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Rice is a crucial food crop, and research into its gene expression regulation holds

significant importance for molecular breeding and yield improvement.

Enhancers, as key elements regulating the spatiotemporal-specific expression

of genes, represent a core challenge in functional genomics due to their precise

identification requirements. Current deep learning-based methods for rice

enhancer identification face limitations primarily in feature extraction efficiency

and the generalization capabilities of model architectures. In response, this study

introduces a novel model architecture, RiceEN-BERT-SVM, which integrates

DNABERT-2 as a feature extraction tool, alongside Support Vector Machine

(SVM) for enhancer sequence classification. The mechanism underlying the

optimization of model performance is elucidated through differential entropy

analysis of feature representations. Experimental results demonstrate the high

precision of this approach, achieving an accuracy of 88.05% in 5-fold cross-

validation and 87.55% in independent testing. These metrics surpass current

state-of-the-art (SOTA) models by margins ranging from 1.47% to 6.87% on the

same dataset. Further refinement through fine-tuning enhances RiceEN-BERT-

SVM's performance, increasing its accuracy by an additional 6.95%, resulting in a

final accuracy of 93.63%. The study employs differential entropy analysis of

sequence feature representations to explain the performance enhancements

observed with increased fine-tuning iterations. As the number of iterations rises,

the differential entropy distributions of positive and negative sample features

gradually separate from their initial overlapping state, corresponding with the

model's progressive improvement in performance. At six fine-tuning iterations,

the separation between positive and negative sample entropy reaches its peak,

achieving optimal model performance. Beyond this point, the distributions begin

to overlap again, leading to a decline in performance. This novel approach not

only offers an efficient tool for rice enhancer identification but also introduces a

visually interpretable framework based on differential entropy, providing a new

perspective for optimizing biological sequence analysis models.
KEYWORDS

rice enhancer, large language model, positive and negative sample distribution, support
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1 Introduction

An enhancer is a DNA sequence in the genome that can bind to

transcription factors and other regulatory proteins to enhance gene

transcriptional activity (Sparks et al., 2013; Ding et al., 2023). In the

rice genome, enhancers are primarily distributed in the inner regions

and near gene loci, playing a crucial role in regulating gene expression

(Zhao et al., 2020; Reed et al., 2023; Hamdy et al., 2024; Lin, 2024;

Qiao J. et al., 2024; Zhao M. et al., 2024; Zhao Y. et al., 2024; Zhou

et al., 2024). The accurate identification of rice enhancers is critical for

understanding their biological mechanisms (Cao et al., 2021a; Cao

et al., 2021b; Cao et al., 2022). However, traditional identification

methods like chromatin immunoprecipitation sequencing (ChIP-

seq) (Qiu et al., 2025) and reporter gene experiments, are labor-

intensive, inefficient, and lack genome-wide coverage, making it

challenging to efficiently identify enhancers throughout the genome.

In terms of computing, especially with the rise of artificial

intelligence technology, machine learning-based identification of

rice enhancer sequences has garnered increasing attention (Kaur

et al., 2019; Machnicka and Wilczynski, 2020; Li et al., 2021; Cheng

et al., 2024; Qiao B. et al., 2024; Xie et al., 2024; Yin et al., 2024).

Currently, these methods can be categorized into two groups based

on the distinct machine learning approaches employed. The first

category comprises classic machine learning algorithms reliant on

manually designed feature extraction techniques. For instance, Nisha

et al. proposed the RFECS (Rajagopal et al., 2013), which integrates

multi-omics features (e.g., histone modification and DNA

accessibility) using a random forest model, significantly enhancing

the accuracy of rice enhancer predictions. Meanwhile, Yinuo et al.

introduced iEnhancer-KL (Lyu et al., 2021), combining PSTNPss and

Kullback–Leibler (KL) divergence to quantify sequence distribution

differences, extract nonlinear features from the rice genome, and

ultimately employ SVM for enhancer classification. The second

category involves deep neural networks based on automatic feature

extraction (Khanal et al., 2020; Gao et al., 2022; Xiao et al., 2025).

These approaches focus on improving recognition performance by

leveraging various deep neural network architectures. For example,

Khanal et al. developed iEnhancer-CNN (Khanal et al., 2020), which

integrates word2vec models and convolutional neural networks

(CNNs) from natural language processing to identify enhancers

directly from raw DNA sequences (Zou et al., 2019). By contrast,

Yujia et al. proposed RicENN (Gao et al., 2022), combining CNNs,

bidirectional recurrent neural networks (RNNs), and attention

mechanisms for the specific recognition of rice enhancers.

Although these methods have achieved significant progress in

enhancer recognition, they remain constrained by certain

limitations. These include challenges related to model

interpretability, difficulties in intuitively understanding enhancer

regulatory mechanisms, inaccurate feature extraction, and limited

generalization across different species.

With the innovation of the Transformer architecture, pre-

trained language models have successfully expanded into the field

of biomolecular sequence analysis (Liu Y. et al., 2024; Yan K. et al.,

2024; Lai et al., 2025). In protein research, models such as ProtTrans

(Elnaggar et al., 2022)and ESM series (Rives et al., 2021; Xiao et al.,
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2024) have been developed to predict protein structure and

function. Similarly, in the DNA domain, several improved models

based on the BERT architecture (Wei et al., 2020; Le et al., 2021; Ai

et al., 2024; Li et al., 2024) exist. For example, the iEnhancer-EL

proposed by Liu et al (Liu et al., 2018), employs a multi-scale k-mer

labeling strategy to segment DNA sequences and extracts local

semantic features of enhancer sequences using a BERT-like

framework. However, the k-mer labeling method has limitations:

sequence overlap leads to information redundancy, significantly

increasing computational complexity, and the selection of k-values

requires empirical adjustment, which limits the model’s ability to

capture long-distance dependencies (Le et al., 2021; Zhou et al.,

2023). In contrast, DNABERT-2, a new generation DNA language

model, has achieved two major technological breakthroughs. First,

it replaces traditional k-mer segmentation with the Byte Pair

Encoding (BPE) word segmentation strategy. BPE dynamically

merges high-frequency subsequences to generate adaptive tokens.

For instance, as demonstrated in Zhihan et al.’s study, BPE

encoding reduced tokenized sequence length by a factor of 5

compared to 6-mer tokenization (Zhou et al., 2023), significantly

enhancing processing efficiency for long sequences. Second, its

Transformer architecture incorporates Attention with Linear

Biases (ALiBi) technology (Press et al., 2021), which optimizes

position coding and overcomes traditional limitations on input

sequence length. DNABERT-2 can flexibly process genomic

sequences of any length. Therefore, when dealing with complex

DNA sequences of varying lengths, DNABERT-2 demonstrates

superior efficiency and accuracy in feature extraction compared to

other large language models. It provides a more efficient and

powerful tool for genome sequence analysis.

In information theory, information entropy measures the

uncertainty and complexity of information. The larger the entropy

value, the higher the disorder of the system; this corresponds to richer

diversity in possible states and a greater amount of information

contained (Shannon, 1948). Differential entropy extends information

entropy to continuous random variables and quantifies the

uncertainty inherent in their probability distributions (Kozachenko

and Leonenko, 1987). If the probability density function f(x) is

uniformly distributed, the differential entropy will be larger,

indicating higher uncertainty. Conversely, if f(x) is highly

concentrated, the entropy may be smaller or even negative. This

property allows differential entropy to describe the uncertainty of

continuous signals with flexibility, leading to a wide range of

applications. In communication engineering, differential entropy

can quantify the distribution difference between signals and noise

(e.g., calculating the channel capacity limit) (Lapidoth and Moser,

2009), which is essential for optimizing efficient transmission

technologies like orthogonal frequency division multiplexing

(OFDM) (Li et al., 2007). In physics, differential entropy’s

mathematical correspondence with thermodynamic entropy (e.g.,

Boltzmann’s entropy formula) provides microscopic probabilistic

explanations for the analysis of macroscopic phenomena such as

gas diffusion and phase transition (Ellis, 1999; Xing, 2003). In

machine learning, mutual information indicators derived from

differential entropy overcome the limitations of linear correlation
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analysis. For instance, they can capture nonlinear correlations

between features and target variables. By measuring these

relationships, mutual information facilitates feature screening and

model performance improvement (Beirlant et al., 1997; Hanchuan

et al., 2005; Leonenko et al., 2008).

To address the limitations in existing methods for rice enhancer

sequence prediction regarding feature extraction and model

generalization, we proposed a model called RiceEN-BERT-SVM.

This model leverages DNABERT-2 as its feature extractor and

employs Support Vector Machine (SVM) as the classifier.

Experiments demonstrate that RiceEN-BERT-SVM efficiently

identifies rice enhancers with an independent test accuracy of

87.55%, surpassing RicENN, the current state-of-the-art model,

by 10.82%. By employing DNABERT-2’s fine-tuning capability

for downstream tasks, we achieved a 93.63% accuracy for

RiceEN-BERT-SVM after six fine-tuning iterations. We also

utilize differential entropy distributions derived from positive and

negative sample features to visually interpret how the performance

of our fine-tuning model changes with the number of tuning

iterations. Additionally, we propose a method for determining the

optimal number offine-tune iterations by analyzing the polarization

of positive and negative sample-averaged differential entropy

distances. Our approach not only provides novel tools and ideas

for rice enhancer sequence recognition but also offers a fresh

perspective on the visual interpretation of model behavior.
2 Materials and methods

2.1 Dataset

To train a rice enhancer prediction model, we obtained genome

sequence data of rice (Oryza sativa Japonica Group) from the Ensembl

Plants website (Quang et al., 2016; Howe et al., 2020). This database

integrates DNA sequence resources from a variety of important crops,

providing rich basic data for genomic research. Based on the enhancer

active regions verified by Jialei et al. using STARR-seq technology (Sun

et al., 2019), 9,642 enhancer sequences were extracted from rice

chromosomes as positive sample. Simultaneously, based on DNase I

hypersensitivity site (DHS) predictions, we identified 23,398 non-

enhancer sequences as negative samples. After redundancy removal

with CD-HIT tool (Huang et al., 2010; Li et al., 2012), the final dataset

comprised 4,082 enhancers and 9,916 non-enhancers exhibiting a mild

class imbalance with a positive-to-negative ratio of 1:2.43. The positive

samples were divided into training and test sets in a ratio of 7:3. For the

test set, 30% of the positive samples and an equivalent proportion of

negative samples were randomly selected to maintain consistency with

the original dataset’s chromosome distribution. The remaining 70% of

both positive and negative samples were allocated for the training set.

Ultimately, we constructed a training dataset comprising 9,346 samples

and an independent test set consisting of 3,882 samples. During the

training process, the training set was further subdivided into five

subsets for cross-validation purposes. Of these, 80% was used to

train the model, while the remaining 20% served to validate

its performance.
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2.2 Model architecture

In order to efficiently identify and predict rice enhancers, we

propose a new neural network model based on DNABert-2 and

explore the fine-tuned performance of the model using differential

entropy, as illustrated in Figure 1. This framework comprises three

main components: DNABert-2 feature extraction (Zhou et al.,

2023), machine learning, and differential entropy computation.

When entered into DNABert-2, a DNA sequence generates

corresponding feature vectors for both fine-tuned and un-fine-

tuned models. Subsequently, these un-fine-tuned feature vectors

are inputted into five distinct machine learning algorithms. Each

algorithm offers unique advantages in identifying rice enhancers.

Results indicate that the SVM algorithm (Hearst et al., 1998; Wang

et al., 2024) demonstrates superior performance in classifying rice

enhancers. Consequently, we utilize the SVM algorithm to train

using the fine-tuned eigenvectors (epoch1-epoch10), thereby

obtaining predictions of rice enhancers. Additionally, considering

the eigenvector without fine-tuning (epoch0) alongside the 10

epochs of fine-tuning, we estimate differential entropy employing

the Kozachenko-Leonenko method (Kozachenko and Leonenko,

1987). This analysis elucidates the impact of fine-tuning through

mean and median entropy differences observed in positive and

negative samples before and after fine-tuning.

2.2.1 Feature extraction
In DNABert-2, the input layer receives DNA sequences processed

through BPE tokenization and embeds them into a high-dimensional

space. These embeddings are then passed through 12 Transformer

Encoder layers, which serve as the core components responsible for

capturing long-distance dependencies and complex patterns within

the sequences. Each Transformer Encoder layer incorporates ALiBi

(Attention with Linear Biases), a positional encoding mechanism that

introduces linearly decaying bias to attention weights based on token

distances. This design enables flexible handling of variable-length

sequences while maintaining computational efficiency. Additionally,

the feedforward layers employ GEGLU (Gated Linear Unit with

GELU), which splits the input into two components, applies GELU to

one, andmultiplies them. This gatingmechanism improves nonlinear

modeling compared to standard activations (Zhou et al., 2023). In the

output layer, a 768-dimensional eigenvector is generated. This un-

fine-tuned result from the base architecture is designated as epoch0. If

subjected to further fine-tuning and optimization, these eigenvectors

can serve as inputs for subsequent tasks. Within this study, the model

undergoes a total of 10 training iterations following fine-tuning to

yield epochs 1 through 10.

2.2.2 Machine learning
Distinct machine learning algorithms offer various advantages

in identifying rice enhancers. We evaluated five common

algorithms to preprocess feature vectors derived from Bert:

LGBM and XGB, both ensemble methods utilizing gradient

boosting, are effective for complex nonlinear relationships, ideal

for large datasets, and yield high prediction accuracy (Zou et al.,

2023). SVM excels in high-dimensional spaces and small samples by
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finding an optimal hyperplane for classification (Zhu et al., 2023).

LR is efficient and straightforward, suitable for linearly separable

data, providing model interpretability. KNN classifies based on

nearest-neighbor similarity, making it apt for tasks with limited

data volumes. As shown in Figure 2, SVM outperforms other

algorithms across ACC, MCC, Sn, Sp, and Sr metrics for both

training and test sets. Consequently, we employed SVM to train the

fine-tuned feature vectors. To ascertain the optimal fine-tuning

stage for rice enhancer recognition, we input feature vectors from 10

epochs into SVM. This process yielded results for recognizing

enhancers from epoch1 to epoch10, facilitating our determination

of the best model performance.
2.2.3 Differential entropy calculation
In information theory, differential entropy is used to measure

the uncertainty of a continuous random variable, specifically,

defined as follows: for a continuous random variable X with

probability density function f (x), the differential entropy h(X)

(Equation 1) is defined as:

h(X) = −

Z ∞

−∞
f (x)logf (x)dx (1)

This study introduces differential entropy to quantify the ability

of DNABert-2 to capture sample features during the learning

process, as well as its ability to distinguish between positive and

negative samples with varying numbers of fine-tuning times.

However, in practice, the probability density function (PDF) of

continuous variables is typically not directly obtainable,

necessitating entropy estimation from empirical data. Common

approaches include binning-based discretization methods

(Alneberg et al., 2014) and kernel density estimation (KDE)

(Parzen, 1962). However, binning requires arbitrary discretization

of data into intervals, risking information loss or artificial patterns,

while KDE suffers from sensitivity to bandwidth selection and high

computational costs in high-dimensional spaces. In contrast, the

Kozachenko-Leonenko (K-L) entropy estimator circumvents these

limitations without requiring explicit PDF estimation (Kozachenko

and Leonenko, 1987; Bulinski and Dimitrov, 2019). Specifically, its

core principle involves calculating the average distance from each

sample point to its k-th nearest neighbor. This approach cleverly

bypasses direct density modeling while demonstrating superior

efficiency and accuracy in high-dimensional data processing. The

formula (Equation 2) is as follows:

HN : = dlog�r + logVd + g + log(N − 1) (2)

Where HN is the estimate of differential entropy H(f ). d is the

dimension of the space where the random vector is located. �r is the

geometric mean of the nearest neighbor distance in the sample, that

is, �r = (r1 · r2 ·… · rN )1=N , where ri is the distance from the i -th

sample point to its nearest neighbor sample point. Vd is the d-

dimensional unit sphere volume, that is, Vd =
p
D
2

G(1+D
2 )
. g is the Euler-

Marshalloni constant, which is approximately equal to 0.5772. N is

the sample size.
FIGURE 1

Technology roadmap. The DNA sequence was extracted by
DNABert-2, and the unfine-tuned and fine-tuned feature vectors
were output, respectively. After the feature sequences without fine-
tuning were identified by different algorithms, it was found that the
SVM algorithm had the best performance, so the features after SVM
training were selected to determine whether the enhancer was not.
In addition, in order to explain the effect of fine-tuning on the
model, the optimal number of fine-tuning was selected, and the
differential entropy of positive and negative samples was calculated
and visualized.
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During the fine-tuning process, the differential entropy of the

positive and negative samples in each epoch (from 0 to 10) is

calculated using Kozachenko–Leonenko, and then the differential

entropy of the positive and negative samples changes with the

increase in the number of fine-tunings.
2.3 Model evaluation

To comprehensively evaluate the model’s performance in rice

enhancer recognition, we adopted a 5-fold cross-validation

approach combined with independent testing. Based on the

training set and test set constructed in the previous section,

during the training phase, the training set is divided into 5

subsets. Each time, 4 subsets are used for model training, and the

remaining subset is used to validate the model’s performance. This

process is repeated 5 times (once for each subset as the validation

set) to optimize the parameters. Finally, the trained model is tested

on the independent test set to obtain the prediction results.
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The following metrics were selected to evaluate model

performance: accuracy (ACC) (Equation 3), Matthews correlation

coefficient (MCC) (Equation 4), recall (Sn) (Equation 5), specificity

(Sp) (Equation 6), negative predictive value (NPV) (Equation 7),

precision (P) (Equation 8), auROC, and auPRC (Grau et al., 2015;

Liu M. et al., 2024; Zhu et al., 2024; Huang et al., 2025; Zhang et al.,

2025). These metrics measure the classification performance of the

model from different perspectives, and they are defined below:

ACC =
TP + TN

TP + TN + FP + FN
(3)

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (4)

Sn =
TP

TP + FN
(5)

Sp =
TN

TN + FP
(6)
FIGURE 2

Comparison of indicators without fine-tuning for different methods: (A) Comparison on the training set, (B) Comparison on the test set.
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NPV =
TN

TN + FN
(7)

P =
TP

TP + FP
(8)

Where TP represents true positive (TP), TN represents true

negative (TN), FP represents false positive (FP), and FN represents

false negative (FN). auROC stands for area under the ROC curve,

which plots recall (Sn) and false positive rate (FPR) at different

thresholds. Values closer to 1 indicate better performance.

Similarly, auPRC stands for area under the precision-recall curve,

which plots precision (P) and recall (Recall) at different thresholds;

higher values closer to 1 indicate better performance.
3 Results and discussions

3.1 Analyzing ML models with pretrained
LM feature extraction

The DNABERT-2 large language model employs a dynamic

compression algorithm in place of the fixed k-mer window and

implements the ALiBi attention mechanism to facilitate full-sequence

modeling. Following extensive training on big data, it effectively

captures potential feature information within sequences. Leveraging

this capability, DNABERT-2 was applied to feature extraction in rice

enhancer recognition tasks to evaluate its practical effectiveness in

identifying rice enhancers. Simultaneously, the extracted features

were entered into five distinct machine learning algorithms for

classification purposes; their performances were then compared to

identify the most suitable algorithm for future fine-tuning.

The experimental findings are illustrated in Figure 2. Figure A

presents a performance comparison of the five machine learning

algorithms during cross-validation, while Figure B evaluates them

under independent testing conditions. It is evident that SVM

emerges as the top performer across six out of eight metrics,
Frontiers in Plant Science 06
excluding Sp and P, demonstrating consistent superiority

irrespective of whether it was trained on or tested against

datasets. In cross-validation, the SVM algorithm achieved a peak

performance of 0.883, whereas in independent testing, its score

reached 0.879. The outcomes of all eight metrics were averaged

across both validation methods, reinforcing SVM’s superior

performance. Compared to the other four algorithms, SVM

exhibited improvements ranging from 1.41% to 6.27% during

cross-validation and 0.49% to 5% during independent testing.

Consequently, the SVM algorithm was identified as the most

effective for the rice enhancer recognition task and selected as the

foundational model for subsequent fine-tuning exercises.
3.2 Model fine-tuning effects

DNABert-2 can be fine-tuned for the downstream task of

identifying rice enhancers. The model was fine-tuned for 10

iterations, with each fine-tuning run denoted as Epoch_i (i = 1, 2,

…, 10), while the unmodified baseline was labeled Epoch_0. To

mitigate overfitting risks, we prioritized evaluation on an

independent test set. The performance of all 11 epochs (Epoch_0

to Epoch_10) was systematically compared, and the results are

shown in Figure 3. Among the 8 evaluation metrics, AUC (Area

Under the ROC Curve) was selected as the primary metric due to its

threshold independence, which comprehensively aggregates model

performance across all classification thresholds without requiring

arbitrary cutoff selection. Additionally, AUC directly quantifies the

model’s ranking ability, aligning with the practical need for

enhancer identification in genomic studies.

Figure 3A demonstrates progressive performance improvement

through fine-tuning at the macro scale (0–1 auROC range), while

the magnified view in Figure 3B (0.950-0.980 auROC range) reveals

performance oscillations. Our analysis suggests no clear correlation

exists between model performance and the number of fine-tuning

iterations, as the performance improvement does not scale linearly
FIGURE 3

Variation trend of auROC in the testset with the number of fine-tuning times under SVM. (A) Full-scale view (y-axis: 0–1) demonstrating
performance improvement through fine-tuning. (B) Magnified view (y-axis: 0.950–0.980) highlighting nuanced auROC fluctuations.
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with additional fine-tuning epochs. During the first fine-tuning step

(Epoch_1), there was a significant improvement in performance

compared to Epoch_0. After that, the AUC fluctuated within a

narrow range of 0.965–0.975 until Epoch 9, after which the AUC
Frontiers in Plant Science 07
dropped significantly. It is hypothesized that excessive fine-tuning

at this stage may lead to model overfitting, thereby reducing its

generalization ability on the test set. At this point, we cannot

definitively determine the optimal number of fine-tuning epochs.
FIGURE 4

Results of differential entropy. (A) Change in entropy of the test set. (B) Change of the mean entropy difference and median entropy difference of
positive and negative samples in the test set with the increase of epoches (0–10 eopoches). Where Dmean differential entropy =Positive sample
mean differential entropy - Negative sample mean differential entropy |, Dmedian differential entropy =Positive sample median differential entropy -
Negative sample median differential entropy |.
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3.3 Differential entropy explanation

We calculate differential entropy to more intuitively explain the

effect of fine-tuning on the model. Differential entropy measures

the uncertainty of data distributions and can be used to evaluate the

model’s ability to distinguish between positive and negative

samples. Specifically, we used the Kozachenko–Leonenko

estimator to calculate the differential entropy of the positive and

negative samples for Epoch_i(i=0,1,2… 10), visualizing them to

observe the change patterns. As shown in Figure 4A, with an

increase in the number of fine-tuning epochs, the differential

entropy of positive and negative samples exhibits a trend of

“coincidence–separation–coincidence.” At the initial stage, the

differential entropy of positive and negative samples coincided,

indicating that the model had not yet fully distinguished between

them. During the fine-tuning process, the differential entropy of

positive and negative samples gradually separated, suggesting that

the model’s ability to differentiate improved. Notably, during

Epoch_6–Epoch_8, the positive and negative samples were most
Frontiers in Plant Science 08
distinct in terms of differential entropy, which also corresponds to

the “plateau” phase observed for Epoch_6–Epoch_8 in Figure 3. In

the later stages, the differential entropy of positive and negative

samples began to coincide again, likely because the model started

overfitting and lost its generalization ability. At this point, it can be

preliminarily determined that there is an optimal number of fine-

tuning epochs between Epoch_6–Epoch_8.

To determine the optimal number of fine-tuning epochs, we

calculated the mean and median differential entropy of positive

and negative samples in each cycle. These values were used to

compute the mean entropy difference and median entropy

difference for Epoch_i, which are presented in Figure 4B. The

results indicate that the average and median entropy differences

between positive and negative samples achieve their maximum at

the 6th training cycle (Epoch_6). This suggests that the model

exhibits its strongest ability to distinguish between positive and

negative samples during this cycle. Based on these findings,

Epoch_6 was identified as the optimal model for extracting rice

enhancer features.
FIGURE 5

This study is compared with other methods. Our model is RiceEN-BERT-SVM, non-FT means that the model is not fine-tuned, and FT means the
fine-tuned model.
TABLE 1 Comparison of our methods with other methods on the independent testset.

Method ACC SP SN/REC PRE NPV AUPRC AUROC

iEnhancer-EL 0.567 0.463 0.671 0.555 0.584 0.695 0.567

iEnhancer-CNN 0.571 0.459 0.682 0.558 0.591 0.700 0.571

RicENN 0.790 0.793 0.788 0.792 0.789 0.879 0.877

RiceEN-BERT-SVM(non-FT) 0.875 0.880 0.871 0.879 0.872 0.952 0.953

RiceEN-BERT-SVM(FT) 0.936 0.932 0.941 0.932 0.940 0.953 0.971
Bold values are the models that achieve the best performance.
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3.4 Comparisons with the existing methods

Based on the best model selected above, as well as the previously

unfine-tuned RiceEN-BERT-SVM, we compared our models with

other existing rice enhancer recognition methods on an independent

test set, including RicENN (Gao et al., 2022), iEnhancer-CNN

(Khanal et al., 2020), and iEnhancer-EL (Liu et al., 2018). Table 1

and Figure 5 present the comparative performance metrics between

our framework and state-of-the-art methods. The results

demonstrate that both model configurations of RiceEN-BERT-SVM

—the fine-tuned (6 iterations) and baseline (unfine-tuned) versions—

consistently surpass all existing approaches across evaluation metrics.

They achieved first and second places in all 7 evaluation criteria, with

significant improvements in performance. Notably, the fine-tuned

RiceEN-BERT-SVM demonstrated exceptional average performance

during independent testing, with specific metric values as follows:

ACC, SP, SN/REC PRE, NPV, AUPRC, and AUROC were 0.936,

0.932, 0.941, 0.932, 0.940, 0.953, and 0.971, respectively. Compared to

RicENN, which ranked third, the performance metrics for our fine-

tuned model improved by 8.42% to 19.42%. These results clearly

demonstrate that the fine-tuned Bert-2 framework is effective in

recognizing rice enhancers.
4 Conclusion

We used DNABERT-2, a pre-trained large language model for

biological sequences, to extract features from rice enhancer sequences.

Combining these features with a support vector machine (SVM)

classifier, we constructed a novel model, RiceEN-BERT-SVM,

designed to identify rice enhancers. The model demonstrated

exceptional performance, achieving cross-validation and independent

test results that significantly outperformed existing state-of-the-art

methods. Specifically, on the independent test set, our model

achieved an accuracy (ACC) of 93.63% and an area under the

receiver operating characteristic curve (AUROC) of 97.15%. These

metrics represent improvements of 18.52% and 10.77%, respectively,

compared to RicENN. To further understand model performance, we

developed a methodology to visualize the discriminative ability of the

model by leveraging the differential entropy representation of large-

language-embedding features derived from DNA sequences. During

fine-tuning experiments, we observed that with an increasing number

of fine-tuning iterations, the differential entropy between positive and

negative samples initially separated and then converged. This trend

indicated that the model’s discriminative capacity first increased and

later weakened as fine-tuning progressed. At a specific fine-tuning

threshold (6 iterations), the difference in differential entropy between

positive and negative samples was maximized, coinciding with peak

model performance. Our findings demonstrate two key insights: First,

pre-trained large language models like DNABERT-2 can significantly

enhance the recognition of rice enhancer sequences. Second, the

changes in fine-tuning performance are closely tied to shifts in the

representation of positive and negative sample distributions, as

captured by differential entropy. The approach of visualizing

differential entropy in feature representations is broadly applicable
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and can serve as a valuable tool in future studies involving machine

learning for DNA, RNA, or protein sequence recognition. However,

our study has limitations. For instance, the differential entropy analysis

does not account for spatial patterns in DNA sequences, potentially

overlooking biologically meaningful structural dependencies.

Additionally, the computational efficiency of the current framework

can be further optimized. Future studies could develop entropy metrics

integrating spatial sequence context and design lightweight

architectures to enable broader genomic applications, thereby

advancing efficient computational tools for crop molecular design.
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