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Screening and cultivating healthy small tomatoes, along with accurately

predicting their yields, are crucial for sustaining the economy of tomato

industry. However, in field scenarios, counting small tomato fruits is often

hindered by environmental factors such as leaf shading. To address this

challenge, this study proposed the Ta-YOLO modeling framework, aimed at

improving the efficiency and accuracy of small tomato fruit detection. We

captured images of small tomatoes at various stages of ripeness in real-world

settings and compiled them into datasets for training and testing the model. First,

we utilized the Space-to-Depth module to efficiently leverage the implicit

features of the images while ensuring a lightweight operation of the backbone

network. Next, we developed a novel pyramid pooling module(DASPPF) to

capture global information through average pooling, effectively reducing the

impact of edge and background noise on detection. We also introduced an

additional tiny target detection head alongside the original detection head,

enabling multi-scale detection of small tomatoes. To further enhance the

model’s focus on relevant information and improve its ability to recognize

small targets, we designed a multi-dimensional attention structure(CSAM) that

generated featuremaps withmore valuable information. Finally, we proposed the

EWDIoU bounding box loss function, which leveraged a 2D Gaussian distribution

to enhance the model’s accuracy and robustness. The experimental results

showed that the number of parameters, FLOPs, and FPS of our designed Ta-

YOLO were 10.58M, 14.4G, and 131.58, respectively, and its mean average

precision(mAP) reached 84.4%. It can better realize the counting of tomatoes

with different maturity levels, which helps to improve the efficiency of the small

tomato production and planting process.
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1 Introduction

Small tomatoes are a flavorful, nutritious crop with high economic

value and important in the global vegetable trade. China’s small

tomato industry has grown rapidly over the past 20 years, with

more than 30,000 acres planted nationwide, jumping to the top spot

in the world (Guan et al., 2018). The huge economic benefits have

made it economically important to accurately estimate the number of

fruits before harvest. On one hand early yield estimation can help

producers adjust their planting strategies. On the other hand, it can

also effectively improve the operators’ income and operation

development strategies. However, estimating the number of small

tomatoes is greatly challenged by their own tight growth, dense leaf

shade, and short ripening period. Traditional manual methods of

counting are not only economically costly, but also time-consuming

and easily hindered by human error and subjectivity. These problems

can easily compromise the accuracy of the counting of data. Therefore,

it is very important to utilize robotics to achieve an automated and

scalable approach to improve the accuracy and speed of fruit detection

and counting in agriculture (Zhao et al., 2022).

In recent years, with the development of deep learning,

computer vision technology is highly integrated with the

agricultural industry. In the field of computer vision, it mainly

includes a variety of tasks, such as image classification, target

detection, entity segmentation, etc. Among them, target detection

is able to locate the target in the form of a rectangular box, which

has high accuracy and real-time performance (Srinivas et al., 2016).

Therefore, target detection technology is most widely used in

agricultural fruit detection and counting, and also provides a new

solution for the application of robots in agriculture.

Deep learning based target detection algorithms include single-

stage and two-stage algorithms. The single-stage algorithms realize

the detection process through a single network branch, eliminating

the complex steps such as feature extraction and generation of

candidate frames in the two-stage. Therefore, single-stage target

detection algorithms are famous for their fast detection. Currently,

excellent single-stage target detection algorithms include SSD (Liu

et al., 2016), RetinaNet (Lin et al., 2017), YOLOv5 (Redmon et al.,

2016), YOLOv8, YOLOv9 (Wang et al., 2024), and the latest

YOLOv11 (Khanam and Muhammad, 2024). Two-stage detection

algorithms first generate a large number of candidate regions

containing the target object, and then perform further processing

such as region classification, bounding box regression, and so on for

each candidate region. Classical two-stage detection algorithms

include R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick,

2015), Faster R-CNN (Ren et al., 2016), Mask R-CNN (He et al.,

2017), Cascade R-CNN (Cai and Vasconcelos, 2018), and DetectoRS

(Qiao et al., 2021). However, when facing complex scenes, although

two-stage target detection algorithms are able to provide higher

accuracy, it has a large computational overhead, which makes it

unsuitable for a wide range of scenarios such as real-time detection.

Therefore, researchers must balance the advantages and

disadvantages of the two algorithms in light of practical needs,

selecting and enhancing them accordingly. These algorithms have

been widely used for the recognition of a variety of crops, such as
Frontiers in Plant Science 02
potato (Johnson et al., 2021), maize (Khaki et al., 2020), rice (Zhang

et al., 2022), apple (Wang and He., 2022), and so on. For the

detection of small tomato crop, Seo et al. (Seo et al., 2021) proposed

a real-time robotic detection system based on Faster R-CNN for

detecting tomato growth and selecting a color model that is robust

to external light to develop an image-based ripeness criterion for

tomato fruits. Wang et al. (Wang et al., 2022) designed an improved

Faster R-CNN model, MatDet, for tomato ripeness detection to

address the difficulty of detecting tomato ripeness in complex scenes

by using RolAlign to obtain more accurate bounding boxes in the

feature mapping stage. Wang et al. (Wang et al., 2023) proposed an

R-CNN model for tomato detection and segmentation tasks, using

Swin Transformer as the backbone network for better feature

extraction, the method can not only effectively recognize tomato

in cherry tomato varieties, but also differentiate between different

ripening stages. The introduction of the YOLO (You Only Look

Once) family of models provides the advantage of directly

predicting the entire image without generating candidate regions

and has also been widely used by researchers. Lawal et al. (Lawal,

2021) used an improved YOLOv3 model to realize the detection of

tomato counts in natural scenes, and solved the problem of gradient

vanishing during model training by introducing the MixNet

backbone network. Miao et al. (Miao et al., 2023) proposed an

algorithm for estimating the ripeness of individual tomato clusters

and an integrated method for locating tomato stems based on

experimental errors using the YOLOv5 network architecture. Liu

et al. (Liu et al., 2020) proposed a tomato detection model called

“YOLO-tomato” using the improved YOLOv3 architecture, which

utilizes a circular bounding box instead of the traditional

rectangular bounding box for tomato localization, which reduces

the predicted coordinates and thus achieves more accurate tomato

matching. In (Ge et al., 2022), a detection model named “YOLO-

deepsort” is proposed to realize the periodic detection of tomato

growth, and the effective features are enhanced by using BiFPN

multiscale fusion structure to realize the improvement of detection

accuracy. In addition, the combination of robots and inspection

algorithms brings a number of significant advantages to the field of

tomato inspection. Dai et al. (Dai et al., 2022) proposed a tomato

fruit counting algorithm for greenhouse inspection robots, which

tracks the position of tomatoes in the image by the spatial

displacement information of the robot, while 3D depth filtering is

used to avoid the interference of complex backgrounds on tomato

counting. Rong et al. (Rong et al., 2023) Proposed an improved

tomato cluster counting method based on YOLOv4, which

incorporates target detection, multi-target tracking, and region-

specific tracking counting in a robot to reduce the problem of

tracked tomato cluster offset. Li et al. (Li et al., 2023) based on the

improved YOLOv8 model, the MHSA attention mechanism is

utilized to enhance the ability of the network to extract diverse

features, and at the same time, it is mounted on the robot to realize

the real-time hierarchical detection and counting function in the

real scene, and achieve good detection results. Ruparelia et al.

(Ruparelia et al., 2022) proposed a deep learning based tomato

detection system for distinguishing between healthy, ripe and

unripe tomatoes using different versions of the YOLO architecture.
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However, practical applications of tomato detection and

counting still face significant challenges under occlusion

conditions. Fruits obstructed by other fruits, leaves, calyxes,

stems, and similar structures can substantially degrade the

accuracy of vision-based robotic detection systems. Specifically,

the following issues are observed: (1) During the late fruit-setting

stage, the extremely small size of tomato fruits increases the risk of

missed detections; (2) In the fruiting stage, the dense distribution of

small tomatoes combined with extensive occlusion frequently

results in undetected instances; (3) Occlusion by branches, leaves,

and stems can lead to false positives during the fruiting stage; (4)

Leaf shading during fruiting may also cause both false detections

and omissions of small tomatoes. To address these challenges, this

study explores the integration of feature representations at varying

depths across different branching structures to enhance the

detection of small tomato targets through the fusion of multi-

level feature information.

In summary, this study proposed a small tomato target

detection method based on the YOLOv8 network architecture,

specifically designed to address the occlusion challenges

encountered during the counting of small tomato fruits in large-

scale production environments. The main contributions of this

research are outlined as follows:
Fron
1. Images of small tomatoes at different maturity stages were

collected under large-scale cultivation conditions to

construct a real-world small tomato dataset. The

tomatoes in each image were annotated and categorized

into three distinct maturity levels. To improve the

robustness and generalization of the detection model, the

dataset was further augmented using a set of simple yet

effective data augmentation techniques applied to both the

images and their corresponding annotations.

2. In real-world scenarios, the growth of small tomatoes is

often accompanied by dense foliage and branching, leading

to challenges such as the loss of fine-grained image features

during recognition. To address these issues, this study

incorporated a C2f-RepGhost module combined with a

Space-to-Depth convolutional structure, enabling the

proposed Ta-YOLO model to preserve detailed feature

representations while maintaining a lightweight design.

Furthermore, an additional detection head was

introduced to enhance the model’s capacity for small

object feature extraction. To further mitigate the impact

of peripheral edge information on core feature

representation, a Dilated Atrous Spatial Pyramid Pooling

Fusion (DASPPF) module was integrated into

the architecture.

3. This study proposed a CSAM attention mechanism, which

integrates spatial and channel attention to enhance the

model’s focus on salient features. By jointly leveraging

spatial and channel-wise dependencies, the CSAM

module improves the model’s sensitivity to occluded

regions and enhances its capability to accurately

recognize targets under complex occlusion conditions.
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4. Traditional IoU-based loss functions often exhibit

substantial bias when handling objects of varying scales.

To mitigate this issue, we proposed the EWDIoU bounding

box regression loss, which models the distance between the

predicted box and the ground truth using a two-

dimensional Gaussian distribution. This formulation

enhances the model’s sensitivity to small target regions,

thereby reducing scale-related bias and improving both the

recognition accuracy and overall robustness of the

detection framework.

5. The proposed model demonstrates effective detection and

counting of small tomatoes in real greenhouse

environments. It successfully addressed the occlusion

challenges associated with short growth periods and

validates the efficacy of the Ta-YOLO architecture in

practical agricultural scenarios for accurate and robust

small tomato detection and counting.
2 Materials and methods

2.1 Dataset acquisition and processing

Existing tomato datasets primarily consist of images featuring

single or multiple tomatoes against relatively clean and

unobstructed backgrounds, limiting their applicability to real-

world field production scenarios. Therefore, this study collected

data from a small tomato cultivation base located at the

International Internet Agricultural Expo Park in Wuzhen City,

Zhejiang Province, where tomatoes at various growth stages were

cultivated for market supply. Data acquisition was conducted over

the period from April 3 to May 30, 2024. A SCOUT 2.0 robot

equipped with an iPhone 14 Pro mounted horizontally was utilized

to capture images of the small tomato plants. A total of 160 plants

were arranged in two rows, each extending 20 meters in length.

During data collection, the robot moved at a constant speed,

photographing each row sequentially from left to right and then

returning from right to left to capture images in the opposite

direction. The acquired images were subsequently uploaded to a

PC for further processing. The overall experimental setup is

illustrated in Figure 1, with the right panel depicting the robot

in operation.

The photographed images were standardized to 640*640 pixels,

labeled using the LabelImg tool, with the following labels: green

fruit tomato, red fruit tomato and yellow fruit tomato. Following

agronomic standards and harvesting requirements, these three

labels correspond to unripe tomatoes, ripe tomatoes, and

tomatoes between unripe and ripe stages, respectively. Such three

classifications can fit the actual production decisions and reduce

redundant judgements, while ensuring the efficiency of data

annotation and data processing (Wan et al., 2018). Finally, the

original small tomato data samples were obtained as 661, which

were divided into training set, validation set and test set according

to the ratio of 3:1:1. Given that the training set consists of only 535
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images with only a small portion of overexposure and blurring

under natural light conditions, in order to enhance the

generalization of the model, six data enhancement techniques

were adopted to process the training set data, including exposure,

rotation, blurring, random brightness adjustment, mirroring and

noise addition. As shown in Figure 2, each image is enhanced by
Frontiers in Plant Science 04
taking a random combination of three of the above

enhancement methods.

A notable feature of this dataset is the inclusion of complex

distractions from real environments, with varying degrees of

occlusion problems on each image. Based on the type of blocked,

we grouped the detection difficulties into four categories: extreme
FIGURE 2

Example of 4 forms of blocked tomatoes images. (A) Example of extreme tiny tomatoes image. (B) Enhanced extreme tiny tomatoes image.
(C) Example of mutual shading between classes image. (D) Enhanced mutual shading between classes image. (E) Example of branch stalk shading
image. (F) Enhanced branch stalk shading image. (G) Example of leaf shading image. (H) Enhanced leaf shading image.
FIGURE 1

Schematic of little tomato dataset acquisition and dataset collection tools.
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tiny tomatoes, mutual shading between classes, branch stalk

shading, and leaf shading. The proportion of tiny small tomatoes

was the largest, with a more similar amount of interclass shading

and leaf shading, and a relatively small amount of branch and stem

shading.(The number of different maturity categories in the original

dataset and the corresponding number for each shading type are

shown in Table 1) In order to mitigate the impact that category

imbalance would have on training, we used the CopyPaste method

to perform an additional data augmentation operation on red and

yellow fruit tomatoes, which is to copy the instances in the image

containing red and yellow fruit tomatoes and paste them into

another image during the training process, adding instances from

fewer categories to generate new training samples.
2.2 Hardware design

Combined with the growth characteristics of the small tomato

itself, during the fruiting period, the growth height of the small

tomato ranges from 0.5 to 2.3 meters, and within a relatively short

period of time, there is a large span of height change. In order to be
Frontiers in Plant Science 05
able to meet the normal work at different heights, we have also

designed and improved the agricultural robot hardware

accordingly. Firstly, the robot stand is built by 1.5mm iron plate,

and the overall structure is in the shape of a tower, which is divided

into three layers to meet the needs of different sensors and different

heights of mounting. Next, electrical adapter devices are fixed on

the bottom layer for powering the sensors of each device and edge

computing devices are fixed on the bottom layer for processing real-

time data. To improve the stability of the collected data, the camera

head is mounted on the bottom tail, and the shooting camera is

mounted on the camera head tilt rotation connector. The middle

layer installs the router used by the robot for communication, which

facilitates remote operation and control of the robot. The top layer

is fitted with LIDAR to prevent other equipment from interfering

with the laser. In this work, we deployed the detection algorithm

ultimately on an edge device and utilized an agricultural robot to

achieve the work of detecting and counting small tomatoes of

different ripeness in a facility greenhouse, overcoming the

problem of occlusion during the growing process. The detailed

hardware composition as well as the field applications are shown

in Figure 3.
TABLE 1 Number of different maturity categories and the corresponding number for each type of shading.

Categories Instances Tiny Classes shading Stalk shading Leaf shading

gtomato 9973

2069 885 455 809rtomato 1853

ytomato 1220
FIGURE 3

Compositional architecture of the robot as well as map construction of the whole scene and real-time detection results in real applications.
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2.3 Small tomatoes detection based on Ta-
YOLO

In real production environments, the large-scale planting of

small tomatoes has significant advantages in improving production

efficiency, but in the growth process of small tomatoes, regularized

planting makes the lush branches and leaves obscure the fruits, and

changes in the intensity and angle of the sunlight at different

moments also significantly change the brightness and contrast of

the image, making it more difficult to count the fruits.

This study proposed a Ta-YOLO model for the detection and

counting of small tomatoes in a real production environment to

address these challenges. The model retained the overall

framework of YOLOv8n, adopted C2f-rghost combined with

Space-to-Depth Conv module to reconstruct the backbone

structure, and at the same time, the DASPPF structure was

proposed to enhance the fine-grained representation. And the

CSAM multiple attention mechanism was created in the neck

structure, and an additional detection head was added to enhance

the detection ability in different scales and occlusion situations.

Finally, the EWDIoU loss function was proposed to improve the

detection accuracy for small tomatoes. The overall structure of Ta-
Frontiers in Plant Science 06
YOLO is shown in Figure 4 These improvements will be further

illustrated above.

2.3.1 Lightweight network design
In the YOLOv8 backbone network, Convolutional Neural

Networks (CNNs) perform well in different tasks such as

classification and detection. However, due to the use of pooling

layers, connecting across steps, and other operations in the CNN

architecture, which allows the model to easily skip over a large

amount of redundant pixel information, it is not possible to learn a

more efficient representation of the features. Therefore, in our

model we use the Space-to-Depth (Sunkara and Luo, 2022) and

Conv module, which consists of a space-to-depth (SPD) layer and a

convolution-free step (Conv) layer (shown in Figure 5). This

method alters the image using downsampled feature maps within

and across the CNN, allowing the model to reduce the sharp

performance degradation when faced with small tomato targets.

For example, we denote the feature map with input size L�
L� C1 as X(i, j), and the feature map can be divisible by all scales to

get the feature subgraph x(i, j). When scale = 2, we get four feature

sub-feature maps, each of which has the shape of ( L2 ,
L
2 ,C1). Next,

we splice these sub-feature maps along the channel dimensions to
FIGURE 4

Overall structure of Ta-YOLO model.
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get a new feature map X0( L
scale ,

L
scale , scale

2C1), and a non-Stepwise

convolution with a C2 is added after the new feature map (C2 <

scale2C1). Then, the new feature map is further transformed to get

X00( L
scale ,

L
scale ,C2), which retains all the discriminative information

as much as possible without reducing the feature map.

In target detection tasks, lightweight network structures tend to

lower the computational cost and reduce the size of the model. In

order to maintain the improved accuracy of small-target tomato

detection without introducing additional computational

parameters, we try to replace the traditional Bottleneck structure

in s i d e th e C2 f modu l e w i th Ghos tBo t t l ene ck and

Repghostbottleneck, which in turn, forms the C2f_Ghost module

(Han et al., 2020) with the C2f_Repghost (Chen et al., 2022) module

in Figure 6.

The C2f_Ghost module expands the number of channels by

utilizing the underlying residual structure, while reducing the

number of channels that need to be shortcut connected. This

design not only optimizes the network structure, allowing for a

reduction in the amount of computation, but also preserves the

necessary feature representation to improve efficiency without

losing the more obvious accuracy. Unlike the C2f_Ghost module,

the C2f_Repghost module reduces the number of intermediate

channels and downsamples the feature maps with a reduced

number of channels. This further improves the computational

efficiency and makes the model more efficient. At this point, the

feature maps also capture the long-distance dependence between

pixels in different spatial locations, which enhances the expressive

power of the model (Wu et al., 2024). Especially in resource-
Frontiers in Plant Science 07
constrained environments, this lightweight structural design, by

generating a large number of lightweight feature maps, not only

enables efficient dissemination of information, but also provides

rich feature representations for the subsequent layers. Also, it avoids

the computational bottleneck in traditional convolution and,

reduces the computational overhead. Thus it saves memory and,

ensures that the model reduces the resource consumption of

hardware while maintaining high performance. Additionally, it,

and also lays a good foundation for subsequent model deployment

and migration.

2.3.2 Enhanced feature fusion for CSAM multiple
attention structures

In the Neck of YOLOv8, multi-scale feature fusion is usually

performed using a feature pyramid network (Zhao et al., 2023).

However, feature map fusion in this part often relies on relatively

small convolutional operations, resulting in a limited sense field. As

the depth of the network increases, the desire to acquire a larger

range of features leads to a decrease in the learning rate of the model

and the transfer of feature information becomes difficult. In order to

better fuse meaningful features in the channel and spatial

dimensions and increase the network information effectiveness,

we propose an innovative CSAM multi-attention structure that

combines Non-Local positional attention (Wang et al., 2018) with

the channel attention mechanism to achieve deep aggregation of

spatial information in feature mapping. In the CSAM structure, we

first halve the number of channels of the input feature map, which

not only helps to reduce the computational redundancy and the
FIGURE 5

Schematic of SPDC module when scale = 2.
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subsequent computational burden, but also effectively promotes the

selective focusing of features, making the subsequent attention

mechanism more targeted and efficient. Subsequently, we apply

positional attention and channel attention operations on the feature

maps that have been halved by the number of channels, and use

average pooling and maximum pooling operations to gather

effective information, which is subsequently shared into the MLP

to effectively integrate the captured important features, enabling the

structure to adaptively weight the features according to the

contextual information and expand the sensory field (Zhao et al.,

2012). In particular, it can better enhance the global information

when facing the lack of local feature information for small target

tomatoes. Then the number of channels of the processed feature

map is restored to the original size, preserving the network’s ability

to capture high-dimensional features.

F(a,b) = g (Fin) (1)

CA(Fa) = s(MLP(j1(Fa)) +MLP(j2(Fa))) (2)

Fa1 = CA(Fa)⊕ Fa (3)

Equations 1–10 represents the CSAM calculation process.

Where g denotes a split operation that halves the number of

channels, Fa denotes the feature map at each stage, CA denotes

the imposition of a channel attention mechanism, SA denotes the
Frontiers in Plant Science 08
imposition of a spatial attention mechanism, and s denotes a

sigmoid operation, j1 denotes the maximum pooling operation,

j2 denotes the average pooling operation, and⊕ denotes the feature

map summation operation.

In order to realize the dependence of different positional

information of feature map on other positional information in the

surrounding area, and to expand the range of features obtained by

ourselves, we carry out Reshap operation on the feature map Fa1 ∈
RC�H�W outputted from channel attention to obtain Fa1 ∈ RC�HW

for subsequent matrix operation. Then three linear mappings are

performed separately using 1� 1 convolution, i.e., Wv ,Wq,Wk in

Figure 7.

f (xi, xj) = h(x)Softmax½q(x)Tw(x)�   (4)

q(x) = Wqx   (5)

w(x) = Wkx (6)

g(x) = Wvx (7)

Fi =
1

C(x)o∀ jf (xi, xj)g(xj) (8)

Fa2 = SA(Fa1)⊕ Fa1 (9)
FIGURE 6

Schematic of lightweight backbone components. (A) Ghost module (B) RepGhost module (C) Ghost Bottleneck (D) RepGhost Bottleneck
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Fout = g(Fb ⊕ Fa2) (10)

The corresponding linear transformations are denoted as h(x),

q(x), w(x), representing the modulation function, query projection,

and key projection, respectively. After applying these

transformations, the feature response of a given pixel to all other

spatial positions is computed through a similarity-based attention

mechanism, typically implemented via a softmax operation,

followed by normalization and weighted summation. Specifically,

q(x) projects the input into a query representation, while w(x)

encodes key features to be compared against the query. The

modulation function h(x) is optional and can be designed to

incorporate spatial priors or learnable scaling factors. This

mechanism enables each spatial location to adaptively aggregate

contextual information from the entire feature map, thereby

enhancing the network’s capacity to capture long-range

dependencies. Here, f (xi, xj) denotes the affinity between position

i and j, g(xj) extracts content features from position j, and C(x)

serves as a normalization factor to ensure stability of the

attention distribution.

To further strengthen representational capacity, we integrate

spatial and channel attention mechanisms. The spatial attention

emphasizes “where” to focus, enhancing the model’s sensitivity to

informative regions even under partial occlusion. Meanwhile, the

channel attention focuses on “what” to emphasize, selectively
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enhancing discriminative feature channels. The synergy of both

attention types enables the model to infer occluded or ambiguous

targets from contextual cues, significantly improving robustness

and recognition accuracy in complex agricultural environments.
2.3.3 EWDIoU loss functions
In target detection, IoU is often used to calculate the overlap

ratio between the predicted frames and real frames. One issue this

method has is that there is, a large difference in the sensitivity of IoU

when applied to targets with different sizes. For example, for a small

target object of 4� 4pixels, a small positional deviation leads to a

significant decrease in IoU, whereas for a larger target object of 45�
45, the change in IoU is smaller for the same positional deviation, as

show in Figure 8. This situation leads to insufficient learning of

small target features by the model or stagnation of the training

process, which does not allow the model to be fully optimized. This

is because, the sensitivity of IoUs for objects of different sizes mainly

stems from the particularity that the position of the enclosing box

can only be changed in a discrete manner. To mitigate the situation

where IoU can be significantly degraded in small-target tomato

detection, we propose to use the EWDIoU loss function.

The original YOLOv8 uses CIoU for loss calculation which can

only reflect the difference in the aspect ratio of the enclosing frame,

not the width and height respectively. This may hinder the model to
FIGURE 7

CSAM overall structure.
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optimize effectively (Zhao et al., 2022). Due to this limitation in

CIoU, the EIoU (Equation 11) added a penalty term to split the

influence factor of the width and height ratios, and calculated the

length and width of the target and predicted frames respectively

(Zhao et al., 2023).

feIoU = 1 − IoU + a2(b,bgt )
(dw)

2+(dh)
2 + a2(w,wgt )

(dw)
2 + a2(h,hgt )

(dh)
2 (11)

Here b and bgt denote the centroids of the prediction frame and

the real frame, respectively, a2( · ) = ‖ b − bgt ‖2 denotes the

Euclidean distance between the two, and dw and dh denote the

width and height of the smallest outer bounding box covering the

two enclosing frames, respectively. However, the discrete nature of

the change in the position of the enclosing box hinders the accuracy.

So, we adopt a new metric to measure the similarity of the enclosing

box by Wasserstein Distance (Wang et al., 2021) which replaces the

partial EIoU. The hyperparameters are utilized to balance the

coordination of the two IoU distances. Here, l1 + l2 = 1 This

way, it mitigates the high sensitivity of the normal IoU for small

target tomatoes.

EWDIoU = l1feIoU + l2 1 − exp −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

2 (ma ,mb)
p

M

� �� �
(12)

Firstly, we observe that in real planting scenarios, our

annotation of the small tomato dataset tends to be in the form of

a rectangular annotation box, where the body of the small tomato

and the other background information will be distributed in the

center and the edge of the bounding box. The importance of the

pixel’s weight decreases from the center to the edge of the bounding

box. Therefore, we can abstract the horizontal bounding box and

utilize the inner tangent circle of the bounding box to represent the

different ground pixel weight distribution in the bounding box. Let

the horizontal bounding box R = (xc, yc,w,   h), where xc and yc
represent the horizontal and vertical coordinates of the center of the

bounding box, w and h represent the width and height of the

bounding box, respectively. At this time (mx ,my) represents the

center coordinates of the ellipse, and rx , ry are the lengths of the

semiaxis of the ellipse along the x and y axes, respectively.
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Co r r e s p o n d i n g l y , mx = xc, my = yc, rx = w
2 , ry = h

2, t h e

corresponding ellipse equations are:

(x−mx)
2

r2x
+

(y−my)
2

r2y
= 1   (13)

The probability density function for a p-dimensional random

vector c = (X1,⋯,Xp)
T can be written as Equation 14:

f (cjm,S) = exp −1
2(c−m)

tS−1(c−m)ð Þffiffiffiffiffiffiffiffi
(2p)p

p
Sj j12 (14)

The distribution defined by this function is the p-element

normal distribution,denoted as c eN (m,S), where S−1 denotes

the inverse matrix of S, Sj j denotes the determinant of S, and (c −

m)t denotes the transpose of the vector (c − m). Based on the

Mahalanobis distance we get that when (c − m)tS−1(c − m) = 1,

the Equation 13 is then the contour of a two-dimensional Gaussian

distribution. At this point, the horizontal bounding box R =

(xc, yc,w,   h) can be modeled as a two-dimensional Gaussian

distribution N (m,S) with m = ½
xc

yc

�, S = ½
w2

4 0

0 h2

4

� and the similarity

between the bounding boxes A (xa, ya,wa,   ha) and B (xb, yb,wb,   hb)
can be converted into the distribution distance between two

Gaussian distributions. For the two-dimensional Gaussian

distributions ma = N (m1,S1) and mb = N (m2,S2) for both A and

B, define the two-dimensional Wasserstein Distance between the

two as Equations 15–18:

W2
2 (ma,mb) = ‖m1 −m2 ‖22 +Tr S1 + S2 − 2(S

1
2
2S1S

1
2
2)

1
2

� �
  (15)

= ‖m1 −m2 ‖22 + (w1−w2)
2+(h1−h2)

2

4   (16)

= ‖m1 −m2 ‖22 + ‖S
1
2
1 − S

1
2
2 ‖2F (17)

= ‖ (½cxa, cya, wa
2 ,   ha2 �T, ½cxb, cyb, wb

2 ,   hb2 �T) ‖22 (18)

Where ‖ · ‖F is the F-parameter of the matrix. Finally, W2
2 (ma,

mb) is normalized to obtain the final metric, which is collated to

obtain the final EWDIoU formula as Equation 12. where M is a
FIGURE 8

The figure shows the variation of target IoU for different pixel sizes. In the left figure (A) is the 4*4 pixel target real frame, (B) is the predicted frame
with 1 pixel deviation, (C) is the predicted frame with 3 pixel deviation; In the right figure (A) is the real target of 45*45 pixels, (B) is the prediction
frame with a deviation of 1 pixel and (C) is the prediction frame with a deviation of 3 pixels.
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constant with respect to the dataset, in our experiments, we

compared the effect of different values of M on the results, and

finally achieved the best results with M = 1:0.

2.3.4 Evaluation metrics
This section outlines the evaluation metrics employed to

comprehensively assess the performance of the small tomato

detection model. The primary metrics include precision (P), recall

(R), mean average precision (mAP), floating point operations per

second (FLOPs), number of network parameters, and inference

speed.

P = TP
TP+FP (19)

R = TP
TP+FN (20)

AP =
Z 1

0
P(R)dR (21)

mAP =

Z Q

q=1
AP(q)

Q

(22)

In Equations 19, 20, the calculation of precision(P) and recall(R)

relies on three key metrics: true positives (TP), false positives (FP),

and false negatives (FN). When the model successfully identifies a

small tomato target, it is recorded as TP, whereas FP and FN

represent, respectively, the number of false detections of

nonexistent targets and the number of missed detections of actual

targets by the model. Precision (P) measures the model’s capability to

correctly identify small tomato targets among all predicted targets,

while recall (R) assesses the proportion of actual targets successfully

detected by the model. For the detection performance of small

tomatoes in each category, a precision-recall (P-R) curve can be

plotted, with the average precision (AP) defined as the area under the

curve. The closer the AP value is to 1, the better the model’s detection

performance for that specific category. The mean average precision

(mAP), calculated as the weighted average of the AP values across all

categories, is a widely adopted performance evaluation metric in

target detection tasks. It provides a visual and comprehensive

representation of the model’s overall performance, where Q in the

equation represents the total number of target categories. Moreover,

model complexity is typically quantified by the number of floating-

point operations (FLOPs), which represents the computational

resources required by the model and serves as a crucial metric for

assessing algorithmic efficiency. The speed of target detection is

measured in frames per second (FPS), with a higher FPS value

indicating superior real-time processing capability. A

comprehensive evaluation of these metrics offers a thorough and

rigorous assessment of the model’s performance, enabling

multidimensional comparison and optimization.

2.3.5 Environmental settings
The proposed model was trained and tested using the small

tomato dataset in field scenarios with a total of 7332 images. The

specific training environment is Intel(R) Xeon(R) Gold 6248R@
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3.00GHz processor with an NVIDIA GeForce RTX4090 graphics

card. The deep learning modeling framework uses Pytorch 2.4.1 and

Python 3.8.19, the CUDA version was selected as 11.7, and the

operating system was selected as Windows 11. All experiments were

trained for 300 epochs with the following hyperparameters: a

Adaptive Moment Estimation (Adam) optimizer with a batch size

of 4, an initial learning rate of 0.001, a momentum factor of 0.937,

and a weight decay of 0.0005. In order to ensure the fairness and

comparability of the model effects, we tried to use the same parameter

settings for both the comparison and ablation experiments, and some

important hyper-parameter settings are shown in Table 2.
3 Results

3.1 Improving test results via data
enhancement

To expand the training samples and enhance the model’s

generalization ability, robustness, and adaptability in real-world

applications, we apply data augmentation techniques such as

exposure adjustment, rotation, blurring, random brightness

variation, and mirroring to simulate diverse scene variations. The

experimental results are presented in Table 3.

After data augmentation, the overall mAP@50 showed a

noticeable improvement, indicating enhanced detection

performance of the model. In addition, the precision values for all

categories and the overall precision increased, suggesting a

reduction in false positives and more effective feature learning.

While the recall of the ytomato class improved, the recall of other

categories slightly declined. This is likely due to increased

background complexity in the augmented images, which made

the model more conservative in its predictions, leading to a

higher miss rate for true targets. However, since the ytomato class

had relatively few samples before augmentation, the augmented

data effectively alleviated the issue of data scarcity and helped the

model learn more stable features. Although the mAP of gtomato

and rtomato slightly decreased—possibly due to distributional shifts

or reduced feature stability caused by augmentation—the overall

improvement in mAP indicates that the model became more

balanced and achieved better generalization.
3.2 Ablation study

In this section, the fully enhanced model is compared with

simplified variants incorporating individual improvements to
TABLE 2 Training parameters settings.

Parameter Value Parameter Value

Epoch 300 Initial Learning Rate 1 × 10−3

Batch size 4 Weight-Decay 5 × 10−4

Optimizer Adam Momentum 0.937
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independently evaluate the effectiveness of each component. All

enhancements are built upon the baseline YOLOv8n model,

targeting the following aspects: modifications to the YOLOv8n

backbone; introduction of a novel feature pyramid pooling

structure, DASPPF; incorporation of a lightweight detection head;

integration of the CSAM attention mechanism to improve multi-

scale feature fusion; and replacement of the traditional loss function

with the proposed EWDIoU loss, which leverages a two-

dimensional Gaussian distribution to enhance bounding box

regression. In Table 4, each improvement was incrementally

incorporated into the baseline model, and the corresponding

performance metrics were evaluated. Specifically, “A” denotes the

backbone enhancement, “B” refers to the proposed DASPPF

module, “C” indicates the addition of a small object detection

head, and “D” represents the proposed CSAM module. The final

model, Ta-YOLO, integrates all these enhancements.

The results of the comprehensive ablation study are

summarized in the table, highlighting the following key findings:

(1) Lightweight modifications to the backbone successfully reduced

the parameter count and increased inference speed (FPS), albeit at

the cost of reduced accuracy. (2) The proposed DASPPF feature

pyramid pooling structure significantly enhanced the extraction of

salient features, with recall rates for green and red tomatoes

reaching 70.1% and 82.4%, respectively—improvements of 1.4%

and 4.3% over the baseline. Furthermore, the mAP increased by

0.5% and 5.8% compared to the baseline. These results indicate that

preserving global contextual information in complex real-world

scenes facilitates more accurate target recognition. (3) The addition

of the tiny detection head increased the mAP to 83.3%, while

simultaneously reducing the parameter count and improving FPS

relative to the baseline. However, this enhancement resulted in an

increased computational load. These findings indicate an improved

multi-scale detection capability, rendering the model more effective

for small tomato detection. (4) The CSAM attention mechanism

further enhanced recognition accuracy by efficiently integrating

multidimensional feature information, particularly benefiting the

detection of multiple small tomatoes at image edges or under

occlusion. Moreover, the proposed EWDIoU loss function

effectively addressed challenges associated with small target

detection, yielding superior performance across small tomato
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categories. Across all evaluated samples, the mAP for heavily

shaded green and red tomatoes improved from 78.1% and 82.2%

to 81.0% and 87.2%, respectively, demonstrating the targeted

effectiveness of our approach in mitigating shading-related

challenges. Furthermore, a comparative analysis between the

original baseline and Ta-YOLO under complex real-world

conditions, including occlusion, is presented in Figure 9. The

results confirm that Ta-YOLO achieves superior detection

performance in these challenging scenarios.
3.3 Comparative experiments

The two-stage detection algorithm initially extracts candidate

regions from the input image, followed by classification of each

candidate. To evaluate the effectiveness of the proposed method, it

was compared against the classical two-stage detector Faster R-

CNN. Additionally, the enhanced model was benchmarked against

several widely used one-stage detection algorithms, including

YOLOv5, YOLOv7, YOLOv9, YOLOv11, and HyperYOLO. To

ensure fairness and emphasize the effectiveness of the proposed

method, comparisons were performed using lightweight variants of

the evaluated algorithms. The experimental results, presented in

Table 5, indicate that Ta-YOLO achieved recall and mAP values of

76.9% and 84.4%, respectively, outperforming most competing

models. Significantly, YOLOv9s attained the highest mAP of

85.3% in this comparison. However, YOLOv9s exhibited a

parameter count of 37.88 million and a computational complexity

of 40.6 GFLOPs, exceeding those of Ta-YOLO by 27.3 million

parameters and 26.1 GFLOPs, respectively. Additionally, YOLOv9s

demonstrated lower FPS performance compared to Ta-YOLO,

underscoring the trade-off between accuracy and computational

efficiency. Although YOLOv7’s mAP was only 0.4% lower than that

of Ta-YOLO, its parameter count was approximately thirteen times

greater. Compared to YOLOv11 and HyperYOLO, Ta-YOLO

achieves higher FPS with a similar parameter count, while

demonstrating superior accuracy.

Nevertheless, examination of the table reveals that, despite Ta-

YOLO’s superior overall performance compared to other detectors,

its recall for green tomatoes is below the average recall, indicating

the presence of false negatives in green tomato detection. Moreover,

this issue is not unique to Ta-YOLO but is prevalent across most

detection models. An analysis of the dataset revealed that extensive

leaf shading on green tomatoes contributes to erroneous detections.

Notably, the dataset was annotated with stringent criteria, including

labeling tomatoes even when heavily occluded by foliage, which

may further contribute to the detection challenges observed. It is

worth noting that, YOLOv9 achieves a relatively higher recall for

green tomatoes. Our analysis attributes this to YOLOv9’s heavier

parameterization, which facilitates more precise alignment of

feature map edges. Consequently, future work will focus on

enhancing edge and texture perception by improving the

extraction and representation of edge features.

In this section, four representative challenging cases from the

dataset were selected, as illustrated in Figures 10A, D, G, J. In these
TABLE 3 Comparison of results before and after data augmentation.

Model Class P(%) R(%) mAP50(%)

YOLOv8n

all 87.0 75.6 82.4

gtomato 85.4 68.7 78.1

rtomato 85.4 78.1 82.2

ytomato 90.2 80.8 87.1

YOLOv8n
(without enhancement)

all 79.9 76.2 81.6

gtomato 83.4 74.7 82.0

rtomato 78.5 84.9 88.0

ytomato 77.7 69.0 74.0
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figures, yellow circles denote missed detections, blue circles indicate

false positives, and orange squares mark regions with increased

identification difficulty. In Figure 10B, E, the leaves highlighted by

blue circles were erroneously classified as green and red tomatoes,

respectively. In comparison, the proposed algorithm correctly

avoids these misclassifications, as demonstrated by the absence of

false positives within the blue dashed circles in Figure 10C, F. In

Figure 10H, occlusion caused by tomato branches adversely affects

detection, resulting in the tomato marked by the blue circle being

erroneously identified as multiple instances. In contrast, the

corresponding region within the blue dashed circle in Figure 10I

is correctly detected by the proposed method. Likewise, in

Figure 10J, extensive occlusion from the tomato petiole leads to a

missed detection of the small tomato indicated by the yellow circle

in Figure 10K, whereas Figure 10L shows successful recognition.

The same four challenging cases presented in Figure 10 are used to

visualize and compare the detection results between YOLOv8 and
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Ta-YOLO in Figures 11A, D, G, J. In Figure 11B, the very small

tomatoes indicated by yellow circles were completely missed,

whereas those within the yellow dashed circles in Figure 11C

were accurately detected, including occluded instances. In

Figure 11E, the tomato enclosed by the yellow circle was heavily

obscured and not correctly identified; however, the improved

algorithm presented in this study successfully detected it in

Figure 11F. Similarly, Figure 11H exhibits the same issue

observed in Figure 10H, where the tomato marked by the blue

circle was mistakenly identified as multiple instances, whereas the

corresponding region in Figure 11I within the blue dashed circle

was correctly recognized. In Figure 11J, occlusion caused by the

tomato petiole led to a missed detection of the small tomato marked

by the yellow circle in Figure 11K, while Figure 11L demonstrates its

accurate detection. Collectively, these results demonstrate that Ta-

YOLO achieves higher accuracy and greater robustness in detecting

shaded small tomatoes under real production conditions.
TABLE 4 Results of ablation experiments.

Model Class P(%) R(%) mAP50(%) mAP50-90(%) Params(M) FLOPs(G) FPS (frames/s)

YOLOv8n

all 87.0 75.6 82.1 45.6

11.48 8.1 120.11
gtomato 85.4 68.7 78.1 41.1

rtomato 85.4 78.1 82.2 48.5

ytomato 90.2 80.8 87.1 47.2

YOLOv8+A

all 87.7 73.1 81.2 43.9

8.5 10.2 200.0
gtomato 85.7 65.2 76.8 40.1

rtomato 88.7 77.4 85.7 49.8

ytomato 88.6 76.7 81.1 41.7

YOLOv8+A+B

all 85.1 75.1 82.4 44.5

9.96 10.2 168.2
gtomato 83.4 70.1 78.6 40.9

rtomato 86.5 82.4 88.0 50.9

ytomato 85.5 72.7 80.5 41.6

YOLOv8+A+B+C

all 85.9 75.4 83.3 45.5

9.62 14.2 156.3
gtomato 84.6 70.6 80.1 42.4

rtomato 85.4 78.9 86.4 50.7

ytomato 87.4 76.7 83.4 43.8

YOLOv8+A+B
+C+D

all 85.9 76.0 84.0 47.0

10.57 14.3 153.9
gtomato 84.6 71.6 80.9 43.1

rtomato 88.4 79.5 87.9 52.4

ytomato 84.4 77.0 83.2 45.5

Ta-YOLO

all 86.7 76.9 84.4 45.9

10.58 14.3 131.58
gtomato 86.0 70.8 81.0 43.2

rtomato 87.5 79.0 87.2 51.5

ytomato 86.7 75.5 84.9 43.1
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3.4 Comparative experiments on different
attentional

In deep learning, the attention mechanism, which simulates

the selective focus of human cognition, has been extensively

applied across domains including image processing and natural

language processing. Among various attention mechanisms, the

Global Attention Module (GAM) stands out as a global attentional

approach that effectively preserves the majority of salient

information, thereby enhancing feature interaction. The SE

attention mechanism emphasizes effective feature extraction by

employing a squeeze-and-excitation process that encourages the

network to integrate spatial and channel information within the

local receptive field. Differently, the scSE attention mechanism

simultaneously combines spatial and channel attention in parallel

to enhance feature representation. Similarly, the CBAM attention

mechanism facilitates feature interaction through sequential

fusion of channel and spatial attention. Each of these attention

mechanisms, having demonstrated strong performance across
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various tasks, was integrated into the Ta-YOLO model for

comparative evaluation against CSAM. The results showed that,

CSAM achieved the highest accuracy, with mAP and recall values

of 84.4% and 76.9%, respectively. Among the competing

mechanisms, CBAM exhibited the lowest parameter count and

computational cost, with 9.62 million parameters and 14.2

GFLOPs, although its mAP and recall were 1% and 2% lower

than those of CSAM. GAM, despite having the largest parameter

count at 15.88 million, attained an mAP of 83.4%, comparable to

CBAM, thus neither surpassing CSAM’s performance nor

justifying the increased complexity. Additionally, CSAM

maintains the same plug-and-play compatibility as these

established attention modules. Table 6 presents the detection

performance of Ta-YOLO on the real tomato dataset, while

Figure 12 illustrates heatmap visualizations corresponding to

different attention mechanisms. The results clearly indicated

that the proposed CSAM module outperforms others by

effectively concentrating on heavily occluded and small-sized

tomatoes. In summary, the integration of spatial and channel
FIGURE 9

Example of detection results under different occlusion scenarios. (A)Original images, (B) benchmark model, (C) Ta-YOLO.
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at tent ion wi th in the CSAM module y ie lds super ior

detection efficacy.
3.5 Comparative experiments on different
loss functions

The loss function plays a critical role in object detection tasks by

quantifying the discrepancy between model predictions and ground
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truth labels. This measurement guides model optimization during

training, ultimately improving detection performance. In this study,

several widely used loss functions were evaluated on the Ta-YOLO

model and compared against the proposed EWDIoU loss function

to assess its effectiveness. The corresponding experimental results

were summarized in Table 7. Among the evaluated loss functions,

the EWDIoU achieved the highest mAP@50 and recall scores of

84.4% and 76.9%, respectively. Although the GIoU loss attained an

identical recall value, its accuracy was lower at 83.0%, representing a
TABLE 5 Comparison results with different target detectors.

Model Class P(%) R(%) mAP50(%) Params(M) FLOPs(G) FPS(frames/s)

Faster R-CNN

all 38.0 50.4 46.89

136.73 369.7 18.5
gtomato 35.63 61.71 45.96

rtomato 41.91 67.21 56.23

ytomato 36.73 54.27 38.47

YOLOv5

all 91.0 56.6 66.29

26.81 16.0 34.3
gtomato 91.07 55.60 67.0

rtomato 85.96 63.30 68.9

ytomato 98.18 50.97 62.96

YOLOv7

all 88.0 77.6 84.0

141.93 105.1 111.1
gtomato 86.0 75.3 82.2

rtomato 87.4 77.4 81.7

ytomato 93.6 79.7 88.1

YOLOv8n

all 87.0 75.6 82.4

11.48 8.1 120.11
gtomato 85.4 68.7 78.1

rtomato 85.4 78.1 82.2

ytomato 90.2 80.8 87.1

YOLOv9s

all 89.5 79.2 85.1

37.88 40.6 110.7
gtomato 85.3 75.9 82.7

rtomato 87.8 80.7 85.0

ytomato 95.3 81.0 90.2

YOLOv11n

all 86.4 73.7 81.4

9.85 6.3 303.3
gtomato 83.6 69.8 78.0

rtomato 84.4 76.4 81.1

ytomato 91.3 74.9 85.0

all 86.2 75.2 82.2

10.38 7.6 204.8
HyperYOLO

gtomato 83.2 70.4 78.1

rtomato 83.6 78.4 81.6

ytomato 91.1 77.0 86.9

Ta-YOLO

all 86.7 76.9 84.4

10.58 14.3 131.58
gtomato 86.0 70.8 81.0

rtomato 87.5 79.0 87.2

ytomato 86.7 75.5 84.9
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1.4% deficit compared to EWDIoU. The EIoU loss reached a mAP@

50 of 83.8%, close to the highest value; however, its precision and

recall metrics were inferior to those of the EWDIoU loss function.

Although the original CIoU loss used in YOLOv8 achieved the

highest precision of 88.2%, its mAP was limited to 82.3%, and recall

reached only 75.1%. These results indicated that the model

struggled to detect all valid targets, particularly small tomatoes

with occluded edges, leading to missed detections. Consequently,

this shortcoming contributed to the decline in both recall and mAP.

The EWDIoU loss function employs a two-dimensional Gaussian

distribution approach to process discretized data, effectively

addressing the bounding box insensitivity to small tomato targets

and thereby enhancing detection accuracy. The proposed

improvements demonstrate notable performance gains, indicating

that targeted enhancements can overcome common detection

challenges, including performance degradation in complex
Frontiers in Plant Science 16
environments characterized by occlusion and small targets, as

well as reducing instances of misdetection and omission.
3.6 Experiments with different values of lin
the EWDIoU function

In the proposed EWDIoU loss function, to effectively mitigate

the impact of small target tomato bounding boxes on the loss

calculation while preserving the detection performance advantages

for larger target tomatoes, an adjustable hyperparameter l was

introduced. This hyperparameter balances the contribution of the

IoU in the loss function calculation, allowing for adaptive

adjustments across different target scales. On the one hand, l
suppresses the bias amplification effect caused by the smaller scale

of small targets in bounding box errors. On the other hand, it
FIGURE 10

Visual comparison figure of YOLOv7 and Ta-YOLO detection results in four extreme environments. (A, D, G, J) showed four different detection
situations. (B, E, H, K) displayed the YOLOv7 detection results. (C, F, I, L) presented the Ta-YOLO detection results.
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ensures the importance of large targets is preserved in the detection

task, thereby achieving a dynamic balance and optimizing the loss

function’s performance for detecting targets of varying scales. The

model’s robustness and accuracy in handling multi-scale targets

were significantly enhanced. We conducted experiments with 10%

intervals and keeping the criterion of l1 + l2 = 1 to observe the

effects brought by different values on the overall detection results, as
Frontiers in Plant Science 17
shown in Figure 13. The number of experiments is 9 groups in total,

and the experimental results showed that when l1 is 0.7 and l2 is
0.3, our EWDIoU effect performed the best on the small tomato

dataset of the field scene, and its total category mAP value reached

84.4%. In the comparison across different categories, the mAP

trends of green-fruited tomatoes and yellow-fruited tomatoes

exhibited high consistency with the overall category mAP. With
FIGURE 11

Visual comparison figure of YOLOv8 and Ta-YOLO detection results in four extreme environments. (B, E, H, K) displayed the YOLOv8 detection
results. (C, F, I, L) presented the Ta-YOLO detection results.
TABLE 6 Comparison of 5 different attention mechanism with metrics of mAP50, mAP50-90, precision, recall, Parameters and FLOPs.

Models P (%) R (%) mAP50 (%) mAP50-90 (%) Params (M) FLOPs (G)

Ta-YOLO_GAM 86.7 75.0 83.4 45.9 15.88 15.5

Ta-YOLO_SE 86.6 75.1 83.6 45.8 9.63 14.2

Ta-YOLO_scSE 86.8 74.4 82.7 45.1 9.89 14.4

Ta-YOLO_CBAM 86.3 74.9 83.4 45.7 9.62 14.2

Ta-YOLO_CSAM 86.7 76.9 84.4 45.9 10.58 14.3
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the highest mAP in the total category, green-fruited tomatoes and

yellow-fruited tomatoes reached 81% vs. 84.9% mAP, respectively.

Our data analysis showed that green-fruited tomatoes had a higher

probability of being obscured in the sample of obscured small

tomatoes, and that the number of green-fruited tomatoes in the

sample of small targets was relatively large. Therefore, when the

mAP of green-fruited tomato reached the optimum, the mAP of the

total category also reached the peak, which further validated that the

EWDIoU loss function is able to effectively solve the problem of the

detection of occluded fruits. In addition, in the practical application

scenario, the shading rate of yellow-fruited tomato was much lower

than that of green-fruited tomato, but its mAP was still able to keep

the same trend with the total category mAP, which indicated that

the loss function has strong robustness and adaptability. The change

in mAP of red-fruited tomato was relatively smooth, and the
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fluctuation range of its mAP was controlled within 2.1%. This

phenomenon can be primarily attributed to the relatively moderate

shading in red-fruited tomato samples, coupled with greater color

variability arising from differing ripeness levels. Nonetheless, the

consistent detection performance suggests that the EWDIoU loss

function does not induce significant errors or overfitting when

applied to this category. In summary, EWDIoU demonstrates

strong adaptability and stability across varying degrees of

occlusion scenarios.
4 Discussion

Accurate counting of small tomato fruits in real-world

production environments poses significant challenges and is of

substantial practical importance. It is imperative to reduce the

labor costs associated with manual counting while mitigating

errors arising from the diminutive size of tomato targets and

inter-fruit shading. This study proposed a detection and counting

method specifically tailored for densely planted small tomatoes

under realistic cultivation conditions. The algorithm maintains the

integrity of small tomato targets within unaltered field images—

without necessitating image zooming or cropping—thereby

enabling effective and reliable detection.

The algorithm used yolov8n as the baseline model, and used the

C2f_Repghost module and the SPDC module to adjust the structure

of the backbone network in the original algorithm, so that the model

could reduce the amount of computation and maintain the

lightweight while enhancing the feature information extraction

ability for small targets, so as to cope with the occlusion problem
FIGURE 12

Heatmap visualizations of small tomato detection under different attention mechanisms. (A) Example of Extremely Small Tomato; (B) Example of
Occlusion by Stem; (C) Example of Occlusion by Leaf; (D) Example of Inter-Class Occlusion.
TABLE 7 Comparison of 5 different loss functions with metrics of
mAP50 (Equation 16), precision (Equation 17), recall (Equation 19) and
mAP50-90.

Models P
(%)

R
(%)

mAP50
(%)

mAP50-90
(%)

Ta-YOLO-CIoU 88.2 75.1 82.3 45.7

Ta-YOLO-DIoU 87.4 76.7 82.9 45.2

Ta-YOLO-GIoU 86.6 76.9 83.0 45.7

Ta-YOLO-EIoU 86.4 76.0 83.8 45.6

Ta-YOLO-SIoU 85.7 73.2 83.2 46.1

Ta-YOLO-EWDIoU 86.7 76.9 84.4 45.9
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more effectively. And the new DASPPF structure was proposed to use

average pooling to reduce the influence of redundant information on

effective features and further improve the quality of feature extraction

in the case of occlusion. Meanwhile, the CSAM multiple attention

structure was constructed to introduce spatial and channel attention

mechanisms after decomposing the input information to realize the

deep fusion of feature maps at different scales. In addition, a new

formulation of the EWDIoU loss function was proposed that utilized

a two-dimensional Gaussian distribution function to abstract the

original IoU loss function, which solved the problem of insensitivity

of the original IoU to small target detection and effectively improves

the performance of small tomato detection in the case of occlusion.

Finally, an additional small detection head was incorporated into the

detector architecture to enhance the extraction of fine-grained

features, thereby improving the recognition of small targets.

Experimental results demonstrate that the proposed Ta-YOLO

model achieves high accuracy and robustness in addressing the

occlusion challenges inherent in small tomato counting within real

production environments. Compared to the original baseline, Ta-

YOLO exhibits significant improvements in both accuracy and recall,

alongside enhanced global feature extraction and superior small

target detection performance.

And why did we choose YOLO as the baseline model and not use

other lightweight models? As a single-stage detector, YOLO is well-

suited for real-time video analysis in agricultural environments,

where rapid and continuous detection is required. In contrast,

models such as MobileNet-SSD offer faster inference but tend to

underperform in complex scenes, while Transformer-based detectors

like DETR are resource-intensive and less suitable for real-time

deployment. Moreover, YOLO benefits from extensive open-source

support and compatibility with deployment toolchains (e.g.,

TensorRT, ONNX), which significantly simplifies engineering

implementation. Designing a lightweight model from scratch would

introduce challenges such as lack of pre-trained weights and

increased risk of overfitting, particularly in data-limited agricultural

scenarios. For these reasons, we chose to adopt and tailor YOLO
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through lightweight modifications, balancing performance, efficiency,

and practical.

Despite its advantages, Ta-YOLO has certain limitations. As

shown in Table 2, while Ta-YOLO attains a high recognition

accuracy of 87.2% for red-fruited tomatoes, its accuracy for yellow-

fruited tomatoes is 5.3% lower than that of YOLOv9s. This notable

gap contributes to an overall detection accuracy that is lower than

YOLOv9s. A likely cause for this discrepancy is data imbalance;

constraints in the actual production environment and the short

growth cycle of small tomatoes resulted in fewer images containing

yellow-fruited tomatoes during data collection. Consequently, the

dataset contained fewer samples of yellow-fruited tomatoes

compared to green- and red-fruited varieties. What’s more,

inaccuracies in manual annotation during dataset preparation may

have led to misclassifications, especially for small tomatoes exhibiting

intermediate colors during their developmental stages. Therefore,

expanding the dataset and refining the maturity category definitions

would be beneficial. Secondly, to preserve the natural growth state of

small tomatoes and effectively address the influence of leaf shading on

counting in actual production, we deliberately avoided regional

cropping or other image preprocessing techniques. Instead, the full

appearance of small tomatoes as seen in the production environment

was retained. Although this approach increased detection difficulty, it

enhanced Ta-YOLO’s applicability and robustness in real-world

agricultural scenarios.

Overall, Ta-YOLO represents a significant advancement for

real-world production settings, particularly in the detection and

counting of small tomatoes under occlusion. Its demonstrated

accuracy, efficiency, and robustness provide a practical solution

for improving the commercial productivity of agricultural

operations. Moreover, Ta-YOLO effectively balances detection

speed and precision, underscoring its potential to supplant

labor-intensive manual counting. Future work will aim to

further optimize the model and investigate its scalability

ac ros s o ther sma l l - t a rge t c rop spec i e s and d ive r se

application contexts.
FIGURE 13

mAP values of different classes of small tomatoes at different l-values.
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