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interpretable machine learning
Ranran Kou1, Cong Wang1, Jinxia Liu2, Ran Wan1, Zhe Jin2,
Le Zhao1, Youjie Liu2, Junwei Guo1, Feng Li2, Hongbo Wang1,
Song Yang1* and Cong Nie1*

1Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of China National
Tobacco Corporation (CNTC), Zhengzhou, China, 2Technology Center, China Tobacco Jilin Industrial
Co., Ltd., Changchun, China
Tobacco leaf position is closely associated with its quality whose material basis is

the chemical components of tobacco leaf. In recent years, near-infrared (NIR)

spectroscopy combined with algorithmic models has emerged as a popular

method for identifying the tobacco leaf position. However, when applied to leaf

position discrimination, thesemodels often rely on principal components derived

from dimensionality-reduced spectral signals, resulting in limited interpretability

and difficulty in identifying key chemical components. Chemical composition

data combined with algorithmic models can also be used to discriminate

tobacco leaf positions. However, the acquisition of chemical components

relies on traditional instrumental analytical methods. As a result, the acquisition

of chemical composition data is time-consuming and labor-intensive, involving

only a limited number of compounds. The study proposes a novel approach that

integrates machine learning with advanced interpretability techniques for both

tobacco leaf position discrimination and analysis. Based on the 70 tobacco leaf

chemical components obtained using near-infrared rapid analysis technology,

tobacco leaf position discrimination models were built using Support Vector

Machine (SVM), Back Propagation Neural Network (BPNN), and Random Forest

(RF). Particle swarm optimization (PSO) was used to optimize parameters of each

model. Chemical components were analyzed for statistical significance across

leaf positions, and their influence on model predictions was interpreted using

SHapley Additive exPlanations (SHAP). The experimental results showed that

among all models, the SVM- hybrid kernel demonstrated the most robust and

accurate performance, achieving discrimination accuracies of 98.17% and

96.33% on the training and test sets, respectively. SHAP analysis provided a

clear ranking of feature importance and revealed the positive and negative

contributions of individual chemical components. The proposed method can

be useful for position traceability and chemical feature analysis of various crops.
KEYWORDS

tobacco leaf chemical components, position discrimination, analysis of crop quality,
model interpretation, SHapley Additive exPlanations (SHAP)
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1 Introduction

The quality of crops is closely related to the growing positions

(Guleria et al., 2007), and the light temperature and nutrient

distribution of plants in different positions are different, thus

affecting the yield and quality. Tobacco is an important economic

crop for many countries and plays an important role in promoting

farmers’ income and government tax revenue (Drope et al., 2022;

Zhao, 2022). In the tobacco industry, tobacco leaves are generally

divided into upper, middle and lower positions for evaluation. It is

generally believed that the middle leaves are of better quality than the

upper or lower leaves, so the price of the middle leaves is higher than

the upper or lower leaves in the tobacco market. Therefore, the

market sometimes deliberately mixes upper and lower tobacco leaves

into middle tobacco leaves to pursue higher profits, or involuntarily

mislabels and mixes tobacco leaves in different positions (Ni et al.,

2009), so it is of great significance to accurately identify tobacco leaf

positions. In addition, the material basis of tobacco quality is the

chemical components of tobacco leaves. It is also meaningful to

clarify the chemical characteristics of different positions of tobacco

leaves and take corresponding measures to improve quality.

In recent years, machine learning (ML) has made significant

advances in areas such as computer vision (Krizhevsky et al., 2017;

Rawat and Wang, 2017), machine translation (Zhang and Zong,

2015), fault detection (Theissler, 2017), and predictive maintenance

(Theissler et al., 2021). Near-infrared spectroscopy has the

advantages of simple sample pretreatment, non-destructive

sample, fast analysis speed, good repeatability and reproducibility,

and has been widely used in recent years (Wang et al., 2018a;

Richter et al., 2019; Wu et al., 2020; Xiao et al., 2020). The

combination of near-infrared spectroscopy and machine learning

has been extensively employed for identifying tobacco origin and

leaf position. Wang and Yang (2023) proposed a generalized

learning system of Takagi-Sugeno (TS) fuzzy subsystem based on

near-infrared spectroscopy for rapid identification of tobacco

origin. Xiang et al. (2020) conducted identification of the

geographical origin and grade of flue-cured tobacco based on

near-infrared spectroscopy. Based on NIR spectral data of tobacco

leaves, Bin et al. (2016) proposed an improved random forest

method to classify tobacco grades. He et al. (2024) based on near

infrared spectroscopy, combined with linear discriminant analysis

(LDA) and random subspace method (RSM), built an RSM-LDA

integrated learning model for the identification of tobacco

positions. Yu et al. (2011) used the mathematical model of

similarity analysis based on SIMCA algorithm to conduct

similarity analysis of near infrared spectra of tobacco leaves in

different positions. Yang et al. (2014) took the near-infrared

spectroscopy of tobacco samples as the test object and established

the tobacco leaf position projection analysis model based on

principal component and Fisher criterion (PPF). However, when

near-infrared spectroscopy is combined with algorithmic models to

characterize tobacco positions, these models often rely on principal

components derived from dimensionality-reduced spectral signals,

resulting in limited interpretability and difficulty in identifying key

chemical components.
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Chemical composition data combined with algorithmic models

can also be used to discriminate tobacco leaf positions. Sha et al.

(2019) developed a support vector machine (SVM) classification

model to distinguish between middle and upper tobacco leaves

based on six chemical components: scopoletin, rutin, malic acid,

citric acid, fructose, and sucrose. Xie et al. (2008) used a discriminant

method based on Mahalanobis distance to identify tobacco leaf

positions using chemical composition data including total sugar,

reducing sugar, nicotine, total nitrogen, potassium, and chlorine.

However, when chemical composition combined with algorithmic

models is used to characterize tobacco leaf positions, the acquisition

of chemical components relies on traditional instrumental analytical

methods, such as gas chromatography–mass spectrometry (GC–MS)

and continuous flow analysis (CFA). As a result, the acquisition of

chemical composition data is time-consuming and labor-intensive,

involving only a limited number of compounds, and related research

remains relatively scarce. SHapley Additive exPlanations (SHAP),

derived from the game theory concept introduced by Lundberg and

Lee, quantified the contribution of each feature to the model

prediction (Anjum et al., 2022; Lu et al., 2023). Lu et al. (2023)

established a stadium fire risk assessment model combined with the

random forest model of SHAP strategy, and analyzed the impact of

various risk characteristics on different risk assessment models. Long

et al. (2024) used the SHAP model interpretation method to analyze

the factors affecting the drug stability model. Santos et al. (2024) used

SHAP model interpretation method to conduct feature screening in

bearing fault diagnosis. Cui et al. (2024) built a landslide susceptibility

evaluation model and revealed the influence of various influencing

factors on the landslide susceptibility evaluation model through

SHAP algorithm, thus enhancing the credibility and explainability

of the model. Li S. et al. (2025) employed the SHAPmodel to quantify

the contribution of individual aroma compounds to the machine

learning prediction results, and identified key characteristic

compounds that influence the sensory quality grade of sauce-flavor

baijiu. These studies provide a reference for explaining the effect of

chemical composition on tobacco leaf position discrimination model

by SHAP algorithm. However, there is currently no report on using

the SHAP method to analyze the chemical features in the tobacco leaf

position discrimination model. Therefore, this study established a

robust and accurate model for tobacco leaf position discrimination

based on 70 chemical components. Significance analysis was

conducted on chemical components across different leaf positions.

The SHAP algorithm was employed to interpret the model and to

analyze the influence of chemical components on position

discrimination. This work provides valuable insights and references

for accurately identifying tobacco leaf positions and analyzing their

chemical characteristics.
2 Materials and methods

2.1 Materials

In China, tobacco leaves are classified based on stalk position,

sub-grade, and color. The leaves are generally divided into three
frontiersin.org
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main stalk positions: upper (B), middle (C), and lower (X). Each

position is further subdivided into three to four sub-grades,

represented by the numbers 1, 2, 3, and 4. Common colors

include orange-yellow (F), lemon-yellow (L), slightly greenish (V),

and variegated (K).The sample set consisted of tobacco leaves from

different positions (upper, middle, and lower) collected from 17

provinces in China, including Anhui, Fujian, Gansu, Guangxi,

Guizhou, Henan, Heilongjiang, Hubei, Hunan, Jilin, Jiangxi,

Liaoning, Shandong, Shaanxi, Sichuan, Yunnan, and Chongqing,

with a total of 546 samples. Detailed sample information is shown

in Table 1.
2.2 Acquisition and derivation of chemical
components

All tobacco samples were dried in a drying room at 40°C for 1−3

days, ground to a certain granularity using a whirlwind grinding
Frontiers in Plant Science 03
mill, and sieved through a 60-mesh sieve. The moisture content of

the samples ranged between 6% and 8% and was analyzed by the

oven-drying method. NIR spectra were recorded for all tobacco

samples using the Antaris™ II Fourier Transform Near-Infrared

(FT-NIR) spectrometer, equipped with an integrating sphere diffuse

reflectance sampling system (Thermo Fisher Scientific,

USA).Measurements were performed in triplicate, and each

measurement comprised 64 co-added scans recorded at a

resolution of 8 cm−1 in the wavenumber range of 4000−10000

cm−1.Multiplicative scatter correction (MSC) was performed prior

to modeling to eliminate the uneven distribution of sample particles

and reduce the effect of particle size on the spectra. The constant

difference in the spectra was eliminated by taking the first derivative

−because the calculation of the derivative tended to increase the

noise−and performing Savitzky−Golay convolution smoothing

prior to derivative preprocessing (Liang et al., 2022). In previous

studies, our research team has proposed the near-infrared–chemical

composition prediction model (Guo et al., 2023; Liang et al., 2022;

Li B. et al., 2025). Based on the near-infrared–chemical composition

prediction model, a total of 70 chemical components were

identified, including routine chemical components of tobacco

leaves, cations and anions, polyphenols, polyacids and higher

fatty acids, amino acids and Amadori compounds, among others.

The minimum and maximum values of the 70 chemical

components in tobacco leaves can be found in the Supplementary

File. These components encompass both major and trace substances

in tobacco leaves and represent a crucial material foundation for

tobacco leaf style and quality (Table 2).

Tobacco, as an important economic crop, has its industrial

usability partly influenced by the balanced proportions of chemical

components such as total alkaloids, total nitrogen, potassium, and

chlorine. As a result, derived indexes such as the sugar-alkaloid

ratio, nitrogen-alkaloid ratio, and potassium-chlorine ratio have

been developed. These derived indexes can, in some cases, more

directly reflect the quality of tobacco leaves (Lü et al., 2020).The

derivatives of cations and anions, polyphenols, polyacids and higher

fatty acids, amino acids, Amadori compounds were obtained by

addition. Derivatization indexes such as sugar-alkaloid ratio,

nitrogen-alkaloid ratio, schmuck value (Sugar-to-protein ratio),

and potassium-chlorine ratio were obtained by the ratio. The

specific information is shown in Table 3.
2.3 Model construction and interpretation

As shown in Figure 1, model construction and interpretation

are carried out.

2.3.1 Five-fold cross-validation and external
validation

Stratified sampling was used to divide tobacco samples into the

training set (80%) and the independent test set (20%) without

overlapping data. Five-fold cross-validation was applied within the

training set to determine optimal parameters, while the

independent test set was excluded from the cross-validation
TABLE 1 Information on tobacco leaf samples.

Tobacco
leaf position

Grade Sample number

Upper

B1F 25

206

B2F 91

B3F 69

B4F 4

B1K 3

B2K 4

B3K 3

B2L 3

B3L 3

B2V 1

Middle

C1F 18

270

C2F 78

C3F 93

C4F 40

C1L 1

C2L 8

C3L 27

C4L 3

C3V 2

Lower

X2F 54

70
X3F 12

X4F 1

X2L 3

Total 546
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process. After optimizing each model and identifying the best

parameters, the entire training set (80%) was used again to retrain

the model, and the independent test set (20%) was used for final

performance evaluation.

2.3.2 Model construction
Support vector machine (SVM), back propagation neural

network (BPNN) and random forest (RF) were used to construct

the tobacco leaf position discrimination model. In order to improve

the classification performance of each model, particle swarm

optimization (PSO) was used to find the optimal parameter
Frontiers in Plant Science 04
combination for the performance of each model. Particle swarm

optimization (PSO) is a swarm based random optimization

algorithm, inspired by the intelligent collective behavior of some

animals (such as flocks of birds or fish). Due to its advantages such

as fast convergence speed, strong global search ability and strong

adaptability, PSO is widely used in optimization tasks of machine

learning (Wang et al., 2018b; Xu et al., 2024; Li et al., 2024; Zhu

et al., 2024). The flow of the Particle Swarm Optimization (PSO)

algorithm is shown in Figure 2.

The inertia weight in the PSO algorithm was set to 0.9 (linearly

decayed to 0.4), the acceleration constants c1 and c2 were both 1.5,

and the random factors r1 and r2 were randomly generated in the

range [0, 1]. The average accuracy of five-fold cross-validation was

used as the fitness function and applied to the parameter

optimization of SVM, BPNN and RF models. In the particle swarm

optimization algorithm of SVM model, the influence of different

kernel functions and their parameter settings on classification

performance is emphasized. The parameter settings of each kernel

function are shown in Table 4, and the parameter range of particle

swarm optimization is shown in Table 5. In the particle swarm

optimization algorithm of BPNN model, key parameters such as the

number of hidden layers, the number of neurons in each layer and the

learning rate are adjusted. The tuning range of particle swarm

optimization is shown in Table 5. In the particle swarm

optimization algorithm of the RF model, key parameters such as

the number of trees and the minimum number of samples required

for each leaf node are adjusted. The range of particle swarm

optimization parameters is shown in Table 5.

2.3.3 Model performance evaluation
The accuracy (Acc), recall (R), precision (P), F1 score (F1),

macro-average recall (macro-R), macro-average precision (macro-

P), macro-average F1 score (macro-F1) and other indicators were

selected to evaluate the model performance. The calculation method

is shown in Equations 1-7.

Acc = on
i=1TPi

on
i=1(TPi + FPi)

(1)
TABLE 2 70 chemical components in tobacco leaves.

No. Type Compound Name Amount

1
Routine
chemical

components

Total alkaloids, Reducing sugar, Total
sugar, Total nitrogen, Starch

5

2
Cations

and anions
Potassium, Chlorine, Sulfate, Phosphate,
Magnesium, Calcium

6

3 Polyphenols
Neo-chlorogenic acid, Chlorogenic acid,
Cryptochlorogenic acid, Scopoletin, Rutin

5

4
Polyacids
and higher
fatty acids

Oxalic acid, Malonic acid, Succinic acid,
Malic acid, Citric acid, Vanillic acid,
Myristic acid, Palmitic acid, Linoleic acid,
Oleic acid + Linolenic acid, Stearic acid,
Arachidic acid

12

5
Amino
acids

Aspartic acid, Threonine, Serine,
Asparagine, Glutamic acid, Glutamine,
Glycine, Alanine, Valine, Cystine,
Methionine, Isoleucine, Leucine,
Tyrosine, Phenylalanine, 4-Aminobutyric
acid(GABA), Lysine, Histidine,
Tryptophan, Arginine, Proline

21

6
Amadori

compounds

N-(1-Deoxy-d-glucose-1-yl) Ammonia
(Glu-An), N-(1-deoxy-D-fructos-1-yl)
aminobutyric(Fru-Amb), N-(1-deoxy-D-
fructos-1-yl) Histidine(Fru-His), N-(1-
deoxy-D-fructos-1-yl) Proline(Fru-Pro),
N-(1-deoxy-D-fructos-1-yl) Valine(Fru-
Val), N-(1-deoxy-D-fructos-1-yl)
Threonine(Fru-Thr), N-(1-deoxy-D-
fructos-1-yl) Glycine(Fru-Gly), N-(1-
deoxy-D-fructos-1-yl) Alanine(Fru-Ala),
N-(1-deoxy-D-fructos-1-yl) Asparagine
(Fru-Asn), N-(1-deoxy-D-fructos-1-yl)
Asparticacid(Fru-Asp), N-(1-deoxy-D-
fructos-1-yl) Glutarnine(Fru-Gln), N-(1-
deoxy-D-fructos-1-yl) Glutamicacid(Fru-
Glu), N-(1-deoxy-D-fructos-1-yl)
Isoleucine(Fru-Ile), N-(1-deoxy-D-
fructos-1-yl) Leucine(Fru-Leu), N-(1-
deoxy-D-fructos-1-yl) Tyrosine(Fru-Tyr),
N-(1-deoxy-D-fructos-1-yl) Phenylalanine
(Fru-Phe), N-(1-deoxy-D-fructos-1-yl)
Tryptophan(Fru-Trp)

17

7 Others
pH, Dichloromethane extract, Solanesol,
Neo-phytene

4

Total 70
TABLE 3 9 derivatization indexes.

No. Derived indexes

1 Sugar-alkaloid ratio

2 Nitrogen-alkaloid ratio

3 Schmuck value

4 Potassium-chlorine ratio

5 Cations and anions

6 Polyphenols

7 Polyacids and higher fatty acids

8 Amino acids

9 Amadori compounds
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R =
TP

TP + FN
(2)

P =
TP

TP + FP
(3)

F1 =
2� P � R
P + R

(4)

macro − R =
1
no

n

i=1

TPi
TPi + FNi

(5)

macro − P =
1
no

n

i=1

TPi
TPi + FPi

  (6)

macro − F1 =
2�macro − R�macro − P
macro − R +macro − P

  (7)

In the formula: TP represents the number of samples predicted

to be positive in fact; FN represents the number of samples that are

actually positive and predicted to be negative. FP represents the

number of samples that are actually negative and predicted to

be positive.

2.3.4 Significance analysis of chemical indexes in
different tobacco positions

Independent sample t-test was used to analyze whether there

were significant differences between the mean values of each

chemical index between the upper tobacco leaves and the leaves

of other positions (middle and lower), the middle tobacco leaves
FIGURE 2

Particle swarm optimization (PSO) algorithm flowchart.
IGURE 1F

Flowchart of model construction and interpretation.
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and the leaves of other positions (upper and lower), and the lower

tobacco leaves and the leaves of other positions (upper and middle).

To reduce the risk of false positives and improve the rigor of the

statistical test results, the significance level was set at 0.0167 (0.05/

3).If the p-value is lower than the significance level, it is considered

that there are significant differences between the mean values of the

two groups. Otherwise, the difference is not considered significant.

2.3.5 Model interpretation
SHapley Additive exPlanations (SHAP) algorithm was used to

explain the best model. The core idea of SHAP algorithm is derived

from Shapley value in game theory. The Shapley value was
Frontiers in Plant Science 06
originally used to assign the value contributed by each player in a

cooperative game. In machine learning models, SHAP values can be

used to explain the contribution of each feature to the model’s

predictions. The Shapley value can fairly assign the contribution of

each feature to the model prediction results. The basic principle of

its calculation is to consider all possible feature subsets for each

feature and calculate the change in model performance when the

feature is added, that is, the marginal contribution of the feature to

the model prediction results. The calculation method of Shapley

value is shown in Equation 8.

Fi   = o
S⊆N ∖ if g

Sj j ! ( Fj j − Sj j − 1) !
Fj j ! ½f (S ∪ if g) −   f (S)� (8)

In the formula:Fi is the Shapley value of feature i; F is the global

feature set; S is a subset without feature i; f(S) is the predicted value

of the model when using subset S.

SHAP algorithm can quantify the contribution of each chemical

index to tobacco leaf position discrimination model, and is suitable

for various types of machine learning models, and has wide

applicability in different tobacco leaf position discrimination

model research. At the same time, SHAP algorithm has many

advantages, such as clarifying the importance of features to the

model and their impact on the entire prediction model, and

understanding the contribution of each feature to the model

output (Rodriguez-Perez and Bajorath, 2020). In this study,

SHAP feature importance analysis, SHAP summary plots and

SHAP dependence plots were used to clarify the internal working

principle of the model, analyze the contribution of features to the

model prediction, and thus improve the transparency and

interpretability of the discrimination model.

2.3.6 Software
MATLAB (version R2022a) is used to implement the data

processing and analysis process.
3 Results

3.1 Model construction and evaluation

Based on tobacco leaf sample set, particle swarm optimization

algorithm was used to find the optimal parameter combination of

SVM, BPNN and RF machine learning models. Table 6 presents the

optimal parameters obtained for each model through particle

swarm optimization (PSO), using the average accuracy of five-fold

cross-validation as the fitness function. Table 7 presents the

validation accuracy of each fold and the average accuracy of five-

fold cross-validation for each model under the optimal parameters.

For SVM model, hybrid kernel function was the most prominent,

and the average accuracy of five-fold cross-validation was the

highest. The possible reason is that the hybrid kernel function can

combine the advantages of multiple kernel functions, and give full

play to the advantages of each kernel function through the weighted

combination of each kernel function to improve the classification

ability of the model. Therefore, the hybrid kernel was determined as
TABLE 4 Parameter settings for the SVM kernel function.

Kernel function Parameter setting

linear kernel y= x1 · x
0
2

polynomial kernel y = (c1 · x1 · x
}
2 + c2)

c3

Gaussian kernel y = expð− (x1 − x2)(x1 − x2) }
s 2 Þ

sigmoid kernel y = tanh(a · x1 · x
0
2 + c)

hybrid kernel

y0= x1 · x
0
2

y1= (c1 · x1 · x
0
2 + c2)

c3

y2=  expð− (x1 − x2)(x1 − x2) }
s 2 Þ

y=my0+ny1+qy2
c1: control the weight of the polynomial kernel; c2: control the strength of the offset item and
affect the mapping of the data; c3: the order of the polynomial, which controls the dimension
of the map; s²: determines the width of the Gaussian function and affects the range of the
kernel function; a: the parameters of the kernel function control the influence of the inner
product; c: constant term, used to adjust the offset of the function; m, n, q: control the
weighting coefficient of each kernel function and determine the contribution of each
kernel function.
TABLE 5 Particle swarm optimization tuning range.

Model Tuning range

SVM- linear kernel /

SVM- polynomial kernel c1: [1/80, 1/40]; c2: [0.1, 3]; c3: [1, 4]

SVM- Gaussian kernel s²: [10, 50]

SVM-sigmoid kernel a: [1/100, 1]; c: [-5, 5]

SVM- hybrid kernel

c1: [1/80, 1/40]; c2: [0.1, 3]; c3: [1, 4]

s²: [10, 50]

m, n, q: [0, 1]; m + n + q = 1

BPNN

the number of hidden layers: [1, 3]

the number of neurons in each layer: [2, 60]

the learning rate: [0.001, 0.1]

RF

the number of trees: [50, 200]

the minimum number of samples required for
each leaf node: [2, 10]
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the final kernel function of SVM. For the BPNN model, when the

hidden layer was 1, the number of neurons in each hidden layer was

30, and the learning rate was 0.01, the average accuracy of five-fold

cross-validation was the highest. The possible reason is that for a

dataset with limited samples, multiple hidden layers and a large

number of neurons may cause the model to be too complicated,

thus leading to overfitting. However, the setting of 1 hidden layer,

30 neurons and the learning rate of 0.01 may just balance the

complexity and generalization ability of the model, avoiding

overfitting and underfitting. For the RF model, when the number

of trees was 100 and the minimum sample number of leaf nodes was

5, the average accuracy of the five-fold cross-validation was the

highest. The possible reason is that this setting can balance the

complexity and computational efficiency of the model, avoid over-

fitting and improve the stability and generalization ability of

the model.

After optimizing each model and determining the optimal

parameters, the models were trained using the training set, while

the test set was used for performance evaluation. Table 8 presents

the discrimination accuracy of the training and test sets for each

model. The SVM-hybrid kernel achieved the highest accuracy on

both the training and test sets, reaching 98.17% and

96.33%, respectively.
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Tables 9, 10 present the recall, precision, and F1 score of each

model for each tobacco leaf position, as well as the macro-average

recall, macro-average precision, and macro-average F1 score. The

SVM-hybrid kernel demonstrated the best performance, with the

macro-average recall, macro-average precision, and macro-average

F1 score of 0.9368, 0.9522, and 0.9444, respectively. Its results were

the most stable and accurate, indicating strong robustness.

Table 11 shows the confusion matrix results of the SVM-hybrid

kernel model in the test set. Except that one middle leaf was

misjudged as the upper leaf, one middle leaf was misjudged as the

lower leaf, and two lower leaves were misjudged as the middle leaf,

all the other samples were correctly judged. Analysis of the error

samples showed that the sample wrongly identified as the upper

tobacco leaf was grade C1F tobacco leaf, which was incorrectly

identified by the model because of its proximity to the upper

tobacco leaf. The sample wrongly identified as the lower tobacco

leaf was grade C4F tobacco leaf, which was incorrectly identified by

the model because of its proximity to the lower tobacco leaf.
3.2 Significance analysis of chemical
indexes in different tobacco positions

Independent sample t-test was used to analyze whether there

were significant differences between the mean values of each

chemical index between the upper tobacco leaves and the leaves

of other positions (middle and lower), the middle tobacco leaves

and the leaves of other positions (upper and lower), and the lower

tobacco leaves and the leaves of other positions (upper and middle).

As presented in Table 12, the results indicate that there were

significant differences in 62 chemical indices between the upper

tobacco leaves and those from other positions (middle and lower),

while 17chemical indices showed no significant differences.

Additionally, a comparison of the middle tobacco leaves with

those from other positions (upper and lower) revealed significant

differences in 62 chemical indices, whereas 17 chemical indices

exhibited no significant differences. Furthermore, when comparing

the lower tobacco leaves to those from other positions (upper and

middle), it was found that there were significant differences in 58

chemical indices and no significant differences in 21

chemical indices.
TABLE 7 The validation accuracy of each fold and the average accuracy of five-fold cross-validation for each model under the optimal parameters.

Model Fold 1/% Fold 2/% Fold 3/% Fold 4/% Fold 5/% Average/%

SVM- linear kernel 91.95 87.50 92.05 85.06 80.46 87.40

SVM- polynomial kernel 87.36 90.91 88.64 87.36 83.91 87.63

SVM- Gaussian kernel 75.86 82.95 89.77 79.31 82.76 82.13

SVM-sigmoid kernel 77.01 88.64 86.36 77.01 80.46 81.90

SVM- hybrid kernel 87.36 90.91 89.77 89.66 87.36 89.01

BPNN 87.36 89.77 86.36 83.91 80.46 85.57

RF 85.06 85.23 87.50 81.61 81.61 84.20
TABLE 6 The optimal parameters obtained for each model through
particle swarm optimization (PSO).

Model Optimal parameter

SVM- linear kernel /

SVM- polynomial kernel c1 = 1/60,c2 = 1,c3 = 3

SVM- Gaussian kernel s²=18

SVM-sigmoid kernel a=1/60, c= -1.5

SVM- hybrid kernel

c1 = 1/66,c2 = 1.9,c3 = 3

s2 = 30

m=0,n=0.5,q=0.5

BPNN
the number of hidden layers =1, the number of

neurons in each layer =30, the learning rate =0.01

RF
the number of trees =100, the minimum number of

samples required for each leaf node =5
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3.3 Interpretation of tobacco leaf position
discrimination model by SVM- hybrid
kernel based on SHAP algorithm

The mean difference of chemical indexes in different positions of

tobacco leaves was analyzed by independent sample t-test, and the

chemical indexes with significant differences in different positions

were identified. There were significant differences in 62 chemical

indexes between the upper and other positions of tobacco leaves

(middle and lower), 62 chemical indexes between the middle and

other positions of tobacco leaves (upper and lower), and 58 chemical

indexes between the lower and other positions of tobacco leaves

(upper and middle). These chemical indexes with significant

differences may play an important role in the discrimination of

tobacco leaf positions. However, independent sample t-test only

provides the significance of mean differences, and cannot give the

importance ranking and contribution degree of chemical indexes to

model discrimination, nor can it quantify the specific contribution of

each chemical index to the discrimination model. SHAP algorithm

can quantify the importance of each feature in model discrimination,

and assign a contribution value to each feature to intuitively show the

specific impact of features in different categories.

Therefore, SHAP algorithm is used to interpret the SVM-

hybrid kernel model. Since SVM is essentially a binary

classification model that finds a separated hyperplane by

maximizing the spacing between classes, for a multi-classification

problem, SVM splits it into multiple binary classification problems,

each class being compared to all the others. When applying SHAP

to the SVMmodel, SHAP calculates the contribution of each feature

to each category prediction, that is, the contribution of each feature

to the separation boundary between the category and the other

categories. Therefore, when the SHAP algorithm is used for model

interpretation, it will be divided into the interpretation of the upper

tobacco leaf to the other positions of tobacco leaves (middle and

lower tobacco leaves), the interpretation of the middle tobacco leaf
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to the other positions of tobacco leaves (upper and lower tobacco

leaves), and the interpretation of the lower tobacco leaf to the other

positions of tobacco leaves (upper and middle tobacco leaves).

3.3.1 Interpretation of the discrimination model
of the upper tobacco leaves to the other
positions of tobacco leaves (middle and lower)

The SHAP value is used to quantify the impact of each feature

on the model output, and its value reflects the specific contribution

of that feature to the model prediction. In model prediction, each

feature has a different degree of contribution, and the SHAP value

assigns the marginal contribution of each feature to the predicted

outcome by using the Shapley value method in game theory. The

absolute value of SHAP of each chemical index in the model is

averaged, and then sorted in descending order to obtain the ranking

of feature importance (Cui et al., 2024). As shown in Figure 3a, the

top 10 most important chemical indexes in the discrimination

model of the upper tobacco leaves to the other positions of

tobacco leaves (middle and lower)were neo-phytene, oxalic acid,

total nitrogen, arginine, starch, rutin, potassium, total alkaloids,

polyphenols and malic acid.

The SHAP summary plot shows the influence of features

(chemical indexes) on the model prediction, where each point

represents a real sample, and the X-axis represents the SHAP

value, representing the contribution degree and influence of

features (chemical indexes) on the model prediction. Positive

values represent positive impacts, that is, positive contributions,

and negative values represent negative impacts, that is, negative

contributions. The color gradient (blue to red) indicates the content

level of the chemical index from low to high after normalization.

The color of the points reflects the content level of the chemical

index. The higher the content, the redder the color, and the lower

the content, the bluer the color. The SHAP summary plot shows a

gradual transition from left to right, from blue to red, indicating that

with the increase of the content of this category of chemical index in

tobacco leaves, the sample was more inclined to be awarded to this

category, that is, the chemical index contributed positively to the

model discrimination. On the contrary, the transition from red to

blue indicates that with the increase of the content of this chemical

index in tobacco leaves, the samples are more inclined to be

awarded to other categories, indicating that this chemical index

has a negative contribution to model discrimination.

Figure 3b shows the SHAP summary plot of the top 10 most

important chemical indexes. We found that oxalic acid, total

nitrogen, arginine, starch, rutin, total alkaloids and polyphenols
TABLE 8 The discrimination accuracy of the training and test sets for
each model.

Model
Training set
accuracy/%

Test set
accuracy/%

SVM-hybrid kernel 98.17 96.33

BPNN 93.59 88.07

RF 97.25 92.66
TABLE 9 The recall, precision, and F1 score of each model for each tobacco leaf position.

Model
Recall precision F1 score

Upper Middle Lower Upper Middle Lower Upper Middle Lower

SVM-hybrid
kernel 1.0000 0.9643 0.8462 0.9756 0.9643 0.9167 0.9877 0.9643 0.8800

BPNN 0.9250 0.8929 0.6923 1.0000 0.8772 0.6000 0.9610 0.8850 0.6429

RF 0.9750 0.9464 0.6923 0.9512 0.9138 0.9000 0.9630 0.9298 0.7826
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contributed positively to the model discrimination, that is, with the

increase of the content, the model tended to classify tobacco leaves

as the upper leaves. Neo-phytene, potassium and malic acid

contributed negatively to the model discrimination, that is, with

the increase of content, the model tended to classify tobacco leaves

as other positions.

In order to more clearly analyze the influence of chemical

indexes on the model discrimination results, the SHAP

dependence plot of each chemical index was obtained after the

chemical indexes were normalized. Taking neo-phytene and oxalic

acid as examples, as shown in Figure 3c, with the increase of neo-

phytene content, the SHAP value gradually decreased, and the

model tended to classify tobacco leaves as other positions. With

the increase of oxalic acid content, the SHAP value also gradually

increased, and the model was more tended to classify tobacco leaves

as upper leaves.
3.3.2 Interpretation of the discrimination model
of the middle tobacco leaves to the other
positions of tobacco leaves (upper and lower)

As shown in Figure 4a, the top 10 most important chemical

indexes in the discrimination model of the middle tobacco leaves to

the other positions of tobacco leaves (upper and lower) were neo-

phytene, oxalic acid, Glu-An, Fru-Tyr, arginine, alanine, potassium,

total nitrogen, Fru-Ile and glycine.

Figure 4b shows the SHAP summary plot of the top 10 most

important chemical indexes. We found that neo-phytene, Fru-Tyr,

alanine, potassium and Fru-Ile contributed positively to the model

discrimination, that is, with the increase of the content, the model

tended to classify tobacco leaves as the middle leaves. Oxalic acid,

Glu-An, arginine, total nitrogen and glycine contributed negatively
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to the model discrimination, that is, with the increase of content, the

model tended to classify tobacco leaves as other positions.

At the same time, it was found that some features in the SHAP

dependence plot showed quadratic distribution, taking the total

alkaloids as an example (Figure 4c). In the discrimination model of

the middle tobacco leaves to the other positions of tobacco leaves

(upper and lower), when the total alkaloids content was moderate,

SHAP value was higher, that is, the model tended to classify tobacco

leaves as middle leaves. With too high or too low total alkaloids

content, the model tends to classify tobacco leaves as other

positions. This is also consistent with previous studies (Wang

et al., 2009; Zhang et al., 2022), that is, the total alkaloids content

of middle tobacco leaves is moderate.

3.3.3 Interpretation of the discrimination model
of the lower tobacco leaves to the other
positions of tobacco leaves (upper and middle)

As shown in Figure 5a, the top 10 most important chemical

indexes in the discrimination model of the lower tobacco leaves to

the other positions of tobacco leaves (upper and middle) were

magnesium, Fru-Tyr, neo-chlorogenic acid, nitrogen-alkaloid ratio,

Fru-Pro, Fru-Amb, Fru-Glu, sugar-alkaloid ratio, Fru-Ile and

vanillic acid.

Figure 5b shows the SHAP summary plot of the top 10 most

important chemical indexes. We found that magnesium, neo-

chlorogenic acid, nitrogen-alkaloid ratio, Fru-Amb, Fru-Glu and

sugar-alkaloid ratio contributed positively to the model

discrimination, that is, with the increase of the content, the model

tended to classify tobacco leaves as the lower leaves. Fru-Tyr, Fru-

Pro, Fru-Ile and vanillic acid contributed negatively to the model

discrimination, that is, with the increase of content, the model

tended to classify tobacco leaves as other positions.

Figure 5c shows the SHAP dependence plot of magnesium and

Fru-Tyr, with the increase of magnesium content, the SHAP value

gradually increased, and the model tended to classify tobacco leaves

as lower leaves. With the increase of Fru-Tyr content, the SHAP

value also gradually decreased, and the model was more tended to

classify tobacco leaves as other positions.
4 Discussion

Tobacco is an important economic crop, and its tobacco leaf

position is closely related to its quality. This study found that the

choice of kernel function of SVM will affect the distinguishing effect

of tobacco leaf position model, and the accuracy of SVM-hybrid

kernel discrimination model was the highest. The possible reason is

that the hybrid kernel function combines the characteristics of

multiple kernel functions and can capture different levels and types

of features in the data. For example, the linear kernel function is

suitable for processing simple linear data, the polynomial kernel

function is suitable for handling situations with interactions or

nonlinear features, the Gaussian kernel function is capable of

processing local information, and the sigmoid kernel function is
TABLE 11 The confusion matrix results of the SVM-hybrid kernel model
in the test set.

Test set
Tobacco leaf position

Upper Middle Lower

Upper 40 0 0

Middle 1 54 1

Lower 0 2 11
TABLE 10 The macro-average recall, macro-average precision, and
macro-average F1 score of each model.

Model
Macro-
average
recall

Macro-
average
precision

Macro-
average
F1 score

SVM-
hybrid
kernel 0.9368 0.9522 0.9444

BPNN 0.8367 0.8257 0.8312

RF 0.8712 0.9217 0.8957
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TABLE 12 Results of independent sample t-test for each chemical index in different tobacco positions.

Chemical index

Upper leaves vs. other leaves Middle leaves vs. other leaves Lower leaves vs. other leaves

t-value
degree of
freedom p-value t-value

degree of
freedom p-value t-value

degree of
freedom p-value

Total alkaloids 23.63 544.00 0.00 -10.07 434.71 0.00 -18.17 157.92 0.00

Reducing sugar -8.81 544.00 0.00 11.21 520.52 0.00 -3.16 544.00 0.00

Total sugar -10.75 407.45 0.00 12.50 519.12 0.00 -2.08 544.00 0.04

Total nitrogen 22.79 544.00 0.00 -13.10 488.11 0.00 -9.58 126.44 0.00

Potassium -10.58 519.67 0.00 3.11 518.79 0.00 7.14 79.38 0.00

Chlorine 0.45 544.00 0.65 -1.52 544.00 0.13 1.62 544.00 0.11

pH -7.41 383.36 0.00 2.92 516.11 0.00 6.51 544.00 0.00

Starch 1.81 544.00 0.07 4.00 532.75 0.00 -9.13 544.00 0.00

Dichloromethane extract 13.31 299.36 0.00 -9.64 451.40 0.00 -7.30 134.26 0.00

Solanesol 14.10 334.66 0.00 -9.79 480.02 0.00 -6.69 114.85 0.00

Sulfate 1.53 544.00 0.13 -0.93 544.00 0.35 -0.83 544.00 0.41

Phosphate 5.85 544.00 0.00 -4.32 544.00 0.00 -1.63 83.14 0.11

Magnesium 1.45 544.00 0.15 -4.84 484.19 0.00 3.82 78.58 0.00

Calcium -1.89 503.63 0.06 -2.57 544.00 0.01 5.69 82.71 0.00

Neo-chlorogenic acid -12.76 544.00 0.00 5.15 494.76 0.00 9.43 544.00 0.00

Chlorogenic acid -1.28 370.03 0.20 2.50 526.06 0.01 -1.77 544.00 0.08

Cryptochlorogenic acid -13.85 544.00 0.00 5.37 501.82 0.00 12.01 101.77 0.00

Scopoletin 13.51 304.01 0.00 -12.85 455.58 0.00 -2.05 116.54 0.04

Rutin 7.42 544.00 0.00 -2.18 530.50 0.03 -8.54 101.89 0.00

Oxalic acid 6.72 544.00 0.00 -8.43 540.54 0.00 2.50 544.00 0.01

Malonic acid 15.47 353.44 0.00 -11.98 492.46 0.00 -4.44 106.83 0.00

Succinic acid -10.82 541.87 0.00 0.36 472.66 0.72 10.58 77.10 0.00

Malic acid -5.48 501.73 0.00 -1.57 528.31 0.12 9.05 82.52 0.00

Citric acid 3.02 544.00 0.00 -7.90 451.44 0.00 4.51 74.61 0.00

Vanillic acid 19.50 330.77 0.00 -11.35 440.03 0.00 -12.26 150.93 0.00

Myristic acid 20.01 365.08 0.00 -11.40 456.02 0.00 -10.39 118.82 0.00

Palmitic acid -9.03 544.00 0.00 7.99 532.00 0.00 0.76 81.04 0.45

Linoleic acid 13.68 321.58 0.00 -7.22 439.56 0.00 -11.72 124.23 0.00

Oleic acid + Linolenic acid -15.00 507.18 0.00 9.00 544.00 0.00 5.12 544.00 0.00

Stearic acid -14.10 544.00 0.00 9.37 518.69 0.00 3.98 83.16 0.00

Arachidic acid -6.98 528.73 0.00 -1.31 544.00 0.19 11.03 84.36 0.00

Aspartic acid -0.04 535.73 0.97 -6.64 497.16 0.00 6.68 74.67 0.00

Threonine 3.19 544.00 0.00 -7.76 492.12 0.00 4.53 76.11 0.00

Serine -0.32 544.00 0.75 -1.96 533.23 0.05 3.41 544.00 0.00

Asparagine 7.83 544.00 0.00 -11.19 447.13 0.00 3.05 76.86 0.00

Glutamic acid 4.69 544.00 0.00 -10.28 478.54 0.00 5.43 76.73 0.00

Glutamine 7.59 544.00 0.00 -9.57 501.76 0.00 2.36 82.87 0.02

(Continued)
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TABLE 12 Continued

Chemical index

Upper leaves vs. other leaves Middle leaves vs. other leaves Lower leaves vs. other leaves

t-value
degree of
freedom p-value t-value

degree of
freedom p-value t-value

degree of
freedom p-value

Glycine 11.77 544.00 0.00 -12.89 500.60 0.00 1.60 544.00 0.11

Alanine 8.60 544.00 0.00 -9.27 544.00 0.00 1.27 94.81 0.21

Valine -5.76 544.00 0.00 2.73 528.61 0.01 3.41 81.53 0.00

Cystine 11.74 544.00 0.00 -7.88 544.00 0.00 -4.09 544.00 0.00

Methionine 3.11 544.00 0.00 -6.16 507.12 0.00 3.80 82.36 0.00

Isoleucine 1.85 544.00 0.07 -4.52 523.66 0.00 3.09 79.33 0.00

Leucine 0.70 544.00 0.48 -1.23 544.00 0.22 0.83 544.00 0.41

Tyrosine 2.07 544.00 0.04 -6.58 508.49 0.00 4.53 75.85 0.00

Phenylalanine 4.25 502.70 0.00 -8.88 508.62 0.00 4.76 76.35 0.00

4-Aminobutyric acid (GABA) 5.87 544.00 0.00 -9.91 506.61 0.00 4.33 79.96 0.00

Lysine 11.33 544.00 0.00 -12.02 490.21 0.00 0.97 82.05 0.34

Histidine 7.58 544.00 0.00 -10.43 501.54 0.00 3.02 80.25 0.00

Tryptophan 5.95 544.00 0.00 -8.36 544.00 0.00 2.97 83.10 0.00

Arginine 15.46 544.00 0.00 -13.63 495.45 0.00 -1.14 544.00 0.26

Proline 10.86 544.00 0.00 -5.92 544.00 0.00 -5.88 544.00 0.00

Glu-An 13.21 396.08 0.00 -12.18 522.89 0.00 -0.90 544.00 0.37

Fru-Amb -9.07 544.00 0.00 5.78 531.81 0.00 3.94 544.00 0.00

Fru-His 4.50 544.00 0.00 -2.53 544.00 0.01 -2.66 544.00 0.01

Fru-Pro 1.25 544.00 0.21 4.65 525.34 0.00 -9.27 544.00 0.00

Fru-Val -10.08 507.60 0.00 4.91 544.00 0.00 5.77 544.00 0.00

Fru-Thr -11.47 396.94 0.00 5.21 507.04 0.00 9.33 101.01 0.00

Fru-Gly 6.17 544.00 0.00 -1.68 531.52 0.09 -6.38 544.00 0.00

Fru-Ala -5.02 544.00 0.00 8.53 533.26 0.00 -4.07 81.27 0.00

Fru-Asn 5.65 544.00 0.00 -5.44 544.00 0.00 -0.04 544.00 0.97

Fru-Asp -11.93 507.98 0.00 5.74 541.12 0.00 6.63 544.00 0.00

Fru-Gln -0.48 402.28 0.63 -0.83 544.00 0.41 2.26 101.27 0.03

Fru-Glu -6.51 544.00 0.00 1.83 526.96 0.07 6.63 544.00 0.00

Fru-Ile -5.12 527.35 0.00 1.85 544.00 0.07 4.04 544.00 0.00

Fru-Leu -6.04 544.00 0.00 3.35 544.00 0.00 3.56 544.00 0.00

Fru-Tyr -7.14 544.00 0.00 5.71 543.27 0.00 1.62 544.00 0.11

Fru-Phe -6.39 383.86 0.00 3.80 528.20 0.00 3.69 544.00 0.00

Fru-Trp 0.22 544.00 0.83 2.06 544.00 0.04 -3.43 544.00 0.00

Neo-phytene -4.17 544.00 0.00 -0.27 540.06 0.78 6.61 544.00 0.00

Sugar-alkaloid ratio -19.47 543.79 0.00 8.31 524.47 0.00 9.07 544.00 0.00

Nitrogen-alkaloid ratio -14.44 494.55 0.00 1.58 425.22 0.12 9.31 73.06 0.00

Schmuck value -5.98 537.04 0.00 3.69 515.33 0.00 1.49 79.44 0.14

Potassium-chlorine ratio -15.33 544.00 0.00 14.59 544.00 0.00 0.08 544.00 0.94

(Continued)
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similar to activation function in neural network, which is good at

processing continuous nonlinear patterns. The hybrid kernel

function can be weighted among these kernels, making the model

more flexible and thus improving the ability to classify and

generalize complex data. This is also consistent with previous

studies (Zhang, 2001). At the same time, it was also found that

the discrimination effect using SVM-hybrid kernel was better than

that of RF and BPNN. The possible reason is that SVM is more

suitable for processing limited samples, while BPNN and RF are

suitable for processing large-scale data.

At the same time, it was found that the discrimination rate of

lower tobacco leaves was lower than that of upper and middle

tobacco leaves, which may be due to the greater influence of light,

nutrition and water on lower tobacco leaves, which may lead to

their inconsistent characteristics and increase the difficulty of

classification. Moreover, due to the longer growth cycle of the

lower tobacco leaves, they may be affected by more pests and

diseases and the environment, resulting in poor quality and

appearance, which leads to ambiguity in the judgment of the model.

According to SHAP algorithm, the top 10 most important

chemical indexes were neo-phytene, oxalic acid, total nitrogen,

arginine, starch, rutin, potassium, total alkaloids, polyphenols and

malic acid in the discrimination model of the upper tobacco leaves

to the other positions of tobacco leaves (middle and lower). Except

for starch and polyphenols, there were significant differences for the

other 8 chemical indexes. The top 10 most important chemical

indexes were neo-phytene, oxalic acid, Glu-An, Fru-Tyr, arginine,

alanine, potassium, total nitrogen, Fru-Ile and glycine in the

discrimination model of the middle tobacco leaves to the other

positions of tobacco leaves (upper and lower). Except for neo-

phytene and Fru-Ile, there were significant differences for the other

8 chemical indexes. The top 10 most important chemical indexes

were magnesium, Fru-Tyr, neo-chlorogenic acid, nitrogen-alkaloid

ratio, Fru-Pro, Fru-Amb, Fru-Glu, sugar-alkaloid ratio, Fru-Ile and

vanillic acid in the discrimination model of the lower tobacco leaves

to the other positions of tobacco leaves (upper and middle). Except

for Fru-Tyr, there were significant differences for the other 9

chemical indexes. In the model interpretation of SHAP algorithm,

it was further confirmed whether the chemical indexes with

significant differences in the independent sample t-test had a high

contribution degree in the model, and the chemical indexes that

were not significantly detected by the t-test but played an important
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role in model discrimination were revealed. The possible reason is

that the independent sample t-test is mainly used to compare

whether there is a significant difference between the mean values

of two different groups on a certain feature. It is suitable for small

samples and relatively simple hypothesis testing, but it cannot

capture the complex interaction relationship and nonlinear mode

between features. Many machine learning models (such as SVM,

BPNN, RF) are able to capture nonlinear relationships and complex

interaction effects that traditional t-test methods cannot achieve.

SHAP algorithm can reveal these nonlinear relationships and

interaction effects, so that some features that seem unrelated in a

single analysis can still play an important role in model

discrimination when the model is comprehensively analyzed.

Therefore, although the independent sample t-test fails to detect

significant differences in the mean values of certain chemical

indexes, this does not mean that these characteristics have no

effect on the model. Some chemical indexes may not differ

significantly in the mean value of each position, but their small

changes, when combined with other features, may effectively

improve the discriminant ability of the model. Combined with

independent sample t-test and SHAP algorithm, the role of

chemical indexes on model discrimination was discussed from the

perspective of statistics and machine learning. The two methods

confirm and complement each other, and enhance the transparency

and credibility of the model.

The mean ± standard deviation of the top 10 chemical indexes

from the SHAP explanation results —upper vs. other positions

(middle and lower), middle vs. other positions (upper and lower),

and lower vs. other positions (upper and middle)—are listed

respectively (Tables 13–15). The significant differences in chemical

index contents among different tobacco leaf positions are mainly

influenced by the tobacco plant’s own metabolism, cultivation

techniques, physiological growth of leaves, and field management

(Zhang et al., 2022). Taking total nitrogen and rutin as examples, the

upper tobacco leaves are located at the top of the plant with sufficient

light and active metabolism, leading to strong nitrogen accumulation

ability and thus higher total nitrogen content; meanwhile, rutin, as a

secondary metabolite, is synthesized and increased under light

stimulation, so the rutin content in upper leaves is also higher than

that in middle and lower leaves.

In addition, the mean ± standard deviation of the top 10

chemical indexes in the discrimination models of upper vs. other
TABLE 12 Continued

Chemical index

Upper leaves vs. other leaves Middle leaves vs. other leaves Lower leaves vs. other leaves

t-value
degree of
freedom p-value t-value

degree of
freedom p-value t-value

degree of
freedom p-value

Cations and anions 0.88 544.00 0.38 -1.82 544.00 0.07 1.44 544.00 0.15

Polyphenols 1.08 357.51 0.28 0.94 526.01 0.35 -3.09 544.00 0.00

Polyacids and higher fatty acids -3.29 499.44 0.00 -3.19 530.67 0.00 8.26 81.45 0.00

Amino acids 11.05 544.00 0.00 -9.25 536.79 0.00 -1.64 544.00 0.10

Amadori compounds -0.74 544.00 0.46 4.21 517.27 0.00 -5.24 544.00 0.00
fro
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positions (middle and lower), middle vs. other positions (upper and

lower), and lower vs. other positions (upper and middle) leaves were

discussed and analyzed together with the SHAP explanation results.

In the SHAP analysis, higher the chemical index contents

corresponded to higher SHAP values, indicating that the model

tended to classify the sample as belonging to the current category—

that is, the chemical index made a positive contribution to the

discrimination. Conversely, lower the chemical index contents

corresponded to higher SHAP values, indicating that the model

tended to classify the sample as belonging to the current category—

that is, the chemical index made a negative contribution to

the discrimination.

The SHAP explanation results were generally consistent with the

mean values: chemical indexes that made positive contributions to the
Frontiers in Plant Science 13
discrimination of a given category also showed higher mean values in

that category compared to others, while those with negative

contributions had lower mean values. Only few chemical indexes

were exceptions. The reasons for these discrepancies were analyzed.

Feature interaction effects may influence the results, as machine

learning models (such as SVM) are not simple linear regressions and

often capture nonlinear relationships or interactions between features.

Therefore, even if a certain feature has a higher mean value in a specific

leaf position, its contribution to the classification outcome may be

reversed due to synergistic or antagonistic effects with other features.

At the same time, previous studies mainly investigated the

differences in chemical indexes such as total alkaloids, total

nitrogen, reducing sugar, potassium, sugar-alkaloid ratio,

Amadori compounds, and rutin among different positions of
FIGURE 3

(a) Importance ranking of chemical indexes; (b) SHAP summary plot of the top 10 chemical indexes; (c) SHAP dependence plot of neo-phytene and
oxalic acid.
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tobacco leaves. For example, Wang et al. (2009) found that in flue-

cured tobacco, the total alkaloid content followed the order: upper

leaves > middle leaves > lower leaves. The total nitrogen content was

highest in the upper leaves, the reducing sugar content was highest

in the middle leaves, and the potassium content was highest in the

lower leaves. Zhang et al. (2022) found that the reducing sugar

content in the middle and lower leaves was significantly higher than

in the upper leaves, while the total nitrogen content was

significantly lower. The potassium content and sugar-alkaloid

ratio were highest in the lower leaves, whereas the total alkaloid

content was lowest. Wang et al. (2022) analyzed Amadori

compounds across different positions of tobacco leaves and

reported the highest levels in the upper leaves, followed by the
Frontiers in Plant Science 14
middle leaves and then the lower leaves. Similarly, Li et al. (2008)

observed that rutin content showed the trend: upper leaves > middle

leaves > lower leaves.

In the SHAP algorithm model interpretation, the higher the

total alkaloids content, the more the model tended to classify

tobacco leaves as upper leaves. When the content was moderate,

the model tended to classify them as middle leaves, and when the

content was lower, the model tended to classify them as lower leaves

(Figure 6). The higher the reducing sugar content, the more the

model tended to classify tobacco leaves as middle leaves. When the

content was moderate, the model tended to classify them as lower

leaves, and when the content was lower, the model tended to classify

them as upper leaves (Figure 7). The higher the potassium content,
frontiersin.or
FIGURE 4

(a) Importance ranking of chemical indexes; (b) SHAP summary plot of the top 10 chemical indexes; (c) SHAP dependence plot of total alkaloids.
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the more the model tended to classify tobacco leaves as lower leaves.

When the content was moderate, the model tended to classify them

as middle leaves, and when the content was lower, the model tended

to classify them as upper leaves (Figure 8).

The higher the total nitrogen content, the more the model

tended to classify tobacco leaves as upper leaves. Conversely, the

lower the content, the more the model tended to classify them as

leaves from other positions. The higher the sugar-alkaloid ratio, the

more the model tended to classify tobacco leaves as lower leaves.

Conversely, the lower the ratio, the more the model tended to

classify them as leaves from other positions. The higher the
Frontiers in Plant Science 15
Amadori compounds content, the more the model tended to

classify tobacco leaves as upper leaves. When the content was

moderate, the model tended to classify them as middle leaves,

and when the content was lower, the model tended to classify them

as lower leaves. The higher the rutin content, the more the model

tended to classify tobacco leaves as upper leaves. When the content

was moderate, the model tended to classify them as middle leaves,

and when the content was lower, the model tended to classify them

as lower leaves. The experimental results are consistent with

previous studies, demonstrating the reliability of the SHAP

algorithm’s model interpretation. (SHAP dependence plots of
FIGURE 5

(a) Importance ranking of chemical indexes; (b) SHAP summary plot of the top 10 chemical indexes; (c) SHAP dependence plot of magnesium and
Fru-Tyr.
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total nitrogen, sugar-alkaloid ratio, Amadori compounds, and rutin

can be found in the Supplementary File).

In summary, this study employed a rapid NIR chemical

composition analysis technique to obtain 70 chemical

components of tobacco leaves. SVM, BPNN, and RF algorithms

were used to construct discrimination models for tobacco leaf

positions. Furthermore, SHAP algorithm was applied to interpret

the impact of each chemical indicator on the model’s predictions.

Compared with previous studies, this method enables fast and

accurate acquisition of chemical composition, significantly enhances

model transparency, and effectively addresses the poor interpretability

of near-infrared spectroscopy. This study provides an effective method

for crop position traceability and chemical feature analysis.
5 Conclusion

The study proposes a novel approach that integrates machine

learning with advanced interpretability techniques for both
TABLE 13 The mean ± standard deviation of the top 10 chemical
indexes in the discrimination model between upper tobacco leaves and
other leaf positions (middle and lower).

Chemical index
Mean ± standard deviation

Upper leaves Other leaves

Neo-phytene (mg/g) 0.93 ± 0.21 1.00 ± 0.20

Oxalic acid (mg/g) 12.48 ± 2.89 10.80 ± 2.79

Total nitrogen (%) 2.30 ± 0.25 1.83 ± 0.22

Arginine (mg/g) 40.12 ± 10.04 26.49 ± 9.95

Starch (%) 5.15 ± 1.62 4.88 ± 1.72

Rutin (mg/g) 11.10 ± 2.75 9.39 ± 2.53

Potassium (%) 1.95 ± 0.36 2.34 ± 0.49

Total alkaloids (%) 3.10 ± 0.61 1.90 ± 0.56

Polyphenols (mg/g) 25.97 ± 5.69 25.46 ± 4.48

Malic acid (mg/g) 49.20 ± 19.02 59.29 ± 23.59
TABLE 14 The mean ± standard deviation of the top 10 chemical
indexes in the discrimination model between middle tobacco leaves and
other leaf positions (upper and lower).

Chemical index
Mean ± standard deviation

Middle leaves Other leaves

Neo-phytene (mg/g) 0.97 ± 0.20 0.98 ± 0.22

Oxalic acid (mg/g) 10.42 ± 2.62 12.42 ± 2.91

Glu-An (mg/g) 219.43 ± 47.29 275.27 ± 59.29

Fru-Tyr (mg/g) 68.86 ± 12.79 62.42 ± 13.57

Arginine (mg/g) 25.55 ± 8.43 37.58 ± 11.93

Alanine (mg/g) 509.67 ± 98.84 589.42 ± 102.06

Potassium (%) 2.26 ± 0.42 2.13 ± 0.53

Total nitrogen (%) 1.85 ± 0.23 2.16 ± 0.33

Fru-Ile (mg/g) 18.51 ± 4.58 17.84 ± 3.91

Glycine (mg/g) 33.07 ± 7.18 42.63 ± 9.95
TABLE 15 The mean ± standard deviation of the top 10 chemical
indexes in the discrimination model between lower tobacco leaves and
other leaf positions (upper and middle).

Chemical index
Mean ± standard deviation

Lower leaves Other leaves

Magnesium (%) 0.48 ± 0.22 0.37 ± 0.15

Fru-Tyr (mg/g) 68.05 ± 12.08 65.25 ± 13.75

Neo-chlorogenic acid
(mg/g) 2.05 ± 0.32 1.62 ± 0.36

Nitrogen-
alkaloid ratio 1.36 ± 0.43 0.87 ± 0.19

Fru-Pro (mg/g) 6891.82 ± 2403.38 9643.40 ± 2307.56

Fru-Amb (mg/g) 2388.45 ± 454.54 2190.80 ± 381.83

Fru-Glu (mg/g) 854.44 ± 167.05 722.71 ± 153.49

Sugar-alkaloid ratio 21.67 ± 7.91 13.82 ± 6.58

Fru-Ile (mg/g) 20.07 ± 4.59 17.90 ± 4.14

Vanillic acid (mg/g) 0.11 ± 0.01 0.13 ± 0.02
URE 6FIG

SHAP dependence plots of total alkaloids (a, upper leaves vs. other leaves; b, middle leaves vs. other leaves; c, lower leaves vs. other leaves).
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tobacco leaf position discrimination and interpretation. Using

the 70 tobacco leaf chemical components obtained using near-

infrared chemical component rapid analysis technology, the

discrimination model constructed by the SVM-hybrid kernel

algorithm optimized by PSO exhibited high accuracy and

robustness. The discrimination accuracies reached 98.17% and

96.33% on the training and test sets respectively, which were

significantly higher than existing research results. The

independent sample t-test revealed significant differences for

chemical indexes between leaf positions. The SHAP algorithm

was applied to interpret the SVM-hybrid kernel model. The

importance rankings of chemical indexes in the discrimination

model were provided, and the contributions and specific impacts

of each chemical index on the tobacco leaf posit ion

discrimination model were analyzed. The SHAP algorithm

demonstrated its great potential in explaining tobacco leaf

position discrimination models, effectively integrating machine

learning with advanced interpretability techniques. This study

provides an effective method for crop position traceability and

chemical feature analysis.
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