaf bulb structure on spray penetration during the nodulation stage

(Xue et al., 2020). By optimizing the multi-nozzle synergistic flow

function, pesticide utilization was increased to 68.34% in field trials,

significantly reducing leaf-core liquid stagnation risk (Hussain et al.,

2020). In low-frequency regulation, spray flow is primarily

governed by the duty cycle, with pressure contributing over 70%

to flow fluctuations (Zhai et al., 2022). In high-frequency settings,

flow ranges from 50–500 mL/min, though the linear response

interval narrows to a 40%–60% duty cycle, necessitating a

pressure compensation PID algorithm to suppress pulsation

effects (Wang Z. et al., 2024). Dynamic kale growth characteristics

are further captured by identifying leaf bulb maturity via
frontiersin.org
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multispectral imaging, distinguishing the outer loose leaf layer from

the inner dense bulb (Han et al., 2024). High humidity and dusty

field conditions further complicate pest management, but are

addressed through pressure-duty cycle decoupling control and

multi-nozzle coordination strategies (Han et al., 2024).

Introducing a feed-forward-feedback composite controller

reduced flow deviation due to pressure fluctuations from 12% to

under 3% (Zhu et al., 2010).

To improve the dynamic adaptability of field kale application

units to canopy volume and spraying characteristics, this study

focuses on the synergistic optimization of target detection and

variable-rate regulation technologies. The detection system, based

on the RealSense binocular vision sensor, and the theoretical

control method for variable-rate spraying, provide both technical

and theoretical support for precision protection of high-density

canopy crops. Through field trials, the study analyzes the duty

cycle–flow decision model and canopy parameter–application

volume decision model, comparing constant-rate spraying with

canopy volume index–based spraying to evaluate fog deposition

effects and provide a theoretical basis for pest control and precise

application under high humidity.
2 Materials and methods

2.1 Variable rate spray system

In open - field kale cultivation, pests and diseases such as soft

rot, downy mildew and caterpillars are common threats. The

pesticide selection for spraying is determined by the actual pest/

disease situation and control requirements to fit the growth process

of kale. In the constructed variable - rate spraying system,

azoxystrobin and chlorbenzuron, typical pesticides, are primarily

used. Meanwhile, in the experiment, water and carmine are adopted

as substitutes to ensure operator safety. The architecture of the

variable-rate spraying system developed in this study is shown in

Figure 1A. The system comprises a mixing unit, data acquisition

unit, variable-rate spraying unit, and target detection unit. The

target detection unit uses the RealSense D455 binocular vision

sensor to recognize kale canopy volume and bullseye position in

real time. The visual module, with an improved YOLOv8n

algorithm, enables accurate kale recognition and location in the

variable - rate spraying system. The system integrates PWM

technology to control the electromagnetic valve at different duty

cycles, thereby adjusting spray parameters and ensuring precise

pesticide application on kale. Collected data are transmitted to an

embedded controller via CAN bus; the PWM control command is

generated by the application decision model and sent via RS-485

protocol to the variable-rate control module, which activates the

2KS200 solenoid valve array for dynamic spraying. A PC interface

displays real-time data on plant density and application rates,

achieving closed-loop “perception–decision–execution” control.

The STM32F407 microcontroller (STMicroelectronics) serves as

the lower computer, receiving and processing upper computer

commands via RS-485 protocol. The hardware includes a spray
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mixing unit (with a plunger pump, Mixtron volumetric dispenser

with 0.2% accuracy, and electric ball valve), a data acquisition unit

(RealSense D455 sensor, ± 2 mm depth accuracy), and a spraying

unit (2KS200 solenoid valves, W25–04 flat-fan nozzles with 110°

atomization angle and 0.4–1.2 L/min flow rate, ZK five-way

motorized valves). The W25–04 in the system is a standard flat -

fan nozzle with anti - leakage function. The system is mounted on a

high-clearance sprayer (1.3 m above ground) with a modular left–

center–right structure spaced at 60 cm. The system’s physical layout

is shown in Figure 1B.

Within the variable-rate spraying system, the water and

pesticide tanks are separate. The plunger pump and Mixtron

volumetric dispenser draw water and pesticide respectively,

mixing them accurately to maintain a stable concentration. The

mixed pesticide circulates through a loop involving these

components and valves in the mixing unit, then flows to the

pressure and flow sensors in the data acquisition module. Finally,

it is transported via pressure-resistant pipes to the variable spraying

module, where electromagnetic valves regulate the spray from the

fan-shaped nozzles. The overall control principle and process of the

variable spraying system are shown in Figure 2. The system captures

images of the volume and bullseye position of the kale canopy in the

field using binocular vision sensing. These images are transmitted to

a PC for processing to determine the size of the leaf bulb volume,

after which the application dosage decision-making model

calculates the target spraying volume. The core control unit

converts this target volume into a duty cycle, which is then used

as dynamic duty cycle information for targeted spraying. This

information is transmitted via serial communication to the

STM32 microcontroller, which outputs PWM signals to drive the

solenoid valve and simultaneously control the motorized five-way

water dispensing valve to execute the spraying commands.
2.2 Variable rate spray system identification
model construction

2.2.1 Improvement of YOLOv8n algorithm
Kale, as a typical canopy-intensive crop, is an important

cruciferous vegetable whose agronomic planting parameters are

closely tied to the requirements of precision application technology.

According to ISHS standards and actual production needs, the

recommended planting spacing for kale is 40–60 cm. This spacing

not only accommodates nodulation but also allows sufficient space

for full leafball expansion during that stage, helping to prevent poor

ventilation, reduced light transmission, and disease resulting from

overly dense planting. Regarding application rates, due to the thick

waxy layer of kale leaves and its dense canopy, the recommended

spraying volume is 400–600 L/ha, which is 25%–33% higher than

that of leafy vegetables such as cabbage (Zhang et al., 2017).

In this study, kale was cultivated according to standard

agronomic practices with a plant spacing of 50 cm and a row

spacing of 60 cm. The current YOLOv8 algorithm is widely adopted

for high-density crop target detection due to its high efficiency,

accuracy, and reliability, making it a popular choice in vegetable
frontiersin.org
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recognition applications. The complexity of kale field detection

scenarios—such as small target scale and strict real-time

requirements—is systematically evaluated. A comparative analysis

was conducted on the migration learning performance of five

commonly used models—Faster R-CNN, YOLOv8n, SSD,

YOLOv5S, and YOLOv8—to determine the most suitable

detection model for kale (Fu et al., 2022). While Faster R-CNN, a

two-stage detection framework, excels in small target detection in

complex scenes by generating candidate regions for feature

extraction and classification, its time-consuming process and high

deployment costs make it unsuitable for real-time kale detection.

SSD, with single-stage detection and multi-scale feature mapping,

underperforms on small targets due to insufficient shallow feature

resolution. YOLO’s unique grid-based architecture enables efficient
Frontiers in Plant Science 04
multi-category detection with fewer computational resources.

YOLOv8 replaces the C3 structure in YOLOv5 with the C2f

structure for improved gradient flow and modifies channel

numbers for different model scales. As a result, even lightweight

models like YOLOv8n perform well, particularly for lower-

resolution images captured by mobile devices. In testing,

YOLOv8n demonstrated the fastest detection speed and best

performance among the lightweight models. Accordingly,

YOLOv8n was selected in this study and further optimized to

construct a recognition model capable of fast, accurate detection

of field-grown kale under high-density, high-humidity conditions.

Its architecture is illustrated in Figure 3.

The constructed kale recognition model consists of three main

parts: backbone, neck, and head. The backbone is responsible for
FIGURE 1

Variable rate spraying system: (A) Basic components of the system (B) Overall structure.
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extracting image feature information of kale and feeding it into the

subsequent network. The Conv module contains convolutional

layers, batch normalization, and activation functions for standard

feature extraction. The DW-C2f module performs feature

extraction and fusion using connections across different

bottleneck layers. The Swin module enhances detection accuracy
Frontiers in Plant Science 05
in edge regions of the kale image, thereby improving overall

recognition precision for better variable spraying. The SPPF

module fuses features that have undergone a maximum of three

max-pooling operations. This sequence enables efficient extraction

and fusion of rich feature information. The neck connects the

backbone and head and facilitates deeper feature fusion. It
FIGURE 2

Variable rate spray system control flowchart.
FIGURE 3

General architecture of the YOLOvn8 kale recognition model.
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integrates multiple Concat and DW-C2f modules to combine low-

and high-level features after several convolution operations. The left

and right sides of the head perform object detection in conjunction

with binocular vision sensors, with a Bbox loss module for

bounding box regression and a Cls module for classification.

The preliminary YOLOv8n detection model, while capable of

identifying target crops in the field, exhibits inadequate adaptation

to dense kale plantations. To improve this, the study uses larger

convolutional kernels and depthwise convolutions to lower

computational costs (Chen et al., 2024). Depthwise convolution

decreases floating-point operations and parameters by applying

each kernel to a single input image channel. Although dilated

convolution can expand the receptive field, it might impact

downstream tasks. To address this, the study employs a dilated

convolution design with added shape biases to enhance model

generalization and reduce overfitting risks (Ma et al., 2018).

ConvFFN modules replace the original ones in the bottleneck to

expand the model’s receptive field and improve feature extraction

for target kale. The original YOLOv8n struggles with detecting edge

regions in kale images due to insufficient convolutional operations

and weak gradient updates for edge pixels. To solve this, the study

integrates a Swin Transformer module with CNN. The Swin

Transformer’s self-attention mechanism better extracts edge

semantic information, overcoming CNN’s edge detection

limitations and improving target semantic understanding

(Nevavuori et al., 2019). In field scenes, kale is often occluded by

weeds and other objects. A non-local attention mechanism is added

to the algorithm to enhance feature extraction of kale in practical

detection and strengthen the model’s ability to capture long-range

dependencies. Channel or spatial attention mechanisms aim to

generate more discriminative features and improve the

distinctiveness of key features (Thenmozhi and Srinivasulu

Reddy, 2019). However, channel-wise dimensionality reduction

may affect the visual representation of target kale. Therefore, a

spatial domain attention method is used. It transforms spatial

information from the original image to another space while

retaining key details, avoiding the adverse effects of channel

attention mechanisms and improving target identification in

high-density field scenarios.

The performance of five mainstream detection models—Faster

R-CNN, YOLOv8n, SSD, YOLOv5S, and YOLOv8—was tested on a

kale dataset collected from a large field. The hardware platform for

the test was the NVIDIA Jetson AGX Orin (32 GB video memory,

CUDA 11.4), used to comprehensively evaluate the recognition

accuracy of the models. Evaluation parameters such as mean

average precision (mAP), image processing time, precision (P),

and recall (R) (Wu et al., 2024) were adopted as the four criteria for

model evaluation.
2.3 Kale target center canopy spray
identification model construction

The kale planting parameters in the experimental field were a

plant spacing of 60 cm, a row spacing of 50 cm, and a ridge spacing
Frontiers in Plant Science 06
of 1.2 m, which meet agronomic specifications for vegetable

cultivation. Based on field planting density and the camera’s

imaging recognition principle, the RealSense sensor was mounted

at a height of 80 cm, with a horizontal offset between the spray bar’s

central axis and the sensor set at 25 cm. The sensor’s installation

position can be adjusted to adapt to various planting modes,

maximizing target spraying accuracy. In the study, a canopy

density–volume spray identification model was constructed based

solely on field kale agronomy, as shown in Figure 4. The

computational method is also illustrated. The model computes

RGB and depth data from kale canopy images in real time using

the binocular vision sensor. The derived model triggers the solenoid

valve for spraying, while the actual height and width of the detected

target are calculated using the imaging principle (Qi et al., 2023), as

shown in Equation 1.

f
 R=2 − e

=
Hp
Ht

=
Wp
Wt

(1)

where f is the sensor focal length, in this paper, f = 3.95 mm; Hp

the pixel height of the measurement area in mm; Ht is the actual

height of the detection area in mm; Wp is the pixel width of the

detection area in mm; Wt is the actual width of the detection area

in mm.

In field conditions, the tight layering of kale leaves during the

nodulation stage often causes local occlusion, increasing the error

rate in binocular vision feature point matching and affecting

recognition accuracy. To improve pest control effectiveness,

targeted spraying was enhanced by reconstructing effective

pesticide application regions. Based on morphological

characteristics—plant height 30–50 cm, consistent with NY/T

1837–2010 planting standards—the bullseye position of the kale

canopy was selected as the spraying target. To address canopy

occlusion and shading, the canopy was segmented into upper edge,

bullseye region, center, and lower edge canopies (Li et al., 2018).

Given kale’s generally low stature, the binocular sensor’s pitch angle

was set at 30°, and its resolution was configured to 240×320 pixels.

To systematically evaluate the field adaptability of the improved

spray recognition model, several rows of kale were selected for

experimental testing. Results were compared to the baseline

YOLOv8 model to assess algorithmic improvements (Hussain

et al., 2020). During the test, the system moved at a constant

speed of V = 1 m/s, with kale canopy width Wtarget collected in real

time via the integrated binocular vision sensor. Pre-processed target

feature parameters and a fixed detection distance were input to the

model. The variable-rate spraying system transmitted the detected

kale data to the core controller, which dynamically adjusted

solenoid valve timing using the response frequency model derived

in Equations 2-4. In addition, rigid coupling between the binocular

sensor and solenoid valve array at the front end of the folding spray

bar minimized positional error from vibration, ensuring spatial

synchronization between target detection and spray execution, and

significantly improving spraying accuracy.

T1 =
WTarget

V
(2)
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T2 =
d
v

(3)

f1 =
1

T1 + T2
(4)

where WTarget is the width of the target kale in cm; d is the

detection distance corresponding to the target crop in cm; v is the

forward speed of the machine in m/s; f1 is the switching frequency

of the solenoid valve in Hz; T1 is the opening time of the solenoid

valve in s; and T2 is the closing time of the solenoid valve in s.
2.4 PWM duty cycle-flow rate decision
modeling

2.4.1 System spray flow rate accuracy test
The response speed of the solenoid valve in the variable-rate

spraying system directly influences flow control precision. In pest

control operations for field kale, pesticide spray parameters must be

dynamically adjusted based on crop growth and pest types. Because

different pesticides cover different areas, constructing a theoretical

mathematical flow decision model is crucial for achieving precise

system-level flow control. The theoretical model for application rate

per unit area in high-density kale fields (Zhang H. et al., 2024) is

given in Equation 5.

Qplant =
Qarea · C
Nplant

(5)

where Qarea for the unit area of the amount of drug application,

the unit is L/ha; C for the active ingredient concentration of the
Frontiers in Plant Science 07
agent, the unit is %; Nplant unit area planting density, the unit is

plant/ha.

There are significant differences in the canopy density of kale,

and its canopy density and volume parameters directly affect the

opening and closing control logic of the solenoid valve. Canopy

density of kale refers to the number and distribution of kale leaves

per unit area, serving as a vital measure of plant vigor and leaf

coverage in the field. In the dynamic spraying management system

for different kale canopy areas, a stereo visual sensor first captures

the canopy’s volume and center position. The core processor then

estimates pest and disease risks and analyzes the canopy density for

each area. For the upper canopy edge, where less pest and disease

occur due to more light, the system reduces the duty cycle via PWM

signals to decrease pesticide application. The center area, with dense

leaves and high pest/disease risk, is managed by the system module,

which dynamically adjusts the electromagnetic valve’s duty cycle

based on YOLOv8n’s visual feedback. This optimizes liquid

distribution for precise spraying. For the lower canopy edge,

which is near the ground and hard to spray, the system increases

spray pressure using image data to enhance droplet penetration,

ensuring effective coverage. In general, the higher the canopy

density, the greater the corresponding required pesticide dosage.

A three-dimensional canopy volume characterization was

constructed based on canopy area and density (Manandhar et al.,

2020). In this study, a pesticide flow decision model, Kcv, centered

on canopy density is established for verifying the dynamic response

characteristics of the PWM duty cycle flow model, and the model

expression is shown in Equation 6.

Kcv = 0:5� NLWA
NALLI

+ 0:5� Cw
Cmax

(6)
FIGURE 4

Schematic of the target center coronal density-volume spray identification model.
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where Cmax is the maximum coverage area per unit area of the

spray target in m2; NLWA is the normalized leaf weighted area in

m2; NALLI is the normalized leaf anisotropic blade index; CW

pesticide maximum threshold.

Further, the PWM duty cycle–flow theoretical model Q(D, P)

(Wen et al., 2018), whose expression is shown in Equation 7, is

defined and embedded into the control unit of the variable-rate

spraying system, controlled by adjusting the duty cycle of the

solenoid valves’ opening and closing in real time.

Q =

        0                                                          D ≤ 15%

kPn( D−1570 )1:32                                           15% < D < 85%

      kPn                                                      D ≥ 85%

8>><
>>: (7)

where K = 0.694 is the flow coefficient, n = 0.583 is the pressure

correction index, in line with ISO 16119–3 standard verification.

To verify the theoretical flow rate of the model and the control

accuracy of the actual spraying unit, a spraying flow rate test was

conducted to evaluate the opening and closing response

characteristics of the solenoid valve under synergistic regulation

with the PWM duty cycle signal. The test included four pressure

gradients: 0.1 MPa, 0.2 MPa, 0.3 MPa, and 0.4 MPa, and duty cycle

tests ranging from 10% to 90% under a 10 Hz control signal.

Preliminary tests showed that within the low duty cycle range of

20%–40%, due to the imbalance in solenoid valve opening and

closing time, there were significant fluctuations in flow output, and

the terminal effective spray volume was insufficient to meet the pest

prevention threshold requirements. In the 60%–80% duty cycle

range, the system flow stability significantly improved, and pipeline

pressure fluctuations were minimal. To quantify the control

characteristics, the test was repeated using a flowmeter across 5

duty cycle gradient groups, each group maintained for 30 s for

system stabilization. Data were collected and averaged over 5

repetitions to determine the effective output value.

2.4.2 Crop canopy spray flow accuracy tests
To evaluate the variable control accuracy of the variable-rate

spraying system in a field kale environment, a graded control

experiment was designed, including a dynamically adjusted

variable spraying group and a fixed-flow constant spraying group

for comparison. Based on the morphological characteristics of the

kale canopy (plant height 30–50 cm, row spacing 50 cm) (Wang Z.

et al., 2024), the experimental target area was divided into three

parts: the upper canopy edge (0–10 cm from the top), the target

center (agronomic core control area), and the lower canopy edge

(0–10 cm from the base). Flow data for each area were collected in

real time using a Coriolis mass flowmeter (accuracy ±0.5%). During

the test, the sprayer traveled at a constant speed of 1 m/s, the system

working pressure was set to 0.3 MPa, and each test group was

repeated three times with averaged results to reduce random error.

For safety, water was used instead of pesticides, and line pressure

stability was maintained using a pressure compensation valve.

Different spraying methods were used to evaluate flow accuracy

across kale target areas.
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2.5 Field test

2.5.1 Verification test of atomized deposition
performance

In agricultural plant protection operations, droplet deposition

performance directly determines pesticide utilization and pest

control efficiency. In this study, fog droplet deposition density,

deposition amount, and coverage were used as core evaluation

indicators. Field performance validation of the RealSense D455

binocular vision-based variable rate spray system was conducted.

The experiment took place on December 3, 2024, at a vegetable

plantation site in Junshan District, Yueyang City, Hunan Province

(29.22°N, 112.88°E), under sunny, windless conditions with a

temperature of 13.8 ± 0.5°C and relative humidity of 36%–43%. A

control group (constant flow rate of 2.0 L/min) and a CV dynamic

regulation treatment group were tested. Sampling points were

arranged according to ISO 24253-2:2015 Plant Protection

Machinery - Test for Arable Crops Deposit, as shown in the

schematic diagram in Figure 5B. In the figure, each ridge of kale

comprises 4 rows. In Figure 5B, A/B/C/D correspond to the

respective rows of kale. Notably, the kale is planted in accordance

with standard agronomic practices: a ridge spacing of 1.2 m, row

spacing of 65 cm, and plant spacing of 60 cm. Based on the

morphological characteristics of field kale, the target area was

divided vertically into three gradients: upper canopy edge, target

center, and lower canopy edge. For each kale group, 5–10 pieces of

water-sensitive paper were placed in the same area, and cochineal

solution was used in place of pesticide. Droplet coverage Cd (%),

deposition density rd (drops/cm
2), and deposition per unit area Vd

(uL/cm2) (Salcedo et al., 2021) were calculated according to

Equations 8-10.

   Cd =
A1

A2
� 100% (8)

rd =
Nd

A2
(9)

where A1 indicates the droplet coverage area of the water-

sensitive paper in cm2; A2 indicates the total area of the water-

sensitive paper region in cm2; rd is the droplet deposition density in

drops/cm2; Nd indicates the total number of droplets in the water-

sensitive paper region, which is automatically counted by the image

analysis software.

Vd =
Ce1
Ce2

� V
S
 �103 (10)

where Ce1 indicates the percentage of cochineal in the eluent,

i.e., the corresponding concentration; V is the volume of eluent in

mL; Ce2 is the concentration of cochineal in the spray stock in ml/

cm2; S indicates the area of water-sensitive paper in cm2.

Water-sensitive paper (Chongqing Liuliushanxia Plant

Protection Science and Technology Co., Ltd.) and cochineal

reagent (Fuzhou FeiJing Plant Science and Technology Co., Ltd.)

were used. The paper size was 110 mm × 35 mm, with an effective
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detection area of 385 cm2. A 0.5 g/L cochineal solution was

prepared with pure drinking water and detected at a wavelength

of 507 nm using a Shimadzu UV-1240mini spectrophotometer, in

accordance with GB 12475-2006. The kale planting parameters

followed a monopoly planting pattern: four rows per monopoly,

row spacing 65 cm, plant spacing 60 cm, monopoly width 1.2 m, in

line with DB62/T 1978-2021. Water-sensitive paper was placed in

three canopy zones: target center (stem–leaf junction), upper edge

(0–15 cm from top), and lower edge (10–20 cm from ground), with

ten sampling points per area, spaced at 60 cm in Figure 5A. A blank

control group was included in a non-sprayed area. Spray pressure

was 0.3 MPa, the sprayer moved in a straight line along the ridge at

1 m/s (Figure 5D), and water-sensitive paper was deployed 30 min

prior to spraying to prevent environmental humidity interference.

The variable-rate group adjusted flow in real time (1.5–3.0 L/min)

using RealSense D455 data; the constant-rate group maintained 2.5

L/min at 0.3 MPa. Water-sensitive paper was recovered 5 min post-

spray, dried in light, then scanned and analyzed using DepositScan

software (Tewari et al., 2020). Each test group was repeated three

times, outliers removed, and average values taken. Coverage and

deposition density were calculated using Equations 8 and 9.

2.5.2 Calibration of droplet deposition and
uniformity evaluation

To quantify droplet deposition on kale canopy, water-sensitive

paper from the test (Figure 5C) was analyzed. To guarantee the

safety of operators, carmine solution (which is made of biological
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reagents) was used in the experiment instead of pesticides. The

cochineal solution was calibrated via UV spectrophotometry with

the UV-1240mini, and eluent absorbance (ABS) was measured. A

linear regression equation was established (Equation 11) through

standard concentration gradient testing. Droplet spatial distribution

uniformity and liquid solution permeability were found to be

kinetically coupled in agricultural spray deposition. When

conducting field operations, the spray droplets landing on the

water-sensitive papers placed in the kale field cause a physical

diffusion phenomenon. To prevent the liquid solution’s physical

diffusion from affecting the spray deposition results, the water-

sensitive papers should be photographed promptly during the

experiment. Based on plant surface interface science, the

coefficient of variation (Dai et al., 2019) was used to evaluate

uniformity (Equations 12-14), calculated as follows:

ABS = 24:381Ce + 0:002(R2 = 0:998) (11)

where ABS is the absorbance value of the measured solution; Ce

is the concentration of the measured cochineal solution in g/L.

CV =
d
m
� 100% (12)

Format:

u = o
n
i=1ui
n

(13)
FIGURE 5

Field experiment tests: (A) Water-sensitive paper sampling point layout (B) Schematic layout of atomized deposition (C) Water-sensitive paper after
field experiment tests (D)Field test experiment site.
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d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(mi − m)2

n − 1

s
(14)

where CV is the coefficient of variation; d is the sample standard

deviation; u is the sample mean; ui is the sample observation; and n

is the number of samples in the data set.

2.5.3 Validation of solenoid valve dynamic
response and variable spraying performance

To validate the target flow accuracy and dynamic response of a

binocular vision-guided variable-rate spraying system, this study

focused on the coupling between solenoid valve switching frequency

and spray volume. Operation efficiency was optimized by adjusting

sprayer speed. Experiments were conducted per JB/T 9782–2014 Test

Methods for Plant Protection Machinery (Wang et al., 2023). Based on

field agronomy and anticipated variable spray response delay, solenoid

valve flow at different start/stop frequencies was tested to identify

discrepancies between actual and theoretical spray volumes. Sprayer

speed was adjusted across four groups: 0.5 m/s (low), 1 m/s

(benchmark), 1.5 m/s (medium), and 2 m/s (high), tested with

different duty cycles. Spray volume during a single valve cycle and

over 1 min was measured using a standard 1 mL measuring cup,

repeated 10 times per frequency group. The experiment was conducted

using standard flat - fan nozzles. Spray nozzle models FPV110-015,

FPV110-02, FPV110-03, and FPV110–04 were used, with spray

pressures set to 0.2–0.35 MPa according to nozzle parameters. The

experiment was repeated 10 times for averaging. Results confirmed the

effects of rapid solenoid valve switching on flow regulation, providing a

basis for determining the optimal operating speed of the variable-rate

system and improving kale disease control efficiency in large fields.
3 Results and discussion

3.1 Variable rate spraying system
identification model performance results
and analysis

Performance testing of five models was conducted using a kale

dataset from open-field cultivation. Table 1 presents the performance

test results of models incorporating different attention mechanisms.

The data presented in the table reveals a notable similarity between the

original YOLOV8 model’s detection accuracy and average image

processing time and the results reported by (Kong et al., 2024). This

correlation strongly suggests that the algorithm demonstrates a high

degree of reliability in detecting kale. Nevertheless, within the specific

parameters of this agricultural setting, the efficacy of the detection

algorithm is but one critical component. Of equal importance is the

average image processing time, which must be meticulously

coordinated with the operational parameters of the variable spraying

control system. The high plant density and partial occlusion in field

kale cultivation pose challenges. Although YOLOv5s shows relatively

high accuracy (86.3%) in testing, its performance in recognizing

occluded kale decreases. This might be due to its limited adaptability

to field conditions.
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Following the comparison test of model performance, Figure 6

shows the performance comparison of the models with various attention

mechanisms. Although Faster R-CNN demonstrates a certain advantage

in detection accuracy, reaching up to 91.5%, its average image processing

time exceeds 135.5ms, posing a challenge for real-time detection in high-

density field kale environments. In contrast, the improved YOLOv8n

model achieved a mAP@0.5 of 88.6 ± 0.3%, which is 0.5% higher than

the original model. Its average single-frame image processing time is 20.3

± 0.5ms—accelerated by 0.05%—meeting the demands of real-time field

detection. Moreover, the refined model outperforms the original one in

image processing speed, making it more suitable for real - time field

applications. This enhanced efficiency, coupled with its superior

adaptability to high - density planting conditions, provides robust

technological support for precise pesticide application. The results

show that YOLOv8n can accurately recognize kale in high-density

conditions, providing reliable feedback for the variable rate spraying

system. The recognition accuracy, with a reliability rate of 88.6%, reduces

missed detections and ensures effective pest management.
3.2 Test results and analysis of practical
field application of the target center
canopy identification model

To validate the effectiveness of the improved YOLOv8n model in

actual field detection tasks, a comparison with the original YOLOv8

benchmark model was conducted on a large-field kale test dataset (N =

1783, withmasked samples), as shown in Table 2. The results show that

the average mAP@0.5 improved to 88.7%, an increase of 0.8% over the

original model, indicating enhanced feature extraction capability for

small and occluded targets. The YOLOv8n Kale Keypoints model

improved by Zheng et al. (2024) mainly focuses on detecting kale

heads, achieving an average precision (AP50-95) of 99.2%, but with a

relatively large error. In contrast, this study ensures more stable real -

time kale field detection with smaller errors. The single-frame

processing time was reduced to 20.3 ± 0.5 ms, and inference speed

(FPS) improved by 10.74%, meeting the requirements of real-time crop

detection. Based on the detection results, the variable rate spraying

system implements a partitioned execution strategy. Each detection

region corresponds to a nozzle, and when the predicted box intersects

with the execution box beyond a set threshold, the upper computer

sends spraying commands via serial communication. The lower

computer then calculates the dynamic delay based on machine speed

to control solenoid valve timing (Silva et al., 2018).

Validation conducted in Yueyang City, Hunan Province,

showed significant improvements in detection performance. The

improved YOLOv8n model achieved 88.7% recognition accuracy in

high-density kale fields (plant density: 5.2 plants/m²), with a low

repeat detection and leakage rate, as shown in Figure 7. Under

adequate lighting, the model maintained a low repeat detection rate,

and in scenes with partial occlusion and high density, the missed

detection rate was below 11.3%.The actual test results are close to

those of Ong et al., who used CNN for in - field kale weed detection

(Ong et al., 2023). The improved model could be tested in future

applications of precise pesticide spraying on kale fields with more
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weeds to evaluate its real - world effectiveness. In addition, under

optimal conditions—no occlusion from weeds or field signage—the

recognition accuracy reached 88.7%. This demonstrates that the

improved YOLOv8n is significantly more robust and adaptable in

complex field environments, and capable of precise operation even

under occlusion, as shown in Figure 8.
3.3 Results and analysis of PWM duty
cycle-flow spray modeling

3.3.1 Spray flow accuracy test results and analysis
A systematic experimental design was used to analyze the

relationship between PWM duty cycle and spray flow under fan-

shaped anti-drift nozzles at pressure levels from 0.1–0.4 MPa. Flow test
Frontiers in Plant Science 11
data were processed via linear regression analysis using Origin 2021.

The results of solenoid valve flow response to different duty cycle

signals are shown in Figure 9, based on the average of five test groups.

The theoretical and actual flow rates closely matched. The regression

coefficients (R2) for the spraying models under four pressures were all

above 0.9, indicating strong linearity. Additionally, in similar studies,

Han et al. (2024) achieved significant success using an energy - saving

PWM - based electromagnetic - valve control approach. This

underscores the effectiveness of PWM methods in delivering precise

electromagnetic - valve control. The composite model average was R² =

0.9958, meaning the PWM duty cycle signal explained 99.58% of the

flow rate variation. The maximum relative error was 4.1%, meeting the

ISO 5628-1:2017 Plant Protection Machinery-Spraying Equipment

technical standard for precision spraying operations. This error

threshold is below 5%, aligning with the requirements for accurate

application in high-density crops like kale. As system pressure

increased from 0.1 MPa to 0.4 MPa, flow rates also increased,

consistent with fluid dynamics theory. When the duty cycle was

below 20%, the flow dropped below 0.01 L/min due to solenoid

valve mechanical delay and the minimum pressure threshold. In the

40%–80% duty cycle range, the coefficient of variation (CV) was less

than 2%, confirming suitability for variable spraying applications, with

minimal influence from signal changes.

3.3.2 Spray canopy flow accuracy test results and
analysis

In the performance test of kale spraying across different canopy

areas, spray volume per test kale and canopy area were recorded.
TABLE 1 Comparison of mainstream model performance test result.

Model Accuracy
(%)

Recall
(%)

mAP@0.5
(%)

Average
image Pro-
cessing

Time (ms)

YOLOv8 88.1 77.9 87.9 22.7

SSD 81.9 72.4 81.7 29.3

Faster
R-CNN

91.5 82.1 91.3 135.6

YOLOv5s 86.3 80.3 86.2 25.6

YOLOv8n 88.6 78.1 88.7 20.3
FIGURE 6

Performance test results of different models.
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Results are shown in Table 3, comparing continuous and variable

spraying. The average spray volume under variable spraying in

three replicated groups was significantly higher than under

continuous spraying, and the CV decreased by 0.2%. For kale

canopy edge zones, spray volume was reduced by 42.31% at the

upper edge and 52% at the lower edge, significantly improving

pesticide targeting at the bullseye. However, environmental airflow

caused some spray drift, and leaf interference affected droplet

penetration. Overall, the variable-rate spraying system

demonstrated clear advantages over constant spraying in targeting

kale pest control. The results showed that spray distribution was

significantly improved under variable spraying. As seen in

Figure 10, the spray volume in the bullseye region increased by

an average of 10.7% compared to constant spraying, closely aligning

with control requirements for pest management (Seol et al., 2022).

The similar variable and constant spraying results in different kale
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groups may stem from spray drift during the test (Li et al., 2021).

This has minimal impact on overall pest control in extensive

kale fields.
3.4 Field test results and analysis

3.4.1 Verification test results and analysis of
atomized deposition performance

During field tests, droplet deposition data from different

spraying methods were obtained via DepositScan software

analysis of water-sensitive paper. As per NY/T 650–2013

agricultural standards for kale pest control, spray deposition

density should exceed 85 drops/cm², and coverage should surpass

20%. As shown in Table 4, compared to constant spraying, the CV-

based variable-rate method achieved a droplet deposition density
FIGURE 7

Improvement of YOLOv8n detection of kale in real fields.
TABLE 2 Comparison of improvement results of field kale identification model of YOLOv8.

Model mAp@0.5 (%) Flops (G) Fps (s) Params (M) Per-Frame Inference
Time (ms)

YOLOV8 87.9 10.6 76.3 7.5 22.7 ± 0.8

YOLOV8n 88.7 9.1 84.5 6.8 20.3 ± 0.5
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FIGURE 8

Comparative accuracy test results of the three models on top of the dataset.
FIGURE 9

Flow spray fitting results for solenoid valves with different duty cycle signals.
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increase of 28.45% and deposition volume increase of 0.87 μL/cm2

—an improvement, though not drastic. These results generally meet

on-target spraying standards. In the constant mode, coverage was

22.93%, with some fluctuation likely due to spray drift, which

caused non-target deposition and droplet coalescence, reducing

the number of distinct droplets. The reason for these results is

similar to Zhang’s findings on PWM - based variable spraying

(Zhang C. et al., 2024). This further shows that spray drift can affect

the system’s deposition performance. In the CV-based variable-rate

mode, the rapid response of the vision module ensured accurate

flow control. The solenoid valve, controlled via varying PWM duty
Frontiers in Plant Science 14
cycles, switched frequently and generated a water hammer effect

(Liu et al., 2014), producing smaller droplets. Consequently, droplet

count increased in variable spraying, with a variation of 0.33

μL/cm2.

3.4.2 Droplet deposition test results and analysis
At the end of the test, atomized deposition on water-sensitive

paper was scanned using the Aficio MP 7502 scanner (Deep

Xiangyu Technology Co., Ltd., Ricoh Group, RICOH) at a

resolution of 600 × 600 ppi. DepositScan was used to process the

grayscale images and extract droplet coverage and deposition
FIGURE 10

Test results of spray volume trials in different canopy areas.
TABLE 3 Comparison of spraying effects between continuous and variable rate spraying.

Spraying
method

Upper canopy edge Target center Lower canopy edge

Test
no.

Spray
volume (L)

Average
(L)

Test
no.

Spray
volume (L)

Average
(L)

Test
no.

Spray
volume (L)

Average
(L)

Constant
rate spraying

01 0.51

0.52

01 0.55

0.56

01 0.49

0.5002 0.53 02 0.56 02 0.50

03 0.52 03 0.57 03 0.51

Variable
rate spraying

01 0.29

0.30

01 0.62

0.62

01 0.23

0.2402 0.31 02 0.61 02 0.25

03 0.30 03 0.63 03 0.24
f
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density to evaluate the spray effect test indices. Based on the droplet

deposition distribution data, Origin 2021 software was used to

generate distribution maps of the mean droplet coverage and

deposition density across the kale canopy area in the field. The

droplet deposition density under different spray modes is shown in

Figures 11A, B. Compared with constant spraying, the deposition

density in the canopy target center under variable-rate spraying was

significantly higher, with an average increase of 16.1%, indicating

that the variable-rate system better achieves targeted spraying. This

contributes to improved pest and disease control in the plant core.

In contrast, constant spraying resulted in high deposition in canopy

edge areas (non-target zones), with wide-area coverage leading to
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pharmaceutical waste. In both modes, droplet deposition density

exceeded 16 drops/cm2, meeting GB/T 8231, Guidelines for the

Rational Use of Pesticides in China. Furthermore, the significantly

higher deposition density in the target center under variable-rate

spraying is attributed to the binocular vision sensor’s rapid target

acquisition and the solenoid valve’s frequent switching, which

increases local nozzle pressure. The system can thus adjust the

flow rate according to variations in the canopy volume grid at

different locations, enabling precise application. Regarding droplet

coverage under both modes (Figures 11C, D), results from the

variable spraying test show that average droplet coverage at the

target center reached 34.42%, representing a 17.72% increase

compared to constant spraying. Although the water hammer

effect from frequent solenoid valve switching may affect results,

variable-rate spraying still showed good droplet uniformity and

stronger penetration.
3.4.3 Solenoid valve dynamic response and
variable spraying performance validation results
and analysis

Testing the system’s performance at different travel speeds

revealed that at speeds over 2 m/s, the binocular vision sensor

could still identify kale targets; however, the solenoid valve’s
FIGURE 11

Test results in different spraying modes: (A) Variable-mode droplet coverage (B) Constant-mode droplet coverage (C) Constant-mode deposition
Density (D) Variable-mode density.
TABLE 4 Deposition parameters under different spraying modes.

Spraying
mode

Flat-fan nozzle

Deposition
density

(droplets/cm2)

Deposition
amount
(uL/cm2)

Coverage
(%)

Constant-
rate

95.92 0.54 22.93

CV-based
variate-rate

115.74 0.87 28.45
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frequent switching hindered accurate measurement of spray volume

per pass. Therefore, in this test, the valve’s opening time was set to

0.5 s and closing time to 1 s to ensure accurate measurement at 2 m/

s. To minimize error, each test was repeated five times under the

same conditions, and the average values were taken, as shown in

Figure 12. As indicated in the figure, the system’s theoretical spray

volume aligns closely with the actual spray volume. Here,

“theoretical” refers to the system’s theoretical flow rate, while

“actual” denotes the measured value. This indicates the

electromagnetic valve ’s flow reliability is effective. The

corresponding single and cumulative spray volumes for four travel
Frontiers in Plant Science 16
speeds over 1 min are shown in Table 5. Results show that increased

speed significantly impacts spray volume. At 2 m/s, the FPV110–04

nozzle showed a single-pass error of 1.79%, while the FPV110–03 at 1.5

m/s had an error of 4.64%, indicating a strong influence of travel speed

on actual volume. The influence of pressure on spray volume aligns

with the findings of Dai et al. (2019) on electromagnetic valve -

controlled spray flow characteristics under dynamic conditions.

Thus, it’s essential to conduct tests on the actual flow values of

variable - rate spraying systems. Higher spray pressure increased

atomization, enabling droplets to better penetrate dense canopies at

high speeds and reducing under-coverage. However, at low pressure
FIGURE 12

Comparison of theoretical and actual spraying volume results.
TABLE 5 Spray volume acquisition results of variable rate spraying control system.

Spray
nozzle model

Spray pres-
sure (MPa)

Travel speed
(m/s)

Duty
cycle (%)

Actual spray
volume (L)

Theoretical
spray

volume (L)

Relative
error (%)

Single 1-
Minute

Single 1-
Minute

Single 1-
Minute

FPV110-015 0.20 0.5 50 0.0313 0.188 0.0320 0.180 4.15 4.26

FPV110-02 0.25 1 50 0.0513 0.308 0.0530 0.318 3.31 3.25

FPV110-03 0.30 1.5 50 0.0388 0.233 0.0370 0.222 4.64 4.72

FPV110-04 0.35 2 50 0.0285 0.155 0.0280 0.153 1.79 1.31
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(e.g., FPV110–015 at 0.20 MPa), fog droplets lacked kinetic energy and

were prone to rebounding, contaminating non-target areas and

diverging from theoretical values. This suggests that the system

performs best at a medium travel speed of 1 m/s for effective kale

pest and disease control.
4 Conclusions

This study developed a precise variable-rate spraying system for

high-density kale fields by integrating RealSense binocular vision

with PWM-based variable-rate control technology, achieving

efficient precise spraying and pest management. Field trials

confirmed the effectiveness of the relevant models. The main

findings and conclusions are as follows:
Fron
1. The improved YOLOv8n algorithm greatly boosted

detection speed and accuracy. It handles high - density

situations and real - time precise operations. Its single -

frame image processing time is 20.3 ms, 10.7% faster than

the original model. With a detection accuracy of 88.6%, it

exhibits strong robustness in complex scenarios.

2. A target - center canopy spray model was built based on

kale canopy morphology. It enhanced deposition at the

target center and cut pesticide use, aligning with precision -

application standards. The model showed a strong

correlation between theoretical and actual flow rates (R²

= 0.9958), greatly improving pesticide - saving rates.

3. Field testing of the RealSense D455 - based variable - rate

spraying system showed it considerably lowered deposition in

non - sprayed areas. With good target - spraying performance,

it achieved an average coverage of 34.42% and reduced

pesticide use by 26.58%. The system performed optimally at

1 m/s, meeting precision - application needs.
In summary, field trials confirmed that the CV-based variable-

rate spraying system significantly improved target area droplet

deposition, increased pesticide utilization by 26.58%, and reduced

drift to non-target zones. These results align with standard

application practices and enhance kale pest and disease control.

However, limitations remain. The study did not address system

adaptation to non-standard agronomic conditions or quantify the

influence of weeds on detection accuracy. The long-term stability of

the detection model under dynamic canopy changes also requires

further research. Future work will focus on canopy growth modeling

and edge computing optimization to achieve full-cycle precision

control in complex field environments. This will help reduce

pesticide waste and improve kale pest management outcomes.
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