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Exogenous jasmonic acid
and salicylic acid enhance
selenium uptake and mitigate
cadmium accumulation in
pak choi (Brassica chinensis L.)
grown in selenium-rich,
high-cadmium soil
Jin-Ping Chen1,2, Jie Qin3, Ying Xing1,2, Qing Liao1,2,
Li-Ping Pan1,2, Cheng-Cheng Zeng1,2* and Yong-Xian Liu1,2*

1Agricultural Resources and Environment Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning, China, 2Guangxi Key Laboratory of Arable Land Conservation, Guangxi Academy
of Agricultural Sciences, Nanning, China, 3Flower Research Institute, Guangxi Academy of Agricultural
Sciences, Nanning, China
Plant hormones are known to regulate the uptake and distribution of mineral

elements, including heavy metals, in crops. This study evaluated the effects of

exogenous jasmonic acid (JA) and salicylic acid (SA), applied individually or in

combination, on selenium (Se) enrichment and cadmium (Cd) mitigation in pak

choi (Brassica chinensis L.) cultivated in Se-rich and high-Cd soils. Hormone

treatments significantly increased shoot Se content by 33.7%-62.3% compared to

the control, with the highest level Se accumulation observed under combined

application of 50 mmol·L-1 JA and 50 mmol·L-1 SA. Cd accumulation in shoots

decreased by 11.7%-29.3% in JA-containing treatments, with the same combined

producing the lowest shoot Cd levels. JA alone increased root Cd content, while

SA treatments reduced it. Individual hormone treatments elevated root levels of

phytochelatins (PCs), glutathione (GSH), and metallo-thioneins (MTs), while the

combined treatment future increased PCs and GSH, but decreasedMTs and non-

protein thiols (NPTs). Antioxidant enzyme activities (SOD, CAT, POD), chlorophyll

content and shoot fresh weight also increased in JA-containing treatments.

Taken together, foliar application of JA combined SA offers a promising strategy

to enhance Se biofortification, reduce Cd accumulation, and promote biomass

production in pak choi grown in Se-rich and high-Cd soils.
KEYWORDS

selenium biofortification, cadmium mitigation, high-cadmium soil, metal chelation
compounds, antioxidant enzyme
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1 Introduction

Selenium (Se) is an essential trace element necessary to

maintain the physiological health of humans and other animals

(Sharma et al., 2010). About one billion people suffer from

inadequate daily selenium intake across the world, posing a

significant threat to public health (Combs, 2001). Because of its

inherent toxicity and low bioavailability, inorganic Se is not suitable

for direct human consumption; this means that enhanced dietary

intake of organic selenium is necessary for Se supplementation

(Stranges et al., 2007). Many crops are capable of assimilating

inorganic selenium and converting it into organic forms that can

be made available for consumption (Li et al., 2015). As a result, the

biofortification of Se in crops represents a viable solution to address

human selenium deficiency.

Biofortification of crops with Se is most effective in Se-rich soils

(Se ≥ 0.4 mg/kg). However, Se-rich soils are often accompanied by

elevated levels of cadmium (Cd) due to isomorphism, which can

constrain the safe utilization of soils that are rich in Se (Zhang et al.,

2019; Yang et al., 2019). Cd is a highly toxic trace heavy metal that is

readily absorbed by plant roots and accumulates in edible tissues,

posing serious health risks to animals and people (Zhang et al.,

2014; Faizan et al., 2024a). Furthermore, high soil Se levels do not

prevent Cd accumulation in crops (Yang et al., 2021), making it

essential to simultaneously reduce Cd uptake while promoting Se

enrichment. Exogenous Se application through foliar or soil

treatments is commonly used to increase Se content and reduce

Cd accumulation in crops (Huang et al., 2024). However, the

effectiveness of Se in reducing Cd varies depending on multiple

factors (Affholder et al., 2019; Yu et al., 2018), and excess Se can

itself become toxic or even promote Cd uptake under certain

conditions (Ismael et al., 2019). Additionally, exogenous Se

application faces challenges including low plant utilization

efficiency, limited Se availability, and environmental concerns

(Sager, 2006; Zhang and Zhou, 2019). Soil amendments and

microbial agents have also been explored to enhance availability

of Se while immobilizing Cd (Yang et al., 2022), though potential

ecological and health risks remain (Zhang et al., 2021).

Exogenous plant hormones are widely applied in crop

production to enhance growth and regulate stress responses

(Peleg and Blumwald, 2011; Alam et al., 2023). In addition to

promoting growth, several hormones modulate ion transport

processes that influence the uptake and translocation of both

toxic and beneficial elements (Aftab and Hakeem, 2021).

Jasmonic acid (JA) and salicylic acid (SA), for example, have been

shown to reduce cadmium (Cd) accumulation in crops (Lei et al.,

2020; Jia et al., 2021). Multiple hormones, including indole-3-acetic

acid, abscisic acid, gibberellins, as well as JA, and SA, have also been

reported to regulate selenium (Se) uptake and accumulation (Huan

et al., 2021; Li et al., 2024; Guo et al., 2024; Chen et al., 2021; 2024).
Abbreviations: CAT, Catalase; Cd, Cadmium; GSH, Glutathione; JA, Jasmonic

acid; MDA, Malondialdehyde; MTs, Metallo-thioneins; PCs, Phytochelatins;

POD, Peroxidase; S, Sulfur; SA, Salicylic acid; Se, Selenium; SOD,

Superoxide dismutase.
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In this study, JA and SA were prioritized because of their well-

established roles in sulfur assimilation pathways, which are directly

linked to Se metabolism (Nazar et al., 2011; Tolu et al., 2022;

Siddiqui et al., 2024). In addition, JA and SA contribute to Se

bioaccumulation and help mitigate Se-induced stress in crops

(Chen et al., 2021; 2024).

To date, most studies have focused on either high Cd or Se-rich

soils, while the combined effects of exogenous hormone application

in soils that are both Se-rich and high-Cd remain largely

unexplored. Furthermore, previous research has focused on

single-hormone treatments, which may be insufficient under

complex stress conditions (Nazari et al., 2022). Integrated

management strategies, including the use of hormone

combinations, could potentially enhance the effectiveness of stress

mitigation (Zeng et al., 2024; Faizan et al., 2021b). Notably,

combined hormone applications often exhibit synergistic effects

offering greater efficacy in addressing multifaceted environmental

stresses compared to individual treatments (Tran and Pal, 2014),

and may be more effective in reducing heavy metal accumulation

(Modarresi et al., 2024; Faisal et al., 2024). Based on this, the

hypothesis in this study is that the co-application of JA and SA will

outperform individual hormone treatments by simultaneously

promoting Se enrichment and Cd reduction.

Because vegetables are the primary source of Se in human diets

(Rayman, 2012; Al-Othman et al., 2012), this study focused on pak

choi (Brassica chinensis), an important vegetable crop with the

potential to provide supplemental Se (Abdalla et al., 2020; Li et al.,

2015). However, pak choi also has a higher propensity to

accumulate Cd compared to other leafy vegetables (Wang et al.,

2017b). This highlights the necessity to investigate the influence of

exogenous plant hormones on both the Se uptake and Cd

accumulation in Se-rich and high-Cd soils.

This study investigated the potential for plant hormone

application to promote Se enrichment and Cd reduction in pak

choi, as well as its potential underlying mechanisms. It did so by

measuring the variation of Se and Cd accumulation, metal chelation

compounds and physiological response of pak choi under Se-rich

and high-Cd soils treated with and without plant hormones.

Overall, this study will provide a basis for improving the efficient

and safe use of Se-rich and high-Cd soils.
2 Materials and methods

2.1 Experimental materials and setup

Soil for the pot experiment was collected from a vegetable

cultivation site in Gangbei district, Guigang city Guangxi China

(109°45′57.32″E, 23°14′12.36″N). Soil surface samples (0–20 cm

depth) were collected, homogenized, and air-dried after removing

visible impurities and stones. The basic physicochemical properties

of the soil were as follows: total selenium (Se), 0.27 mg·kg-¹;

cadmium (Cd), 0.328 mg·kg-¹; total phosphorus (P), 0.95 g·kg-¹;

total nitrogen (N), 2.26 g·kg-¹; total potassium (K), 3.0 g·kg-¹;

organic matter, 36.2 g·kg-¹; and pH, 7.2.
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Oval-shaped pots (37 cm long axis x 29 cm short axis x 9 cm height)

were used, and each filled with 7.0 kg of air-dried soil. The air-dried soil

was spiked with 1 mg·kg-¹ of Se6+ (Na2SeO4) and 1 mg·kg-¹ of Cd²+

(CdCl2·2.5H2O) to simulate Se-rich and Cd-contaminated soil; these

values were derived from the Chinese National Standard for Soil

Selenium Classification (GB/T 44971-2024), the Soil Environmental

Quality Risk Control Standard for Soil Contamination of Agricultural

Land (GB 15618-2018), and reported levels of Se and Cd concentrations

in Se-enriched regions (Yu et al., 2020). To achieve the target Se level,

analytical grade selenate (Na2SeO4) was applied to the dry soil using a

plastic nebulizer while stirring continuously to ensure uniform

distribution. The treated soil was then equilibrated for six months to

allow available Se to stabilize. After application, soil was allowed to

equilibrate for six months. Previous studies have shown that available Se

reaches equilibrium within 33 to 56 days in acidic soils and within 109

days in neutral or alkaline soils (Wang et al., 2017a), confirming that the

chosen six- month equilibration period was sufficient under the

experimental conditions. Following Se equilibration, analytical grade

cadmium chloride (CdCl2·2.5H2O) was applied using the same method

to achieve the target concentration, with an equilibrium period of three

months, based on evidence that Cd extractability tends to stabilize

within 90 days after application (Zhang et al., 2018).

Seven treatments were established to assess the effects of

different concentrations of JA or/and SA, as follows: (1) 0 mmol·L-

1 plant hormones (no application of JA and SA, control) (hereafter,

CK); (2) 20 mmol·L-1 JA (hereafter, JA20); (3) 50 mmol·L-1 JA

(hereafter JA50); (4) 20 mmol·L-1 SA (hereafter SA20); (5) 50

mmol·L-1 SA (hereafter SA50); (6) 20 mmol·L-1 JA + 20 mmol·L-1

SA (hereafter JA20+SA20); (7) 50 mmol·L-1 JA + 50 mmol·L-1 SA

(hereafter JA50+SA50). Each treatment included seventeen pots. In

each pot, 15 pak choi seeds (‘Gui Tian Cai Xin No. 1’, bred by the

Institute of Vegetable Research Institute, Guangxi Academy of

Agricultural Sciences) were sown on February 20, 2024. After 15

days, seedlings were thinned to retain seven plants per pot, and 7 g

of compound fertilizer was applied.

To prepare the hormone solutions, either JA or SA (Sigma-

Aldrich, USA) was first dissolved in 7 mL of anhydrous ethanol and

then diluted to a 1 mmol·L-¹ stock solution with distilled water. For the

control treatment, an equal volume mixture of anhydrous ethanol and

distilled water was used. When plants reached the five-leaf stage

(March 14), 20 mL of the designated hormone solution was applied to

each pot via hand sprayer. Treatments were repeated at six-day

intervals for a total of three applications. Pots were randomly

arranged within the growth facility and repositioned every three

days to minimize microenvironmental variability.
2.2 Plant sample collection and physio-
chemical parameters analysis

At harvest (April 7), plants were washed, separated into shoots

and roots, and fresh weights were recorded. For all measurements,

each biological replicate consisting of seven plants per pot. Selenium

and cadmium accumulation and metal chelation compound analyses

were performed using four replicates (four pots) per treatment.
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Physiological measurements were performed using three replicates

(three pots) per treatment. Fresh weight measurements were

performed using nine replicates (nine pots) per treatment.

Portions of each sample intended for analysis of metal chelation

compounds, malondialdehyde (MDA), antioxidant enzymes, and

photosynthetic pigments were immediately frozen and stored at -80°C.

Shoots and roots were oven-dried at 90°C for 30 minutes,

followed by drying at 60°C until constant weight was achieved. Se

content was determined using Atomic Fluorescence Spectrometry

(AFS 8330, Jitian Instrument Co., Beijing). The Se translocation

factor was calculated as the ratio of Se concentration in shoots to

that in roots. Cadmium concentrations were determined using

Graphite Furnace Atomic Absorption Spectrometry (55B+240Z

Duo, Agilent Technologies, USA), and the Cd translocation factor

was similarly calculated as the shoot-to-root concentration ratio.

The content of MTs, non-protein thiols (NPTs) and PCs were

measured using the respective plant enzyme-linked immunosorbent

assay (ELISA) kits (Chongqing Bonoheng Biotechnology Company

Limited, Chongqing, China). The content of GSH and MDA, and

superoxide dismutase (SOD), peroxidase (POD), and catalase

(CAT) activities of leaf were detected using extraction kits for

each biochemical marker (Chongqing Bonoheng Biotechnology

Company Limited, Chongqing, China) fol lowing the

manufacturer’s instructions.

The content of photosynthetic pigment was determined using the

ethanol-acetone extraction method (Lichtenthaler and Wellburn,

1983). Fresh leaf tissue (0.100 g) was homogenized and extracted

with 10 mL of the extraction solution for 48 h in darkness. The

absorbance of the extracts was measured spectrophotometrically at

wavelengths of 440, 645, and 663 nm. The concentrations of

chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car)

were calculated according to standard equations. The total chlorophyll

content (Chl a+b) and the ratio of total chlorophyll to carotenoid

content (Total Chl (a+b)/Car) were also derived.
2.3 Data analysis

Treatment effects of JA and SA on Se and Cd content, metal

chelation compounds content, and growth, physiological responses

were analyzed using Analysis of variance (ANOVA). Duncan’s

multiple comparison test was used to determine significant

differences among treatments. Analyses were conducted using the

SPSS 22 software; data on Se and Cd content, metal chelation

compounds content were plotted using Origin Pro 8.5 software.
3 Results

3.1 Effect of treatment on Se and Cd in
plant

For Se content, all JA and SA treated groups had significantly

higher levels in shoots compared to the control, with increases

ranging from 33.7% to 62.3%; among these, the JA50+SA50
frontiersin.org
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treatment group had the greatest increase (Figure 1A). There was no

influence of exogenous plant hormones on selenium content in

roots compared to the control (Figure 1C). The JA50+SA50

treatment led to a higher Se translocation coefficient, but there

was no change in other hormone treatments (Figure 1E).

For Cd content, treatments with JA had lower Cd

concentrations in shoots (11.7%-29.3%) compared to the control;
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the JA50+SA50 treatment had the biggest effect (Figure 1B). When

SA was treated alone, there was no influence of Cd content in shoots

(Figure 1B). When JA was treated alone, there was higher Cd

content in roots (Figure 1D). All treatments containing SA had

lower Cd content in roots (Figure 1D). When JA was added alone,

the Cd translocation coefficient decreased, whereas treatments

containing SA generally increased this parameter (Figure 1F).
FIGURE 1

Effect of plant hormone treatment on the Se content of shoots (A) Cd content of shoots (B) Se content of roots (C) Cd content of roots (D), as well
as the Se translocation coefficient (E) and Cd translocation coefficient (F). Data are mean ± SD (n=4). Asterisks (*) denote overall significant
differences (ns, not significant; ***P < 0.001). Values with different lowercase letters in the same column indicate significant differences among
treatments at the 0.05 level.
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3.2 Effect of treatment on metal chelation
compounds

In roots, treatments with only JA or SA led to higher content of

metallo-thioneins (MTs) (Figure 2A), phytochelatins (PCs)

(Figure 2C), and glutathione (GSH) (Figure 2D) compared to the

control. On the other hand, these treatments led to notable

reductions in non-protein thiol (NPTs) levels (Figure 2B). When

both hormones were mixed, PCs and GSH increased, but MTs and

NPTs decreased (Figure 2).

In leaves, plant hormone treatments generally promoted non-

protein thiol (NPTs) (Figure 2B) and glutathione (GSH)

(Figure 2D) (other than the JA20 treatment). On the other hand,

all hormone treatments tended to lead to decreases in MTs

(Figure 2A) and PCs (other than the JA50+SA50 treatment)

concentrations (Figure 2C).
3.3 Effect of treatment on MDA content
and antioxidant enzymatic activity

Hormone treatments led to significant variation in

malondialdehyde (MDA) (Table 1). The JA20 treatment had

lower MDA content in leaves, while there was no influence of the

JA50 and SA20 treatments on MDA levels. Conversely, the mixed
Frontiers in Plant Science 05
hormone t rea tments and SA50 led to higher MDA

content (Table 1).

All hormone treatments tended to enhance the activities of

superoxide dismutase (SOD), peroxidase (POD), and catalase

(CAT) compared to the control (Table 1). SOD was significantly

enhanced by all treatments, while all hormone treatment other than

SA20 increased CAT activity. While additions of both JA and SA

alone led to higher POD activity, the addition of both hormones

simultaneously had no influence on POD activity (Table 1).
3.4 Effect of treatment on the
photosynthetic pigment content and fresh
weight

Treatments with JA all had higher chlorophyll b content, total

chlorophyll content, and the ratio of total chlorophyll to

carotenoids; all but the JA20+SA20 treatment also had higher

chlorophyll a content (Table 2). On the other hand, treatments

with only SA had no influence on chlorophyll a content, but

reduced chlorophyll b content, total chlorophyll content, and the

ratio of total chlorophyll to carotenoids (Table 2).

The fresh weight of shoots was higher in JA-containing

treatments compared to controls and those with SA alone

(Figure 3). Likewise, the fresh weight of roots was higher in the
FIGURE 2

Effect of plant hormone treatment on root and leaf content of metallo-thioneins (A) non-protein thiol (B) phytochelatins (C), and glutathione (D).
Data are mean ± SD (n=4). Asterisks (*) denote overall significant differences (**P < 0.01; ***P < 0.001). Values with different lowercase letters in the
same column indicate significant differences among treatments at the 0.05 level.
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JA50 and JA50+SA50 treatments (Figure 3). However, there was no

influence on treatments with SA alone on shoot or root fresh

weight (Figure 3).
4 Discussion

Plant hormones play a pivotal role in the uptake of ions and

their distribution in plants (Starck and Kozińska, 1980). Several

exogenous plant hormones have been shown to enhance the uptake

and accumulation of selenium (Se) in crops, including indole-3-

acetic acid (IAA), diethyl aminoethyl hexanoate (DA-6), JA, SA,

abscisic acid (ABA), gibberellin (GA3), and melatonin (Liu et al.,

2021; Li et al., 2022b; Huan et al., 2021; Li et al., 2024; Guo et al.,

2024; Chen et al., 2024). Among these, JA, SA, ABA, and GA3 have

been shown to enhance Se accumulation, particularly under Se

stress (Li et al., 2022b, 2024; Guo et al., 2024; Chen et al.,

2021; 2024).

This study showed that the application of JA, SA, and their

combination all led to increased Se content of pak choi grown in Se-

rich and high-Cd soils; the JA50+SA50 mixture had the greatest

effect. The ability of exogenous plant hormones to promote Se

uptake overcomes the bottleneck of plant Se tolerance and holds

great potential for enhancing organic Se production in crops.

Although the precise molecular mechanisms remain unclear,

several potential pathways have been proposed. First, plant
Frontiers in Plant Science 06
hormones may promote overall plant growth, increasing sink

demand for Se and thereby facilitating its assimilation (Guo et al.,

2024; Li et al., 2024; Chen et al., 2021; 2024). Second, given the

chemical similarity between S and Se, plant hormones may regulate

Se uptake by modulating sulfur transport and metabolism. Because

Se assimilation primarily occurs via the S metabolic pathway (Tolu

et al., 2022), hormonal regulation of S metabolism can influence Se

uptake. For instance, ABA can stimulate the biosynthesis and

signaling of jasmonic acid (JA) and salicylic acid (SA), upregulate

genes encoding sulfate and phosphate transporter proteins, and

enhance the reduction of inorganic S/Se to organic forms. This leads

to increased assimilation and biosynthesis of S/Se-containing

compounds (Wang et al., 2024). Exogenous JA and SA may

mimic endogenous hormone signaling, further enhancing sulfur

metabolism and facilitating Se uptake and translocation (Siddiqui

et al., 2024; Nazar et al., 2011). Finally, plant hormones may induce

specific root responses and alter rhizosphere metabolism, indirectly

increasing the bioavailability of Se in the soil (Chen et al., 2024).

In this study, JA treatment reduced the root-to-shoot Cd

translocation coefficient while increasing Cd accumulation in roots,

suggesting that JA promotes Cd sequestration in roots and limits

translocation to aboveground tissues. Similar results have been

reported in Arabidopsis thaliana, where JA treatment reduced

shoot Cd accumulation through downregulation of key Cd

transporters, including AtIRT1, AtHMA2, and AtHMA4 (Lei et al.,

2020). JA has also been shown to enhance Cd compartmentalization
TABLE 1 Effect of plan hormone treatment on MDA content and antioxidant enzymatic activity of pak choi leaf.

Treatments MDA content (nmol/g) SOD activity (U/g) POD activity (U/g) CAT activity (nmol/min/g)

CK 122.81 ± 8.02c 36.61 ± 3.81d 7358.76 ± 492.98c 170.88 ± 14.62d

JA20 107.65 ± 11.95d 60.76 ± 5.47c 9943.60 ± 461.72b 280.82 ± 14.90bc

JA50 130.52 ± 11.50c 92.68 ± 11.00b 9164.27 ± 103.51b 322.12 ± 17.76a

SA20 136.52 ± 10.59c 57.00 ± 3.25c 10995.84 ± 600.01a 187.05 ± 15.45d

SA50 207.95 ± 18.85a 60.98 ± 0.34c 9811.09 ± 554.35b 263.38 ± 24.51c

JA20+SA20 159.78 ± 5.14b 63.23 ± 6.29c 8178.07 ± 545.00c 265.19 ± 22.23c

JA50+SA50 171.85 ± 15.31b 139.78 ± 14.12a 7707.23 ± 298.38c 314.39 ± 22.99ab
Data are mean ± SD (n=3). Values with different lowercase letters in the same column indicate significant differences among treatments at the 0.05 level.
TABLE 2 Effect of plant hormone treatment on the photosynthetic pigment content of pak choi plants.

Treatments
Chlorophyll a
content (mg/g)

Chlorophyll b
content (mg/g)

Total chlorophyll
content (mg/g)

Carotenoid
content (mg/g)

Total chlorophyll content/
carotenoid content

CK 1.62 ± 0.08de 1.08 ± 0.09c 2.71 ± 0.01d 0.1621 ± 0.0052bc 16.71 ± 0.54c

JA20 2.35 ± 0.08a 1.41 ± 0.07b 3.76 ± 0.06b 0.1783 ± 0.0019a 21.06 ± 0.41b

JA50 1.89 ± 0.09c 1.35 ± 0.13b 3.23 ± 0.14c 0.1582 ± 0.0058cd 20.48 ± 1.61b

SA20 1.55 ± 0.08e 0.65 ± 0.11d 2.20 ± 0.04f 0.1691 ± 0.0066ab 13.01 ± 0.71d

SA50 1.66 ± 0.02de 0.74 ± 0.10d 2.40 ± 0.09e 0.1713 ± 0.0053a 14.04 ± 0.93d

JA20+SA20 1.74 ± 0.14cd 1.40 ± 0.08b 3.14 ± 0.06c 0.1518 ± 0.0056d 20.72 ± 1.14b

JA50+SA50 2.09 ± 0.14b 1.96 ± 0.09a 4.05 ± 0.19a 0.1513 ± 0.0016d 26.75 ± 1.51a
Data are mean ± SD (n=3). Values with different lowercase letters in the same column indicate significant differences among treatments at the 0.05 level.
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within root cell walls by promoting Cd binding to chelated-soluble

pectin and reducing Cd influx into protoplasts (Li et al., 2022a),

thereby increasing Cd retention in root tissues. In addition to JA,

salicylic acid (SA) has been reported to influence Cd uptake and

transporter gene expression (Jia et al., 2021), although its

independent effect appeared limited under the current conditions,

consistent with concentration-dependent efficacy thresholds (Tang

et al., 2023). The internal redistribution of Cd toward roots minimizes

accumulation in photosynthetic tissues, reduces phytotoxicity, and

supports biomass production, which is critical for plant growth and

long-term phytoremediation potential (Li et al., 2023). This

sequestration is particularly advantageous for limiting Cd entry

into the edible tissues of pak choi.

The combined JA+SA treatment further enhanced Cd

mitigation compared to single-hormone applications. This may

reflect hormone crosstalk influencing rhizosphere processes,

including the production of secondary metabolites that alter

metal chelation, solubility, and mobility (Hou and Tsuda, 2022).

Similar synergistic effects have been observed in Alyssum inflatum

exposed to nickel, where JA+SA co-application more effectively

reduced metal accumulation than either hormone alone (Modarresi

et al., 2024). In our study, this hormonal interaction may have

reduced Cd bioavailability in the soil, limiting uptake and

accumulation (Shi et al., 2024a). The synergistic regulation of

rhizosphere metabolism and root physiology by JA and SA likely

contributes to the greater effectiveness of the combined treatment in

mitigating Cd stress.
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Metal chelation compounds such as phytochelatins (PCs),

glutathione (GSH), and metallothioneins (MTs), along with non-

protein thiols (NPTs) play important roles in Cd detoxification by

binding intracellular Cd and reducing its toxicity (Liu et al., 2012).

In this study, single-hormone treatments increased concentrations

of root-associated PCs, GSH, and MTs, suggesting that exogenous

JA and SA enhance Cd tolerance by promoting the synthesis of

sulfur-containing chelators that facilitate Cd sequestration in roots.

The observed reduction in NPTs may reflect their consumption as

precursors during GSH and PC biosynthesis (Seth et al., 2008).

These hormone-induced changes appear linked to transcriptional

regulation of sulfur assimilation genes (Shi et al., 2024a) and

activation of enzymes such as glutathione reductase and

phytochelatin synthase (Szalai et al., 2013). Interestingly, mixed

JA+SA treatments resulted in lower MT concentrations in both

roots and shoots, likely due to reduced Cd accumulation in these

tissues and thus lower cellular demand for MT synthesis. Indeed,

Cd concentrations in both roots and shoots were positively

correlated with MT content (Supplementary Material), indicating

a close relationship between intracellular Cd levels and

MT response.

In addition to this Cd-dependent regulation, hormone crosstalk

may also contribute to the observed changes in MT synthesis. SA

can suppress JA signaling downstream of the JA receptor COI1

(Van der Does et al., 2013), inhibiting JA-responsive genes,

including those involved in thiol compound synthesis.

Furthermore, SA induces expression of the WRKY70
FIGURE 3

Effect of plant hormone treatment on plant fresh weight. Data are mean ± SD (n=9). Asterisks (*) denote overall significant differences (***P < 0.001).
Values with different lowercase letters in the same column indicate significant differences among treatments at the 0.05 level.
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transcription factor, which acts as a key regulatory switch between

JA and SA pathways, repressing JA-dependent defenses while

activating SA-mediated responses (Li et al., 2004). Thus, in the

combined JA+SA treatment, SA may have attenuated MT

biosynthesis by modulating JA-responsive transcriptional networks.

Under normal conditions, excessive levels of Se or Cd can

independently induce toxic effects on plants (Chen et al., 2024;

Ismael et al., 2019; Elhakem et al., 2025). However, in Se-rich and

high-Cd soils, the interactions between these elements is modulated

by the bioavailable Se/Cd molar ratio, with critical thresholds

determining whether the interaction is synergistic or antagonistic

(Yang et al., 2022). This study reveals that different hormone

treatments produced variable effects on the malondialdehyde

(MDA) content in pak choi leaves—a key indicator of lipid

peroxidation and oxidative stress. As such, high MDA content is

related to oxidative stress (Faizan et al., 2021a). Notably the JA20

treatment reduced MDA levels, indicating enhanced protection

against oxidative damage. In contrast, treatments with both

hormone treatments, as well as SA50, elevated MDA content,

suggesting increased cellular peroxidation. These findings are

consistent with the concept of the “dual effects” of plant

hormones, which may either promote or inhibit physiological

stress depending on context. Indeed, the efficacy of exogenous

hormone treatments is highly dependent on both the applied

concentration and the severity of environmental stress (Chen

et al., 2021). Under low- or no-stress conditions, excessive use of

plant hormones may induce phytotoxicity effects rather than confer

benefits (Hayat et al., 2013; Agnihotri and Seth, 2020).

All plant hormone treatments increased the activities of key

antioxidant enzymes—SOD, CAT, and POD—which play central

roles in scavenging reactive oxygen species (ROS) and reducing

oxidative damage (Li and Ma, 2021). The enhanced antioxidant

enzyme activity likely contributed to the observed decrease in

malondialdehyde (MDA) levels, particularly under JA20

treatment, indicating reduced lipid peroxidation and membrane

damage. This upregulation of enzymatic defenses appears to be

mediated, at least in part, by JA- and SA-dependent activation of

transcriptional regulators that modulate antioxidant gene

expression, ultimately strengthening systemic acquired resistance

and improving tolerance to Cd-induced oxidative stress (Shi et al.,

2024a; b). These coordinated cellular defense responses collectively

enhance the resilience of pak choi under Cd exposure and

hormonal modulation.

Chlorophyll (a, b) levels typically decline under heavy metal

stress due to chloroplast damage in the leaf mesophyll (Faizan et al.,

2024b). In this study, treatment with JA or combined JA+SA

increased chlorophyll a and b levels, suggesting enhanced light

absorption photosynthetic efficiency. This enhancement may result

from JA-mediated suppression of chlorophyll degradation (Su et al.,

2021) and activation of key genes involved in the photosynthetic

electron transport chain (Simkin et al., 2022). JA also regulates the

synthesis of photosynthetic pigments by regulating jasmonate-ZIM-

domain (JAZ) proteins, which interact with transcription factors to

control gene expression related to growth and stress responses (Shi

et al., 2024a). Improved photosynthetic performance likely supports
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higher biomass production (Zhao et al., 2019), increasing sink

demand for selenium (Se) in developing tissues, and thereby

promoting Se uptake and accumulation. This relationship also

provides a potential ‘proof-of-concept’ for using JA-based

hormonal treatments to enhance Se biofortification in crops

grown in Se-rich but high-Cd soil. Stable biomass production

combined with increased Se uptake is critical for improving the

production efficiency of crop Se enrichment. Given Se’s essential

role as a micronutrient for animals and humans—particularly in Se-

deficient regions where related health issues are prevalent

(Fairweather-Tait et al., 2011)—such strategies have significant

implications for public health.
5 Conclusion

This study showed that under Se-rich and high-Cd soil

conditions, exogenous application of plant hormones significantly

increased Se accumulation in the shoot tissues of pak choi, while

concurrently reducing Cd levels. Among the treatments, the

combined foliar application of 50 mmol·L-¹ jasmonic acid (JA)

and 50 mmol·L-¹ salicylic acid (SA) (JA50+SA50) resulted in the

highest shoot Se content and the lowest Cd accumulation.

Mechanistically, these effects appear to involve hormone-

regulated modulation of root Cd sequestration, antioxidant

defenses, sulfur-containing metal chelators (phytochelatins and

glutathione), chlorophyll metabolism, and rhizosphere-mediated

changes in metal bioavailability. The integration of these

physiological responses not only improved Se/Cd ratios in edible

tissues but also supported overall plant growth under combined

metal stress. These findings provide proof-of-concept for the

potential use of JA and SA co-application as a strategy to

improve Se biofortification while mitigating Cd risk in crops

grown on Se-rich but high-Cd soils. Nevertheless, further

research, including large-scale field trials assessing agronomic

feasibility, economic cost, and crop quality under variable

environmental conditions, is essential to validate the practical

applicability of this approach for sustainable food production and

public health benefit.
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