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LiSA-MobileNetV2: an extremely
lightweight deep learning model
with Swish activation and
attention mechanism for
accurate rice disease
classification
Yongqi Xu, Dongcheng Li, Changcheng Li, Zheming Yuan
and Zhijun Dai*

Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis & Decision-
making, Hunan Agricultural University, Changsha, China
In the context of intelligent agriculture in China, rapid and accurate identification

of crop diseases is essential for ensuring food security and improving crop yield.

Although lightweight convolutional neural networks (CNNs) are widely adopted

for plant disease recognition due to their computational efficiency, they often

suffer from limited feature representation and classification accuracy. To address

these challenges, we propose LiSA-MobileNetV2, an improved MobileNetV2-

based model designed for rice disease classification. First, we restructure the

inverted residual module to simplify the network architecture, achieving a test

accuracy of 92.32%, representing a 2.41% improvement over the original

MovileNetV2 (89.91%). This indicate that a more lightweight network can

enhance feature representation in specific disease recognition. Second,

integrating the Swish activation function further improves accuracy to 94.04%

by enhancing the model’s non-linear feature learning. Finally, the addition of a

squeeze-and-excitation attention mechanism raises accuracy to 95.68%,

representing a 5.77% improvement over the original model. Importantly, the

parameter size and FLOPs are reduced by 74.69% and 48.18%, respectively,

maintaining strong computational efficiency. These results demonstrate that

combining structural simplification, advanced activation, and efficient attention

mechanisms significantly improves CNN performance. LiSA-MobileNetV2

provides a high-accuracy, resource-efficient solution for real-time rice disease

detection in smart farming systems.
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1 Introduction

Rice is one of the most important staple crops globally,

especially in Asian, where it serves as the primary food source for

hundreds of millions of people (Xu et al., 2021). However, diseases

such as rice blast, bacterial leaf blight, sheath blight, and brown spot

seriously threat both yield and quality during rice cultivation (Xiao

et al., 2021; Rezvi et al., 2023). These diseases not only reduce

production but can also cause large-scale economic losses,

undermining food security and sustainable agricultural

development (Deng et al., 2023). Therefore, rapid and accurate

detection of rice diseases is crucial for effective prevention and

contro l , sa feguarding food secur i ty , and promoting

agricultural modernization.

Traditional methods for detecting rice diseases and pests mainly

rely on manual visual inspection, which is time-consuming, labor-

intensive, and prone to misjudgment or omissions due to observer

inexperience (Sankaran et al., 2010). In addition, manual detection

has low efficiency, making it inadequate for the large-scale, high-

throughput needs of modern agriculture (Xu et al., 2024). With

advancements in computer technology, traditional image

processing and machine learning methods have been applied to

agricultural disease detection (Kaundal et al., 2006). These methods

relying on image preprocessing, feature extraction, and

classification algorithms have improved detection efficiency to

some extent (Mukherjee et al., 2025). However, their reliance on

manually designed features and their limited generalization ability

constrain practical applications (Deng et al., 2021). For instance,

traditional machine learning often requires complex, disease-

specific preprocessing and segmentation and struggles to capture

underlying image patterns, limiting its scalability in agricultural

production (Sanyal and Patel, 2008).

In recent years, the rapid development of artificial intelligence

and computer vision technologies has promoted the application of

deep learning in crop disease and pest identification. Compared

with traditional methods, deep learning models, especially

convolutional neural networks (CNNs), can automatically learn

high-level semantic features from large-scale image data, effectively

improving both accuracy and efficiency in rice disease and pest

recognition (Khan et al., 2020; Li et al., 2024). CNNs offer powerful

feature representation and generalization ability, enabling them to

handle complex agricultural scenarios and accurately identify

disease patterns (Salman et al., 2023). To further improve model

performance in challenging environments, attention mechanisms

have been introduced. These mechanisms help models focus on

disease-related regions, thereby boosting classification accuracy

(Niu et al., 2021). For instance, spatial attention emphasizes key

regions in an image to improve localization and recognition (Zhu

et al., 2019), while channel attention dynamically adjusts the

importance of different feature channels to better represent

disease characteristics (Karthik et al., 2022).

Recent advancements in intelligent agriculture have

demonstrated the potential of integrating sensing, modeling, and

AI-driven analysis for improving crop monitoring and

management. For instance, a 3D point cloud-based phenotyping
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method enabled non-destructive and high-throughput trait

extraction in Chinese Cymbidium seedlings (Zhou et al., 2024),

highlighting the importance of automated data acquisition in

precision agriculture, though it focused on morphology rather

than pathology. Similarly, pair‐wise comparison analysis for

multiple pool‐seq (PCAMP) was used to identify anthocyanin

biosynthesis genes in rice pericarp, uncovering genetic factors

responsible for color variation (Yang et al., 2019); while our work

does not address genomic data, such work highlights the potential

of integrating genetic and visual information for comprehensive

crop health monitoring. Beyond plant traits, advances in

agrochemical design, such as the use of cyclopropane with

triangular stable structures to enhance pesticide stability, offer a

complementary perspective on crop protection strategies (Huang

et al., 2025). Deep learning has also been widely adopted in

agricultural information systems; for example, deep belief

networks have supported IoT-based frameworks for predicting

vegetable market trends (Luo et al., 2022), underscoring the

versatility of AI technologies across agricultural domains.

Although deep learning has made remarkable progress in rice

disease detection, significant challenges remain in practical

applications. The robustness of lightweight models, such as the

MobileNet series, still requires improvement in complex field

environments (Zhang et al., 2023). Identification deviations may

arise due to overlapping symptoms, lighting variations, and

background interference (Yang et al., 2023). Furthermore, limited

computing resources and inference efficiency constraints hinder

model deployment in real-world agricultural production.

To address these challenges, we propose LiSA-MobileNetV2

(Lightweight MobileNetV2 with Swish activation and squeeze-and-

excitation Attention module), a novel lightweight visual recognition

framework for real-time rice disease detection. Unlike prior studies

focusing on phenotypic or molecular traits, our approach combines

an optimized deep convolutional architecture with attention

mechanisms designed for field imagery, aiming to balance

computational efficiency and high classification accuracy.

Specifically, we restructure the inverted residual block of

MobileNetV2, replace the ReLU6 activation with Swish to

enhance nonlinear representation, and incorporate SE attention

to better localize disease-relevant regions, thereby improving

classification performance.
2 Materials and methods

2.1 Description of the rice disease dataset

The dataset used in this study was derived from Paddy Doctor:

A Visual Image Dataset for Automated Paddy Disease Classification

and Benchmarking (Petchiammal et al., 2023). It comprises RGB

color images (480×640 pixels) representing nine rice diseases, along

with healthy rice samples (Figure 1). The ten classification

categories include: bacterial leaf blight (BLB), bacterial leaf streak

(BLS), bacterial panicle blight (BPB), blast, brown spot, dead heart,

downy mildew, hispa, tungro, and normal (healthy). In total, the
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dataset contains 10,407 images. A stratified random sampling

strategy was employed to partition the data: 10% was allocated as

the test set for final performance evaluation, while the remaining

90% was further split into training (80%) and validation (20%)

subsets. The training set was used for model fitting and parameter

optimization, while the validation set guided hyperparameter

tuning and monitored training progress. The distribution of

samples across subsets was presented in Table 1.
2.2 Data augmentation

As shown in Table 1, the dataset exhibits clear class imbalance.

In particular, the training sample sizes for blast, hispa, and normal

are substantially larger, with 1251, 1148, and 1270 images,

respectively. Conversely, BPB, BLS, and BLB have the fewest

samples, with only 243, 274, and 345 images, while brown_spot

and tungro also contain relatively limited samples (694 and 783

images, respectively), all well below the average. Such imbalance

adversely affects model training, as minority classes may lack

sufficient representation for effective feature learning, leading to

reduced classification performance. To mitigate this issue, an

oversampling-based class balancing strategy was applied.
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Oversampling is a widely used approach for handling class

imbalance, with common techniques including Random

Oversampling (He and Garcia, 2009) and the Synthetic Minority

Over-sampling Technique (SMOTE) (Efendiev et al., 2014). In this

study, minority class samples were replicated based on predefined

ratios to equalize the training data distribution (Table 1).

To ensure diversity among oversampled data, geometric spatial

transformations including random rotation (± 10°), translation (±

10%), scaling (± 5%), and mirror filling were applied. These

augmentations, generated in real time, guide the model to learn

key features such as rotational and scale invariance, further

alleviating class imbalance. Importantly, dataset splitting into

training, validation, and test sets was performed before

oversampling and augmentation, and these operations were

applied exclusively to the training set to prevent data leakage.
2.3 Architecture of the MobileNetV2
baseline model

The baseline model in this study is based on MobileNetV2, a

lightweight CNN designed for high computational efficiency and

low resource consumption (Sandler et al., 2018). The core building
FIGURE 1

Examples images of the rice disease and healthy (normal) leaves utilized in this study. Categories were presented in alphabetical order. (a) BLB:
bacterial leaf blight; (b) BLS: bacterial leaf streak; (c) BPB: bacterial panicle blight; (d–h, j) the other six diseases; (i) healthy leaf.
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block of MobileNetV2 is the Inverted Residual Block, which

integrates three key components: an expansion convolution, a

depthwise separable convolution, and a projection convolution

(Zhu et al., 2024).

The expansion convolution first increases the number of

channels to enrich feature representation. Subsequently, the

depthwise separable convolution efficiently extracts spatial

features while significantly reducing computational cost. Finally,

the projection convolution compresses the feature map back to a

lower-dimensional space, reducing the number of parameters and

improving inference speed (Figure 2). This structure strikes a

balance between model accuracy and computational efficiency,

making it suitable for rice disease detection in resource-

constrained agricultural settings.
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2.4 Development of the LiSA-MobileNetV2
model

2.4.1 Simplification of model architecture
In this study, the module configuration of MobileNetV2 was

tailored to better meet the feature extraction requirements for

rice disease imagery. The key modifications include: (1)

adjusting the number of channels in each layer (ranges from

16×16 to 96×96) and modifying the expansion factor in the

inverted residual blocks (from 2× to 8×, representing the ratio

of output to input channels in the expansion layer); and

(2) reducing the total number of inverted residual blocks

from 19 to 13 to construct a more compact and efficient

architecture (Figure 3A).
TABLE 1 Sample size and oversampling coefficient for each rice disease class.

Class Training set Validation set Test set Oversampling coefficient a

BLB 345 86 48 3.0

BLS 274 68 38 3.5

BPB 243 60 34 4.0

blast 1251 313 174 –

brown_spot 694 174 97 1.5

dead_heart 1038 260 144 –

downy_mildew 446 112 62 2.8

hispa 1148 287 159 –

normal 1270 318 176 –

tungro 783 196 109 1.4

Total 7492 1874 1041
aThe augmentation ratio indicating the oversampling factor applied to minority disease classes in the training set. BLB, bacterial leaf blight; BLS, bacterial leaf streak; BPB, bacterial panicle blight.
FIGURE 2

Diagram of the Inverted Residual Block. The expansion convolution (with an expansion factor of 3) increases channel dimensionality to enrich
feature representation. The depthwise separable convolution extracts spatial features with reduced computational cost. The projection convolution
reduces the number of channels, minimizing parameters and enhancing inference speed.
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2.4.2 Improvement of activation function
The activation function of the original MobileNetV2 was

improved by replacing ReLU6 with Swish. ReLU6, a variant of

ReLU, constrains its output within the range [0, 6] to limit

activation magnitude and mitigate gradient explosion. However,

this hard clipping may result in the loss of gradient information,

thereby limiting the model’s learning capacity (Zhang et al., 2022).

The Swish activation function is defined as follows:

Swish(x) = x · s (x) (1)

s (x) = 1
1+e−x (2)

where s(x) represents the sigmoid function, which maps the

input to the range (0, 1).

Unlike ReLU6, Swish (Equations 1, 2) provides a smooth, non-

monotonic without an upper bound constraint, allowing more effective
Frontiers in Plant Science 05
gradient flow and better preservation of information during

backpropagation (Zhang et al., 2022). This helps improve training

stability, convergence speed, and generalization capability. Accordingly,

Swish is employed in this study to replace ReLU6 (Figure 3B).
2.4.3 Involvement of attention mechanism
Since standard inverted residual blocks may not adequately

capture channel interdependencies, the Squeeze-and-Excitation

(SE) attention module (Hu et al., 2018) was integrated into

Group4 and Group5 of the inverted residual blocks in the

network (Figure 3A). The core structure of the SE module is

illustrated in Figure 3C and consists of two key operations

(Equations 3, 4):

(1) Channel Squeeze: The three-dimensional feature map

(H×W×C) is compressed into a one-dimensional channel

descriptor (1×1×C) through global average pooling:
TABLE 2 Summary of the structural characteristics of model variants.

Model Simplified architecture ReLU6 activation Swish activation SE attention

Li-MobileNetV2 ✓ ✓

LiS-MobileNetV2 ✓ ✓

LiA-MobileNetV2 ✓ ✓ ✓

LiSA-MobileNetV2 ✓ ✓ ✓
FIGURE 3

Diagram of the LiSA-MobilNetV2 network structure. (A) The inverted residual blocks (green) were reduced to 13 in total, forming five groups, with
each group consisting of two or three blocks to create a more compact architecture. The SE attention modules were embedded in Group 4 and
Group 5 to capture channel-wise feature dependencies, thereby improving the model’s ability to focus on disease-relevant regions. (B) Curves of
the Swish and ReLU6 activation functions, where the Swish exhibits a smooth, non-monotonic transition without an upper bound, facilitating better
gradient flow. (C) Schematic of the Squeeze-and-Excitation (SE) attention module. The module applies global average pooling for channel squeeze
and a small fully connected network for channel excitation, producing recalibration weights for feature refinement.
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zc = F sq(uc) =
1

H�Wo
H

i=1
o
W

j=1
uc(i, j) (3)

where uc (i, j) represents the activation at position (i, j) in the c-

th channel.

(2) Channel Excitation: A small fully connected network is

applied to the aggregated vector z to generate channel-wise

importance weights:

s = F ex(z) = s (W2d (W1z)) (4)

where W1 and W2 are learnable parameters, d(•) is the

activation function, and s(•) is the sigmoid function. The

resulting weights s are used to recalibrate the original feature map

through element-wise multiplication, thereby enhancing the

network’s focus on informative features.
2.4.4 Overview of model variants
To systematically evaluate the individual and combined

contributions of architectural simplification, activation function

enhancement, and attention mechanisms, four variants of

MobileNetV2 were designed and compared in this study (Table 2):
Fron
1. Li-MobileNetV2 (Lightweight MobileNetV2): This variant

employs a simplified MobileNetV2 structure with reduced

initial convolutional channels and optimized inverted

residual blocks, while retaining the original ReLU6

activation function.

2. LiS-MobileNetV2 (Lightweight MobileNetV2 with Swish

activation): This model builds upon Li-MobileNetV2 by

replacing ReLU6 with the Swish activation function, aiming

to improve gradient flow, learning capability, and

convergence speed.

3. LiA-MobileNetV2 (Lightweight MobileNetV2 with SE

Attention): In this variant, the SE attention mechanism is

incorporated into selected inverted residual blocks of Li-

MobileNetV2 to enhance channel-wise feature

recalibration, while ReLU6 is preserved as the

activation function.

4. LiSA-MobileNetV2 (Lightweight MobileNetV2 with Swish

activation and SE Attention): This model combines both

the Swish activation and SE attention mechanisms on top

of Li-MobileNetV2, integrating the benefits of improved

nonlinearity and attention-guided feature refinement.
2.5 Model evaluation and experimental
setup

To assess the performance of the LiSA-MobileNetV2 model for

rice disease recognition, several commonly used metrics were

adopted, including Accuracy, Precision, FLOPs (floating-point

operations), and Params (the total number of model parameters).

Each metric provides a distinct perspective. Accuracy measures the
tiers in Plant Science 06
proportion of correctly classified samples among all samples

(Equation 5). Precision assesses the proportion of true positive

predictions among all positive predictions made by the model

(Equation 6). Recall measures the proportion of actual positive

samples that are correctly identified by the model (Equation 7). F1-

score is the harmonic mean of Precision and Recall, offering a

balanced evaluation when both false positives and false negatives

are critical (Equation 8). FLOPs quantify the computational cost of

a single forward pass by counting the number of floating-point

operations (Equation 9). Params reflects the total number of

trainable parameters in the model, indicating its memory

footprint and complexity. Additionally, confusion matrix was

used to visualize classification performance across all classes,

providing insight into model behavior at the class level.

Accuracy = ok
i=1

TPi
N

(5)

Precision = TP
TP+FP (6)

Recall = TP
TP+FN (7)

F1 − score = 2�Precision�Recall
Precision+Recall (8)

FLOPs = 2� Cin � Cout � Kh � Kw � Hout �Wout (9)

Among these metrics, TP (True Positive): the number of

positive samples correctly predicted; TN (True Negative): the

number of negative samples correctly predicted; FP (False

Positive): the number of negative samples incorrectly classified as

positive; FN (False Negative): the number of positive samples

incorrectly classified as negative. Cin and Cout: the number of

input and output channels, respectively. Kh and Kw: the height

and width of the convolution kernel; Hout and Wout: the height and

width of the output feature map.

All experiments were conducted on a system running Microsoft

Windows 10, equipped with an Intel Core i5-12400F CPU and an

NVIDIA GeForce RTX 2080 GPU (8 GB VRAM). The software

environment included Python 3.11, TensorFlow 2.10.0, CUDA 10.8,

and cuDNN 8.2.1.

The training was performed with an initial batch size is 32 and

an adaptive learning rate strategy. The Adam optimizer was used

with an initial learning rate is 10-3. To optimize learning efficiency

and prevent overfitting, the ‘ReduceLROnPlateau’ callback was used

to reduce the learning rate by a factor of 0.1 if the validation loss did

not decrease for 5 consecutive epochs, with a minimum learning

rate set at 10−6. The ‘EarlyStopping’ mechanism was applied with a

patience of 10 epochs to halt training if no improvement in

validation loss was observed. The ‘ModelCheckpoint’ was

employed to save the model with the best validation performance.

Dropout layers were incorporated into all model variants to

enhance generalization and prevent overfitting. The code

implementing the LiSA-MobileNetV2 model is written in Python

and is ava i lable at ht tps : / /g i thub.com/Zhi junBioinf /

LiSA-MobileNetV2.
frontiersin.org
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3 Results

3.1 Classification results of the LiSA-
MobileNetV2

To comprehensively evaluate the performance of our proposed

LiSA-MobileNetV2 model in rice disease recognition, a detailed

classification report was generated on the test set. Overall, the model

exhibits stable and high classification performance across all

categories, with F1-score consistently above 0.90, demonstrating

both strong discriminative power and robust generalization

ability (Table 3).

Specifically, the model performs most excellently on “dead_heart”,

achieving a precision, recall, and F1-score of 0.9931, indicating near-

perfect classification. Similarly, “BLS” (bacterial_leaf_streak) and “BPB”

(bacterial_panicle_blight) also exhibit excellent performance, with F1-

score close to 0.99, reflecting the model’s exceptional capability in

identifying minority diseases after augmentation and attention

enhancements. For majority categories such as “blast” and “normal”,

which have larger sample size, the model maintains F1-scores of 0.9465

and 0.9383 respectively, suggesting effective feature learning and

generalization even in the presence of higher intra-class variation.

However, the model shows relatively lower recall (0.9060) in the

“downy_mildew” category, which may be attributed to either subtle

inter-class feature differences or the limited number of representative

samples. This suggests that some positive instances in this category

were misclassified, possibly due to insufficient learning of

discriminative cues. Future work may consider strategies such as

targeted data augmentation, re-weighted loss functions, or category-

specific attention refinement to further improve recall for this class.

Overall, the model achieves F1-scores above 0.90 for all 10

categories, with 6 categories exceeding 0.95, underscoring the

effectiveness of the structural modification, including lightweight

design, Swish activation, and SE attention.
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3.2 Comparison of LiSA-MobileNetV2 with
traditional CNN models

To further verify the effectiveness of the proposed LiSA-

MobileNetV2, we conducted comparative experiments against a

range of lightweight and classic convolutional neural network

(CNN) models (Table 4). The selected baseline models include

traditional lightweight architectures such as MobileNetV2,

MobileNetV3, ShuffleNet, and GhostNet, as well as deeper and

more complex models like InceptionV3 and ResNet18. In addition,

two state-of-the-art mobile-friendly architectures, EfficientNet-

Lite0 and MobileViT-XXS (extra small variant), were included to

benchmark the performance of the proposed model against modern

CNN design paradigms.

According to the results in Table 4, LiSA-MobileNetV2

achieved the highest test accuracy of 95.68%, while maintaining

an ultra-lightweight structure with only 575.06K parameters and

331.27M FLOPs. Compared with the original MobileNetV2, the

proposed model improved accuracy by 5.77% while significantly

reducing the number of parameters. Although GhostNet and

ResNet18 also achieved competitive accuracies (94.04% and

94.14%, respectively), their computational and memory demands

were much higher. InceptionV3 yielded a comparable accuracy of

95.58%, but its deployment was hindered by its large size (21.8M

parameters and 5693.41M FLOPs). While ShuffleNet,

Mobi leNetV3, and EfficientNet-Lite0 exhibited lower

computational overhead, they fell short in classification

performance. MobileViT-XXS achieved a slightly higher accuracy

(95.94%) than our model but at the cost of significantly increased

computational complexity. In summary, the LiSA-MobileNetV2

model demonstrates an excellent trade-off between classification

accuracy and computational efficiency, making it particular suitable

for deployment in edge and mobile scenarios where resource

constraints are critical.
TABLE 3 Classification performance of the proposed LiSA-MobileNetV2
model for each rice disease on the test set.

Class Precision Recall F1-score Support

BLB 0.9375 0.9375 0.9375 48

BLS 1.0000 0.9737 0.9867 38

BPB 1.0000 0.9706 0.9851 34

blast 0.9282 0.9655 0.9465 174

brown_spot 0.9479 0.9381 0.9430 97

dead_heart 0.9931 0.9931 0.9931 144

downy_mildew 0.9636 0.8548 0.9060 62

hispa 0.9212 0.9560 0.9383 159

normal 0.9770 0.9659 0.9383 176

tungro 0.9630 0.9541 0.9585 109
TABLE 4 Comparison of performance among different CNN models in
rice disease classification.

Model
Test Accuracy
(%)

FLOPs (M) Params (K)

MobileNetV2 89.91 639.24 2271.95

MobileNetV3 91.45 121.27 1683.70

ShuffleNet 90.20 259.75 1859.39

GhostNet 94.04 330.54 2601.93

InceptionV3 95.58 5693.41 21823.27

ResNet18 94.14 3634.71 11191.24

EfficientNetLite0 90.87 754.17 3324.46

MobileViT-XXS 95.94 886.91 1087.34

LiSA-MobileNetV2 95.68 331.27 575.06
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3.3 Classification accuracy and
computational efficiency from ablation
experiments

To systematically evaluate the effectiveness of each structural

modification introduced in this study, we conducted a series of

ablation experiments focusing on model simplification, the SE

attention mechanism, and the Swish activation function (Table 5).

Each variant model was trained and evaluated five times using

different random seeds to ensure statistical robustness. The reported

accuracy and precision values represent the mean and standard

deviation across these five independent runs.

The results show that the lightweight architecture (Li-

MobileNetV2) achieved an average accuracy of 92.19 ± 0.39 and a

precision of 92.48 ± 0.38, representing a 2.41% improvement over

the original MobileNetV2 baseline (89.91). Introducing the SE

attention mechanism (LiA-MobileNetV2) further improved the

performance, achieving 94.50 ± 0.38 accuracy and 94.82 ± 0.38

precision, indicating enhanced feature representation and

discrimination. When only the Swish activation function was

applied (LiS-MobileNetV2), the model reached 93.85± 0.49

accuracy and 94.17 ± 0.47 precision, showing a moderate

performance gain. Although the effect is slightly less than that of

the SE attention mechanism, it still demonstrate the effectiveness of

replacing ReLU6. The combined model (LiSA-MobileNetV2),

integrating both SE Swish, yielded the best performance,

achieving an average test accuracy of 95.77 ± 0.21 and precision

of 95.84 ± 0.20. This confirms the complementary effect of the two

enhancements in boosting classification capability. Notably, these

improvements incur only a marginal increase in FLOPs and

parameters, validating the model’s suitability for deployment in

resource-constrained environments.
3.4 Generalization to external dataset

To further assess the generalization capability of the proposed

model, we conducted cross-dataset evaluation using the Rice Leaf

Disease Images dataset from Kaggle, which contains 5,932 images

spanning four categories: bacterial blight, blast, brown spot, and

tungro. To simulate a low-resource scenario, 50 images per class

(200 in total) were randomly selected and incorporated into the

original dataset, with 80% added to the training set and 20% to the

validation set. The remaining 5,732 images were used as the test set.

During fine-tuning, only the final classification layer of the LiSA-
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MobileNetV2 model was modified to adapt to the four-category

classification task, while all other layers were kept frozen. The

model was trained for 10 epochs on the selected subset.

Evaluation results on the external dataset demonstrate that our

model achieved strong generalization performance, attaining an

overall test accuracy of 85.0% (Figure 4). Specifically, the model

performed exceptionally well on the ‘tungro’ class with over 99%

precision and recall and achieved F1-scores of 0.90 and 0.80 on

‘bacterial blight’ and ‘brown spot’, respectively. The macro-average

F1-score reached 0.86, highlighting the robustness and

transferability of the model under domain shift.
4 Discussion

4.1 Impact of model architecture
optimization on disease recognition

In this study, the network structure of MobileNetV2 was

specifically adjusted for the task of rice disease classification by

optimizing the settings of the number of channels and the

expansion factors within the inverted residual blocks. In Group 1

and 2, relatively small channel numbers (16 and 24) and moderate

expansion factors (2 and 3) were used to reduce the computational

complexity of the shallow layers. In contrast, deeper blocks such as

Group 4 and 5 adopted higher channel counts (64 and 96) and

larger expansion factors (6 and 8) to enhance the network’s capacity

for learning high-level semantic features.

The results show that the adjusted Li-MobileNetV2 model

achieved substantial improvements in multiple metrics compared

with the original MobileNetV2. Specifically, classification accuracy

increased from 89.91% to 92.32%, a gain of 2.41 percentage points.

Meanwhile, the model’s computational cost (FLOPs) was reduced

from 639.24M to 321.18M (a 49.78% reduction), and the number of

parameters decreased from 2271.95K to 570.81K (a 74.88%

reduction), significantly shrinking the model size (Tables 4 and

5). These results indicate that Li-MobileNetV2 can maintain or even

improve performance while drastically reducing computational and

storage requirements.

In terms of depth simplification, we also explored the impact of

reducing the number of inverted residual blocks from the original

19 down to 15, 13, and 11. We found that the this reduction

significantly affects the classification performance, computational

efficiency, and model size (Table 6). Among the tested

configurations, the 15-block version achieved the highest accuracy
TABLE 5 Performance comparison of model variants in ablation experiments.

Model Accuracy (%) Precision (%) FLOPs (M) Params (K)

Li-MobileNetV2 92.19 ± 0.39 92.48 ± 0.38 321.18 570.81

LiA-MobileNetV2 94.50 ± 0.38 94.82 ± 0.38 321.29 576.95

LiS-MobileNetV2 93.85 ± 0.49 94.17 ± 0.47 331.17 570.81

LiSA-MobileNetV2 95.77 ± 0.21 95.84 ± 0.20 331.27 575.06
Accuracy and precision were reported as the mean ± standard deviation across five independent runs with different random seeds.
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(92.51%), but also came with increased FLOPs (371.61M) and

parameters (733.34K). Reducing the number of blocks to 13

resulted in a minimal accuracy drop of only 0.19%, while

simultaneously decreasing FLOPs by 13.6% and parameters by

22%, demonstrating a better trade-off between accuracy and

efficiency. However, further reduction to 11 blocks led to a

notable decline in performance (accuracy drops to 89.53%),

indicating insufficient feature extraction capability. Therefore, the

13-block configuration offers the most balanced performance,

achieving high accuracy with significantly reduced computational

demands, making it an ideal choice for practical applications with

limited hardware resources.
4.2 Comparison and analysis of
convergence performance between Swish
and ReLU6

The advantages of the Swish activation function over ReLU6

can be validated in terms of training convergence and
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generalization ability by comparing the training dynamics of LiS-

MobileNetV2 (using Swish) and Li-MobileNetV2 (using

ReLU6) (Figure 5).

The model using the Swish converges noticeably faster during

the early training stages and exhibits a more rapid decline in loss

compared to the ReLU6-based model. In later stages, the validation

loss of the Swish model remains more stable and shows fewer

fluctuations, indicating better generalization. Furthermore, the final

validation loss of the Swish model is significantly lower than that of

ReLU6 model, further demonstrating the enhanced convergence

stability and robustness. In summary, the Swish activation function

not only improves the final classification accuracy but also exhibits

faster and more stable convergence during training, thereby

supporting its rationale as a replacement for ReLU6 in

lightweight CNN architectures.
4.3 Determination of the optimal attention
mechanism

To determine the most effective attention mechanism for rice

disease classification, we respectively integrated SE (Hu et al., 2018),

CBAM (Convolutional Block Attention Module) (Woo et al., 2018),

and ECA (Efficient Channel Attention) (Wang et al., 2020) modules

into the Li-MobileNetV2 architecture with adjusted inverted

residual blocks. The goal was to evaluate their impacts on

classification accuracy and precision. The results show that all

three mechanisms led to performance improvements to varying

degrees (Table 7). Among them, the SE attention module delivered
FIGURE 4

Confusion matrix illustrating the classification performance of LiSA-MobileNetV2 on the external Rice Leaf Disease Images dataset.
TABLE 6 Performance of MobileNetV2 model with different numbers of
inverted residual blocks.

No. blocks Accuracy (%) Flops (M) Params (K)

15 92.51 371.61 733.34

13 92.32 321.18 570.81

11 89.53 273.35 510.10
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the highest performance, achieving a test accuracy of 94.81% and a

precision of 94.98%, representing improvements of 2.49% and

2.53% over the baseline Li-MobileNetV2, respectively. CBAM

achieved moderate gains (2.11% in accuracy, 2.05% in precision),

while ECA offered relatively modest improvements.

We hypothesize that the superior performance of SE arises

from the nature of rice disease features, which typically manifest

as channel-sensitive variations (e.g., color intensity, lesion density,

and texture patterns) rather than complex spatial arrangements.

Unlike CBAM, which combines both spatial and channel

attention, SE focuses purely on global channel dependencies,

enhancing feature recalibration without introducing additional

complexity of spatial modeling. Compared to ECA, SE also

captures broader contextual relationships across channels,

improving discriminative capacity while maintaining low

computational cost. These results suggest that SE attention is

particularly well-suited for rice disease image recognition tasks,
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where visual symptoms are more dependent on channel-level cues

than spatial localization patterns.
4.4 Analysis of class-wise classification
accuracy using confusion matrix

The performance improvements of the proposed variants of

MobileNetV2 (Table 2) were analyzed in a class-wise manner using

confusion matrices (Figure 6).

The result indicates that LiSA-MobilNetV2, incorporating both

the SE attention mechanism and Swish activation, consistently

achieved the highest classification accuracy across most disease

classes. In particular, the model attained 100% accuracy for BLS and

BPB, with a lower overall misclassification rate than its

counterparts, confirming the effectiveness of the proposed

architectural enhancements (Figure 6D). In contrast, the original
FIGURE 5

Comparison of loss curves on the training and validation sets using ReLU6 and Swish activation functions. The model with Swish (LiS-MobileNetV2)
demonstrates faster convergence and more stable validation performance, indicating improved generalization and training efficiency compared to
ReLU6 (Li-MobileNetV2).
TABLE 7 Comparative performance of LiMobileNetV2 with different attention mechanisms.

Model Accuracy (%) Precision (%) Flops (M) Params (K)

Li-MobileNetV2 92.32 92.45 321.18 57.08

LiA-MobileNetV2 94.81 94.98 321.29 57.70

Li-CBAM-MobileNetV2 94.43 94.50 321.64 57.51

Li-ECA-MobileNetV2 92.99 93.18 321.28 57.08
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MobileNetV2 shows poor recognition rate for several diseases. For

instance, 10 ‘tungro’ samples are misclassified as ‘blast’, suggesting

insufficient feature extraction for visually similar symptoms

(Figure 6A). By modifying the inverted residual blocks, the

improved Li-MobileNetV2 enhanced classification accuracy for

‘blast’, ‘brown spot’, and ‘tungro’ (Figure 6B). Introducing the SE

attention module further improved recognition of ‘blast’, ‘hispa’,

and ‘tungro’, indicating that channel-wise feature recalibration

helps the model focus on disease-relevant patterns (Figure 6C).

Finally, integrating the Swish activation function provides

additional performance gains. Although there was a marginal

decrease in accuracy for ‘blast’, ‘brown spot’, and ‘downy midew’,

the recognition of other classes improved, demonstrating that Swish

generally enhances the model’s representational capacity

(Figure 6D).

Among all categories, ‘downy mildew’ remains the most

challenging to classify, exhibiting the lowest precision and recall

(Figure 6). Several factors may contribute to this: 1) visual similarity

to early-stage symptoms of ‘blast’, especially under natural lighting,

can cause misclassification due to subtle chromatic differences; 2)

high intra-class variability from pale lesions to necrotic patches
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complicates consistent feature learning; 3) despite oversampling,

the relatively small sample size limit the diversity of training

examples and reduces generalization. These findings suggest that

further enhancement could involve more targeted data

augmentation, incorporation of spatial attention modules, or

multi-scale feature fusion strategies to improve discrimination for

visually ambiguous classes like Downy mildew.
4.5 Interpretation of improved models via
Grad-CAM visualization

To enhance the interpretability of the proposed models and

verify their effectiveness in rice disease classification, Gradient-

weighted Class Activation Mapping (Grad-CAM) was employed

to generate visual explanations (Selvaraju et al., 2017). Grad-CAM

highlights the most influential regions in the input image by

utilizing the gradients of the predicted class with respect to the

activations in the last convolutional layer, thereby producing

heatmaps indicating the model’s focus during inference. This

analysis covers four categories with varying classification
FIGURE 6

Comparison of confusion matrices for rice disease classification using the original MobileNetV2 (A) and its three improved variants: Li-MobileNetV2
(B), LiA-MobileNetV2 (C), and LiSA-MobileNetV2 (D).
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performance: ‘blast’ and ‘hispa’, which have relatively large test

sample sizes (174 and 159 samples in the test set, respectively);

‘BLS’, which exhibits high classification accuracy across all models

(≥35 correct predictions out of 38); ‘BLB’, a relatively challenging

class where the original MobileNetV2 model achieved only 77.08%

accuracy. Grad-CAM results for representative images are shown in

Figure 7, where red indicates regions of high attention and blue

indicates low attention.

From the visualizations, we found that for the BLB disease, the

original MobileNetV2 fails to accurately localize the disease lesions,

with attention scattered across irrelevant background areas. Li-

MobileNetV2 shows slight improvement, but still suffers from

background distraction. In contrast, LiA-MobileNetV2 and LiSA-

MobileNetV2, both equipped with SE attention, successfully focus on

the diseased areas, with LiSA-MobileNetV2 providing the most precise

localization. For the BLS disease, all models exhibit clear and consistent

focus on disease-relevant areas, corresponding with their high

classification accuracy, indicating strong discriminative capability

regardless of model variant. Regarding the ‘blast’ and ‘hispa’, the

baseline and Li-MobileNetV2 models display narrow and incomplete

attention coverage, whereas the attention-augmented models (LiA and

LiSA) demonstrate broader and more comprehensive focus across the

diseased regions. Notably, LiSA-MobileNetV2 delivers the most

coherent and interpretable attention maps.
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These results confirm that the combination of the Swish activation

function and the SE attention mechanism significantly improves not

only the model’s classification performance but also its ability to

concentrate on semantically meaningful regions in the image.
5 Conclusions

In this study, we proposed an enhanced scheme for improving

MobileNetV2’s performance in rice disease classification. By

simplifying the inverted residual structure, introducing the Swish

activation function, and incorporating the SE attention mechanism,

we effectively optimized the model’s feature extraction capability.

These improvements not only enhanced classification but also

further reduced the model’s computational load, making it more

suitable for deployment in resource-constrained environments.

Experimental results demonstrated that the proposed LiSA-

MobileNetV2 model achieved a classification accuracy of 95.68% on

the test set, an improvement of 5.77% over the original

MobileNetV2, while significantly reducing the number of

parameters and computational overhead. Comparative

experiments with different attention mechanisms (SE, ECA, and

CBAM) further confirmed that the SE module offers the most

effective performance gains in this task.
FIGURE 7

Grad-CAM visualizations for the original MobileNetV2 and its improved variants across four representative rice disease categories. The improved
models, especially LiSA-MobileNetV2, demonstrate stronger and more accurate focus on disease-affected regions, reflecting enhanced feature
extraction and classification interpretability.
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Looking forward, we plant to address the misalignment

occasionally observed between attention regions and actual lesion

areas, particularly in the cases of ‘blast’ and ‘hispa’ diseases. This

issue may stem from limitations in feature representation caused by

the lightweight design, lack of pixel-level annotations, or inter-

disease visual similarities. Future word will explore the

incorporation of fine-grained supervision, attention refinement

modules, or weakly supervised learning techniques to improve

interpretability and localization accuracy. Additionally, the

optimized model will be deployed on mobile and edge computing

platforms to evaluate its performance in real-world agricultural

settings, with further efforts to optimize inference speed and

system responsiveness.
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