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Swin Attention Augmented
Residual Network: a fine-grained
pest image recognition method
Xiang Wang, Zhiyong Xiao* and Zhaohong Deng

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
Pest infestation is a major cause of crop losses and a significant factor contributing

to agricultural economic damage. Accurate identification of pests is therefore

critical to ensuring crop safety. However, existing pest recognition methods often

struggle to distinguish fine-grained visual differences between pest species and are

susceptible to background interference from crops and environments. To address

these challenges, we propose an improved pest identification method based on

the Swin Transformer architecture, named Swin-AARNet (Attention Augmented

Residual Network). Our method achieves efficient and accurate pest recognition.

On the one hand, Swin-AARNet enhances local key features and establishes a

feature complementation mechanism, thereby improving the extraction capability

of local features. On the other hand, it integrates multi-scale information to

effectively alleviate the problem of fine-grained feature ambiguity or loss.

Furthermore, Swin-AARNet attained a classification accuracy of 78.77% on IP102,

the largest publicly available pest dataset to date. To further validate its

effectiveness and generalization ability, we conducted additional training and

evaluation on the citrus benchmark dataset CPB and Li, achieving impressive

accuracies of 82.17% and 99.48%, respectively. SwinAARNet demonstrates strong

capability in distinguishing pests with highly similar appearances while remaining

robust against complex and variable backgrounds. This makes it a promising tool

for enhancing agricultural safety management, including crop environment

monitoring and early invasion warning. Compared with other state-of-the-art

models, our proposed method exhibits superior performance in pest image

classification tasks, highlighting its potential for real-world agricultural applications.
KEYWORDS

artificial intelligence, deep learning, fine-grained insect image, Swin Transformer,
image classification
1 Introduction

Pests and diseases pose a significant threat to global agriculture, resulting in substantial

economic losses. As one of the primary challenges in agricultural production, pest

infestations lead to severe yield reductions and facilitate the spread of crop diseases. For

example, the Greening (Diaphorina citri), also called Huanglongbing (HLB) alone caused
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$13.2 billion in damage to Florida between 2005 and 2016 (Court

et al., 2018). Currently, most pest control strategies rely on pesticide

spraying and crop isolation. Although these methods can reduce the

damage caused by pest infestations to some extent, they have led to

increasingly serious problems such as environmental pollution,

food safety concerns, and ecological degradation. Therefore, to

achieve modernized and scientific agricultural production,

existing pest detection and control strategies urgently

need improvement.

Despite the convenience brought by Internet technologies in daily

life, their application in specific domains still has substantial

limitations. Taking the rice leaf roller as an example (as shown in

the first row of Figure 1), when users attempt to search for pest-

related information using search engines, they are often confronted

with numerous irrelevant results, many of which are misleading.

Moreover, when users are unable to identify the exact name of a pest,

the search engine cannot perform image-based category retrieval.

This highlights a key limitation of Internet technologies in domain-

specific applications. In practice, the content indexed by search

engines largely depends on manually uploaded data. Since human

annotations inherently possess subjectivity and limitations, the

accuracy and reliability of the search results are often compromised.

As a result, current technologies are unable to provide high-precision

category classification and information management for pests. To

address this challenge, it is essential to develop efficient fine-grained

image analysis algorithms tailored for pest classification, in order to

meet the demands of intelligent agricultural monitoring and ensure

sustainable agricultural development.

Previous classification systems primarily relied on handcrafted

and feature-based methods. Manual approaches, such as SIFT

(ScaleInvariant Feature Transform) (Lowe, 2004) and HOG
Frontiers in Plant Science 02
(histograms of oriented gradient) (Dalal and Triggs, 2005),

performed well in representing low-level features, such as color

and texture. However, these methods typically extracted a limited

set of distinctive features to represent pests, making it difficult to

evaluate them on complex datasets with diverse characteristics. For

different types of pests, manual inspection of features proved

inefficient, time-consuming and lacked the ability to capture high-

level semantic information. In recent years, mobile technologies

have been widely adopted to perform various tasks in the

agricultural sector. Under such circumstances, the integration of

artificial intelligence to replace manual processing in classification

tasks has become feasible. This shift offers significant potential to

address challenges such as labor shortages and low recognition

efficiency, thereby providing substantial practical value and

application prospects. Numerous researchers have published

extensive studies in this area and have implemented these

technologies in real-world pest recognition systems. Previously,

traditional machine learning models, such as support vector

machines (SVMs), neural networks, decision trees, and k-nearest

neighbors, have been utilized to accurately process pest images

(Júnior and Rieder, 2020; Martineau et al., 2017). For example,

Ebrahimi et al. (2017) developed an image processing program to

recognize pests in greenhouse environments. They employed a

Support Vector Machine (SVM) approach and successfully

detected targets such as thrips with an error rate of less than

2.5%. However, applying such methods to image classification

tasks still presents several challenges, particularly when dealing

with insects that exhibit similar appearances but belong to different

categories. Fortunately, Convolutional Neural Networks (CNNs)

have demonstrated superior performance over traditional machine

learning methods in visual tasks, offering better generalization
FIGURE 1

Example of fine-grained insect classes from IP-102 dataset. Among them, rice leaf roller, rice leaf caterpillar, corn borer, Prodenia litura, and
Cicadella viridis are images of some categories captured from IP102. The morphology of their larvae and adults varies greatly. And the morphology
of adult insects of different categories is also similar.
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capabilities when handling complex problems in pest recognition.

Currently, CNNs have been widely applied to various agricultural

tasks. For instance, Thenmozhi and Reddy (2019) proposed an

efficient deep CNN model designed to assist farmers in accurately

classifying and recognizing pest larvae. Their model was evaluated

on three publicly available insect datasets—NBAIR, Xie1, and

Xie2—for species-level classification. The results demonstrated

that the proposed CNN model outperformed several pre-trained

deep learning architectures, including AlexNet, ResNet (Residual

Neural Network), and GoogLeNet, achieving maximum

classification accuracies of 96.75%, 97.47%, and 95.97%,

respectively. This highlights the strong potential of deep CNNs

for accurate pest recognition in practical agricultural scenarios.

However, CNNs primarily excel at capturing local features, while

exhibiting certain limitations in extracting global representations.

Additionally, their performance is often influenced by image

resolution, which can lead to the loss of fine-grained information

in some cases. These constraints pose challenges when applying

CNNs to large-scale pest recognition tasks, highlighting the need for

further research and architectural improvements to enhance their

effectiveness in such complex scenarios.

The Vision Transformer (ViT) proposed by Dosovitskiy

(Dosovitskiy, 2020) addresses challenges in multiclass image

classification and high shape similarity among classes, achieving

strong classification performance across a range of vision tasks.

Researchers have tried to perform some classification tasks for pests

based on ViT models. Liu et al. (2022a) proposed a feature

relationship conditional filtering (FRCF) based on k-NN graph to

conditionally filter different relevant data from the source domain

and generate a subset of the source domain, which is more effective

than CNN-based methods in the field of pest and disease

classification. Currently, both CNNs and Transformers have

demonstrated outstanding performance in image-related tasks

across multiple domains, including medical imaging (Xiao et al.,

2022; Ji et al., 2023; Xiao et al., 2024b) and food image analysis (Gao

et al., 2024; Xiao et al., 2025a). Peng and Wang (2022) proposed a

scalable architecture that combines CNNs and Transformers,

achieving a better trade-off between network parameters and

accuracy. This work offers new insights into the ecological

management of pests and diseases and provides valuable

implications for future research in eco-informatics. However,

despite overcoming some of the limitations of CNNs, these

methods still face several challenges when deployed in real-world

agricultural environments. These challenges are summarized

as follows:
Fron
1. These networks typically focus on global windows, which

may overlook subtle visual differences between pest species.

For instance, various species of moths often exhibit highly

similar appearances, and more critically, their larvae are

nearly indistinguishable, making accurate recognition

extremely difficult.

2. In real agricultural scenarios, pest images are often affected

by factors such as lighting conditions, variations in pest size

and color, occlusions, and the background color of crops.
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Therefore, an approach capable of enhancing local feature

representations is urgently needed.
Motivated by these challenges, this study proposes a novel pest

recognition architecture based on deep learning, incorporating two

key components: DWAblock (Depth-wise separable residual

attention block) and GSA (Global Spatial Attention). Through the

effective integration of these components, the proposed method can

efficiently extract local features from pest images while exhibiting

strong robustness against environmental interference. The main

contributions of this paper are summarized as follows:
1. A more efficient pest recognition model is designed within

a deep learning framework;

2. The proposed DWAblock extracts localized channel feature

representations, addressing the challenge of environmental

disturbances in complex settings;

3. The proposed GSA effectively fuses multi-scale information

while preserving channel features, thus mitigating the issue

of fine-grained feature ambiguity or loss.
In the era of agricultural modernization, the frequent

occurrence of agricultural disasters and abnormal global climate

changes have severely constrained agricultural development.

Among these challenges, the increasing diversity of pest species

has increased the complexity of crop pest control, resulting in

significant agricultural losses. Accurate identification of pest

morphology and texture characteristics is central to addressing

pest recognition challenges. Swin-AARNet is designed to mine

and enhance local feature representations, integrate these

representations deeply, and ultimately extract and recognize them

through a spatial feature extractor. The goal of Swin-AARNet is to

facilitate more effective pest detection, address manual classification

inefficiencies, and enable timely and effective pest control. By

minimizing the likelihood of pest outbreaks, the model has

substantial research value.
2 Related work

2.1 Pest classification

Deep learning-based recognition models have been widely used

in agriculture (Tannous et al., 2023; Sun et al., 2024). Additionally,

as shown in Table 1, For instance, Hechen et al. (2024) developed a

novel Dilated-Windows-based Vision Transformer with Efficient-

Suppressive-self-attention architecture, named DWViT-ES, which

employs a suppression attention architecture. This approach

reduced the model parameters and computational complexity

while expanding the receptive field of local attention. It achieved

top-1 accuracy rates of 76.0% and 78.7% on the IP102 and CPB

datasets, respectively. Furthermore, Wei et al. (2024) introduced an

improved version of the YOLOv8n model, termed AEC-YOLOv8n,

which enhanced the representation of features by capturing

contextual similarities and differences and facilitating the
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exchange of information between features. Nguyen et al. (2024)

proposed a novel pest classification learning assistant tool DeWi. By

refining several Convolutional Neural Networks, the DeWi model

effectively learned the deep features of pests and generalized well

across a wide range of insect categories. It achieved the highest

performance on two pest datasets, IP102 and D0, with accuracies of

76.44% and 99.79%, respectively. Ayan (2024) utilized a

hyperparameter optimization strategy based on a genetic

algorithm, testing three different CNN models (MobileNetV2,

DenseNet121, and InceptionResNetV2) across three insect

datasets. This method achieved accuracies of 71.84%, 99.89%, and

97.58% on the IP102, D0, and Deng datasets, respectively. Finally,

Ren et al. (2019) used residual feature reuse blocks to construct a

feature reuse residual network (FR-ResNet) and evaluated it on the

IP102 benchmark data set. The experimental results indicate that

FR-ResNet shows strong adaptability and achieves significant

performance improvements in pest classification. Qian et al.

(2025) proposed a parallel architecture composed of a feature

fusion module (FFM) and a mixed attention module (MAM),

which effectively balances fine-grained feature extraction and

improves pest recognition accuracy in complex scenarios. This

architecture achieved evaluation accuracies of 75.74%, 99.82%,

and 98.77% on the IP102, D0, and Li datasets, respectively. Lv

et al. (2024) constructed the rice pest and disease dataset (RPDD)

and expanded the dataset through data augmentation techniques.

They proposed a Lightweight Multi-scale Feature Extraction

Network (LMN), which achieved an average classification

accuracy of 95.38% on the RPDD dataset. These results clearly

demonstrate the feasibility of applying deep learning techniques to

fine-grained pest recognition. However, the high-precision

recognition capability of models under complex real-world

conditions still requires further improvement.
2.2 Fine-grained visual classification

Fine-Grained Visual Classification (FGVC) aims to distinguish

subcategories that belong to the same high-level category but

exhibit subtle inter-class differences—for example, different pest

species within the class Insecta. Since the differences among

subcategories often appear only in small, localized regions, FGVC

presents significant challenges in feature extraction and
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discrimination, relying heavily on effective modeling of local

discriminative features. In recent years, substantial progress has

been made in this field. Zheng et al. (2017) proposed a multi-

attention convolutional neural network (MA-CNN), which consists

of convolutional and grouped channel classification subnetworks.

They also introduced two loss functions to guide the multi-task

learning of these two subnetworks. MA-CNN achieved state-of-the-

art performance on several benchmark datasets, including CUB-

Birds, FGVC-Aircraft, and Stanford-Cars. Ding et al. (2021)

proposed the Attention Pyramid Convolutional Neural Network

(AP-CNN), which incorporates a top-down feature pathway and a

bottom-up attention pathway. This dual-path optimization strategy

not only enhances local region features but also suppresses

background noise, leading to improved feature representation.

AP-CNN achieved superior performance on the CUB-200-2011,

FGVC-Aircraft, and Stanford-Cars datasets. Song and Yang (2021)

designed a feature boosting and suppression module to capture the

most salient parts of the feature maps. Additionally, they introduced

a feature diversification module to learn semantically

complementary information. To address the challenge of

distinguishing between highly confusing classes with subtle

differences, Zhuang et al. (2020) proposed a simple but effective

Attentive Pairwise Interaction Network (API-Net). This method

identifies fine-grained image pairs through iterative interaction.

API-Net outperformed previous state-of-the-art methods,

achieving accuracies of 90.0%, 93.9%, 95.3%, 90.3%, and 88.1% on

the CUB-200-2011, Aircraft, Stanford Cars, Stanford Dogs, and

NABirds datasets, respectively.

Meanwhile, in the domain of fine-grained pest image

recognition, researchers have conducted extensive and targeted

research. Jin et al. (2021) proposed a Multi-Stream Aggregation

Network (MSA-NET) for fine-grained pest and disease

identification. The model integrates three mainstream

architectures, ResNet, NTS-Net (Navigator-Teacher-Scrutiniser

Network) and FAST-MPN-COV (Towards Faster Training of

Global Covariance Pooling Network) by constructing a multi-

stream feature extractor by constructing a multi-stream feature

extractor. A fusion module based on NetVLAD (Network Vector of

Locally Aggregated Descriptors) is introduced to effectively

aggregate diverse feature representations, providing a high-

efficiency recognition framework for pest and disease

classification. Linfeng et al. (2023) introduced a novel
TABLE 1 Classification methods used in insect recognition studies.

Year References Datasets Methods

2019 Ren et al. (2019) IP102 FR-ResNet.

2024 Nguyen et al. (2024) IP102 and D0 DeWi.

2024 Hechen et al. (2024) IP102 and CPB DWViT-ES.

2024 Wei et al. (2024) IP102 AEC-YOLOv8n.

2024 Ayan (2024) IP102, D0 and Deng MobileNetV2, DenseNet121 and InceptionResNetV2.

2024 Lv et al. (2024) RPDD LMN.

2025 Qian et al. (2025) IP102 and D0 and Li FFM and MAM.
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convolutional neural network-based model (MSSN) that combines

attention mechanisms, feature pyramids, and fine-grained

modeling. The model achieved a maximum accuracy of 86.35%

on large-scale datasets such as the Large-Scale Pest Dataset. Ma

et al. (2021) developed a fine-grained identification model of pests

based on probability fusion network (FPNT), achieving an average

processing time of 61 ms and an average recognition accuracy of

93.18% across multiple benchmark comparisons, offering a practical

reference for pest and disease prevention and early warning

systems. Lin et al. (2023) proposed a fine-grained pest

identification method based on a graph pyramid attention,

convolutional neural network (GPA-Net), aimed at supporting

modern intelligent agriculture and environmental protection.

GPA-Net achieved top accuracies of 99.0%, 97.0%, and 56.9% on

the Cassava Leaf, AI Challenger, and IP102 pest datasets,

respectively, demonstrating strong capabilities in pest and disease

differentiation. In addition, Zhang et al. (2023a) developed a

multimodal fine-grained transformer (MMFGT) model,

enhancing the Transformer architecture to further boost pest

recognition performance. MMFGT achieved a recognition

accuracy of 98.12% across multiple strong baselines, showcasing

its great potential in fine-grained pest image classification.
2.3 Transfer learning

Transfer learning (Yosinski et al., 2014) is a strategy that uses

knowledge acquired from one task as a foundation to perform a

separate yet related task. In recent years, transfer learning has

achieved groundbreaking progress in deep learning, showing

immense potential, particularly in scenarios with limited

computational resources or scarce data. The core idea is to

transfer the knowledge learned from a model trained in an

existing task or domain to another related task, thus improving

the efficiency and performance of learning for the new task.

Currently, transfer learning has been widely applied in domains

such as natural language processing, computer vision, and

medical imaging.

The most common approach to transfer learning is the pre-

training and fine-tuning strategy, which has become a mainstream

paradigm, particularly prominent in Natural Language Processing

(NLP). Fine-tuning, a core aspect of transfer learning, has emerged

as a notably faster and more accurate method compared to building

models from scratch (Toscano-Miranda et al., 2024). This approach

leverages pre-trained models, adapting them to specific pest

recognition tasks, thereby streamlining the process and enhancing

accuracy in agricultural pest management (Zhang et al., 2023b).

Devlin (2018) introduced the BERT (Bidirectional Encoder

Representation from Transformers) model, which involved pre-

training on largescale unsupervised text data followed by supervised

fine-tuning on specific tasks (e.g., text classification, named entity

recognition). This approach significantly improved task

performance and marked a milestone in the field of NLP.

Furthermore, the RoBERTa (a Robustly Optimized BERT

Pretraining Approach) model (Liu, 2019) improved the training
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process by using larger datasets, extended training durations, and

optimized unsupervised task designs. This not only improved the

effectiveness of pre-trained models but also exhibited exceptional

transfer capabilities on downstream tasks. Compared to earlier

versions of BERT, the success of RoBERTa further validated the

powerful ability of transfer learning to capture general language

representations through pre-trained models.

Cross-domain transfer learning has also been highly impactful

in the field of computer vision. He et al. (2016) demonstrated that

the ResNet architecture, pre-trained on large-scale datasets such as

ImageNet, could be transferred to various domain-specific tasks

(e.g., medical image analysis), proving that pre-trained models

maintain strong generalization capabilities even on small-sample

datasets. At the same time, Vision Transformer (Dosovitskiy, 2020)

introduced attention mechanisms in visual tasks, significantly

improving transfer capabilities between different domain tasks.

Meanwhile, the combination of self-supervised learning and

transfer learning has emerged as one of the most cutting-edge

research areas since 2021. He et al. (2022) proposed the MAEmodel

(Masked Autoencoders), which, based on self-supervised learning,

pre-trains masked image models on unlabeled data to capture rich

visual representations. These representations can then be

transferred to downstream tasks such as image classification and

object detection. The MAE study demonstrated that combining self-

supervised pre-training with transfer learning enables effective

transfer performance even in data-scarce scenarios, breaking the

traditional dependency of transfer learning on large amounts of

labeled data.

Moreover, cross-domain and cross-modal transfer learning has

emerged as a key research direction in recent years. Zolfaghari et al.

(2021) investigated cross-domain transfer between visual and

language modalities, proposing a cross-modal contrastive learning

method that jointly learns from visual and linguistic information to

improve the model’s generalization ability.
3 Materials and methods

3.1 Swin Transformer

The Swin Transformer, introduced by Liu et al. (2021b), is a

novel visual feature transformer that produces a hierarchical feature

representation. Its primary feature extraction mechanism relies on

shifted window calculations, where self-attention is confined within

non-overlapping local windows while allowing cross-window

connections, leading to improved efficiency. This hierarchical

architecture enables flexible multi-scale modeling and achieves

linear computational complexity relative to image size.

These characteristics make the Swin Transformer highly

compatible with a wide range of visual tasks, including image

classification and semantic segmentation. With the rise of

computer vision, various Swin Transformer variants have

emerged. Xiao et al. (2024a) proposed a new DRConvBlock

(depthwise separable residual convolutional blocks) model and

MLP-GD (multi-layer perceptron based on global average pooling
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https://doi.org/10.3389/fpls.2025.1619551
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1619551
and dropout), based on the Swin Transformer architecture. These

models address the challenge of Swin Transformer in fine-grained

recognition, particularly in accurately distinguishing shape

differences in food items that belong to the same category.

Similarly, Xiao et al. (2025b) developed a high-precision food

image recognition method (FoodCSwin) based on the CSwin

network for dietary assessment. The proposed method

innovatively integrates the DiffAugment data augmentation

strategy with a Local Feature Dual Branch Enhancement Block

(LFDB-Block), enabling effective discrimination between

nutritionally similar but visually distinct food items within the

same category. This approach provides more accurate technical

support for dietary nutrition assessment.
3.2 General structure of the methodology

The overall architecture of Swin-AARNet, as illustrated in

Figure 2, consists of three main components: the Swin backbone

network, DWAblock, and GSA. Together, these elements form the

Swin-AARNet network.

The backbone network is composed of multiple Swin

Transformer blocks. It processes three-channel RGB insect
Frontiers in Plant Science 06
images, extracting global feature information from the input

images. The global features are then passed to the channel-local

feature extractor, known as the DWAblock. After processing

through the DWAblock, the feature images acquire three-channel

self-attention information, which enhances the channel-specific

features of the images.

Subsequently, the self-attention information is fed into the GSA

module. The GSA processes this data to generate spatial

information weights, which are then multiplied with the input

self-attention features to produce the final enhanced global features.

Swin-AARNet demonstrates an advantage in extracting and

enhancing global feature information when handling fine-grained

insect images. This capability makes it particularly powerful for

fine-grained insect recognition, enabling more accurate

category prediction.
3.3 Depth-wise separable residual
attention block

Figure 3 illustrates the structure of the backbone network’s Swin

Transformer block. The architectural formulation of the Swin

Transformer block is described as follows (Equations 1–4):
FIGURE 2

The overall architecture of Swin-AARNet. Swin-AARNet consists of three parts; (a) The first part is a backbone network composed of multiple Swin
Transformer Blocks, (b) the second part is the depth-wise separable residual attention block DWAblock, (c) the last part is the global spatial attention
GSA, and (d) represents MLP (Multilayer Perceptron), generating the final output result (specific category).
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Ẑ l = W −MSA(LN(Zl−1)) + Zl−1 (1)

Zl = MLP(LN(Ẑ l)) + Ẑ l (2)

Ẑ l+1 = SW −MSA(LN(Zl)) + Zl (3)

Zl+1 = MLP(LN(Ẑ l+1)) + Ẑ l+1 (4)

Here, Zl−1 represents the result of the Swin Transformer block

at layer l − 1, and W-MSA (Window Multi-head Self-Attention) is

the window attention module that computes attention for N = M2

patches within each window (Equation 5):

Attention(Qk,Kk,Vk) = Softmax
QkK

T
kffiffiffi

d
p + B

� �
Vk (5)

Here Qk,Kk,Vk ∈ RN�d , where N denotes the number of

patches in each window, and d is the feature dimension. B

represents the relative position bias, which introduces learnable
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offsets for each position pair (i,j) within the local window. The SW-

MSA (Shifted Window Multi-head Self-Attention) module cyclically

shifts the feature map by ( M
2

�� ��, M
2

�� ��) pixels to the right, followed by re-
partitioning into new windows. The output Zl+1 represents the result

after applying both W-MSA and SW-MSA modules to Zl−1. By

stacking multiple such Swin Transformer blocks, a relatively

complete global feature representation can be obtained.

However, relying solely on the W-MSA and SW-MSA self-

attention mechanisms for pest recognition still exhibits certain

limitations, particularly in capturing local discriminative features.

To address this, a Depth-wise separable residual attention block

isproposed, with its primary components illustrated in Figure 4. The

formulation of the DWAblock is as follows (Equations 6–11):

X = FC(BatchNorm(X)) (6)

xc, xp = Split(X) (7)

uc = ReLU(Wp ∗ xc), up = ReLU(Wp ∗ xp) (8)
FIGURE 3

Detailed structure of the Swin Transformer block. W-MSA denotes window-based self-attention, and SW-MSA represents shifted window-based

self-attention. Ẑ l and Zl denote the output feature map of the ith block after SW-MSA and MLP, respectively.
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~uc = Wp ∗DSWC(uc), ~up = Wp ∗DSEC(up) (9)

Z = Concat(xc + a ∗ ~uc, xp + b ∗ ~up) (10)

Z0 = FC(Z) (11)

Wp ∈ RH�W�C=2 denotes a 1� 1 pointwise convolution. Here,

the input X is divided along the channel dimension into two parts:

xc and xp. These two parts are processed separately through the

Depthwise Separable Weighted Convolution (DSWC) module and

the Depthwise Separable Enhanced Convolution (DSEC) module.

The outputs of the two branches are respectively assigned

independent learnable weights a and b to dynamically adjust the

contributions of the two branches and perform residual connections

with the original branch inputs to promote model convergence and

retain low-level feature information. The mathematical explanation

for the DSWC and DSEC modules is as follows (Equations 12–17):

DSWC:

vc = Conv7�7(uc) (12)

wc = Wp ∗Depthwised=3(vc) (13)
Frontiers in Plant Science 08
~mc = wc ∗ uc (14)

DSEC:

vp = Conv7�7(up) (15)

~mp = Wp ∗Depthwised=3(vp) (16)

~mp = ~mp + up (17)

uc, up ∈ RH�W�C=2 represent the outputs from the ReLU

activation in the previous formulas, and ~mc, ~mp ∈ RH�W�C=2 be

the output data from the DSWC and DSEC modules, respectively.

According to the formulas, the DSWC and DSEC first apply a 7� 7

grouped convolution to the feature map for depthwise convolution,

enerating the attention base weight matrices vc and vp. This

operation captures low-level visual features using a 7� 7 local

receptive field. Subsequently, the receptive field is expanded to 19�
19 through a dilated convolution with adilation rate of 3 and a

kernel size of 7� 7. The receptive field calculation formula is given

by

EK = (K − 1)�D + 1 (18)
FIGURE 4

The structure of the DWA block can be described as follows: The input feature map has a channel number of C.After passing through a fully
connected layer, the channel count is reduced by a factor of r.The Split operation divides the downsampled features along the channel dimension
into two parts, with each part containing half of the original channel count. These two parts are then processed separately through Part1DSEC and
Part2DSWC for channel feature extraction. The processed features are subsequently merged along the channel dimension using the Concat
operation. Finally, a fully connected layer restores the channel count, producing the output features Z0 .
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where EK is the effective kernel size, K represents the actual

kernel size, and D denotes the dilation rate (Equation 18). To

maintain the same spatial dimensions of the feature map before and

after the operation, the padding rate is set to 9. This allows the

DWAblock to capture multi-scale global contextual information

while preserving long-range spatial dependencies to some extent.

Finally, Wp ∈ RH�W�C=2 is used to perform feature reorganization

along the channel dimension, establishing cross-channel

correlations and enhancing the local feature representation

capability. Unlike DSEC, the DSWC modulates the original

features xc using weights wc derived from a self-attention

mechanism, thereby enhancing key features. In contrast, DSEC

only performs a residual connection between the original features

and the feature information. After the concatenation of DSWC and

DSEC, both low-level details and semantic information are

preserved. This not only dynamically enhances the important

local features, improving model stability, but also retains the

original features of the feature map to some extent, preventing

the loss of fine-grained features. This forms a dual-path feature

complementarity mechanism, enhancing the model’s expressive

capability along the channel dimension.
3.4 Global Spatial Attention

In the previous subsection, the DWAblock was introduced in

detail. The DWAblock integrates global features along the channel

dimension. To further enhance the model’s representation

capability and adaptability in the spatial dimension, this paper

draws inspiration from the Global Attention Mechanism (GAM)

(Liu et al., 2021a) and introduces structural improvements. GAM is

designed to enhance the performance of deep neural networks by

reducing information loss and amplifying global interactive

representations. In its spatial attention submodule, GAM employs
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two convolutional layers to fuse spatial information. The formula

for GAM is explained as follows (Equations 19, 20):

Â = Conv7�7(Z
0) (19)

F = ReLU(Conv7�7(Â )) (20)

F represents the output feature map from the GAM spatial

attention module, while Z′ denotes the output features from the

DWAblock layer. The GAM’s spatial attention mechanism employs

two 7×7 convolutional layers, incorporating a ReLU activation

function between them to preserve the model’s non-linear

characteristics. In particular, each convolutional layer is followed

by Batch Normalization to stabilize the training process and

accelerate convergence. However, this cross-dimensional spatial

attention mechanism merges all channel spaces, effectively

capturing complex inter-channel relationships but lacking the

capacity to extract local features from each individual channel.

This limitation results in an unintentional blending of spatial

feature information.

To address these issues, this study introduces a modification to

the GAM’s spatial attention module, which we refer to as Global

Spatial Attention. The architecture of the improved GSA model is

illustrated in Figure 5, with the revised formulation provided below:

Z = Depthwise7�7(Z
0) (21)

Â = Conv7�7(Z) (22)

F = Depthwise7�7(ReLU(Â )) (23)

F0 = Conv7�7(F) (24)

Given an input feature map Z0 ∈ RH�W�C , the GSA module

enhances spatial features progressively through four convolutional
FIGURE 5

The structure of the GSA module is as follows: to effectively capture spatial information, the GSA submodule utilizes two depthwise convolutions
along with two standard convolutions for spatial information fusion. Furthermore, the same reduction ratio r used in the channel attention
submodule is applied here to maintain consistent feature scaling.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1619551
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1619551
operations. First, a 7×7 depthwise convolution is applied to extract

initial deep features while preserving channel-wise independence, as

shown in Equation 21. The output of this operation is denoted as Z.

Next, channel reduction is performed to model more effective inter-

channel dependencies and emphasize important channels, enabling

each group of features to be processed with greater precision. The

result of this channel reduction in the original spatial attention

structure is denoted as Â in Equation 22. ReLU activation is then

applied to the reduced features, followed by another depthwise

convolution to enhance local details and improve fine-grained

feature representations (Equation 23). Finally, a 7×7 convolution

is used to restore the original channel dimension, completing the

multi-scale feature fusion. The output feature map of GSA, denoted

as F0, thus benefits from stronger spatial feature extraction

capabilities (Equation 24), enabling the model to capture finer-

grained spatial information across different scales.

The improved GAM spatial attention incorporates depthwise

convolution between the two standard convolution layers,

effectively enhancing the extraction of spatial features. This

approach not only reduces the computational overhead of the

original spatial attention mechanism but also preserves channel

independence, thereby enhancing the model’s ability to capture

local spatial features. The effectiveness and practicality of the

DWAblock and GSA for fine-grained pest image recognition are

validated in the experimental section below. Additionally, the

effectiveness of these components is demonstrated through

various evaluation metrics when integrated with the

Swin Transformer.
4 Results

4.1 Datasets

This experiment assesses the performance of Swin-AARNet on

three datasets: IP102 (Insect Pest Dataset 102) (Wu et al., 2019) and

CPB (Citrus Pest Benchmark) (Bollis et al., 2020) and Li (Li

et al., 2020).

IP102 Dataset: The IP102 dataset is a pest dataset comprising

75,222 images, divided into 45,095 images for training, 22,619

images for testing, and 7,508 images for validation. The dataset

includes 102 subcategories, 2 superclasses, and 8 major classes based

on instance distribution. The hierarchical labeling system of IP102

categorizes the 102 subcategories based on the primary crops

affected by the pests, resulting in 8 major classes, such as rice and

maize, and further classifies them into 2 superclasses: field crops

and economic crops. The imbalanced distribution across different

levels poses challenges for learning from imbalanced data and using

hierarchical labels.

The severity of pest damage to crops varies across different life

stages, so the dataset includes images of all stages—eggs, larvae,

pupae, and adults. For classification models, categorizing these

subcategories into the same class presents a challenge, as it is

difficult to extract distinctive features that clearly differentiate

them. In addition to biodiversity, the imbalance in data
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distribution cannot be overlooked. As shown in Figure 1, the

dataset exhibits a certain degree of imbalance across most

subcategories in IP102. The dataset has been officially split into

training, testing, and validation sets, eliminating the need for

manual data splitting.

To further validate the effectiveness of Swin-AARNet, we

conducted additional experiments on the CPB dataset. Figure 6

illustrates sample images of mite pests from the CPB dataset. The

CPB dataset contains 10,816 multi-class images divided into 7

categories, such as (i) 1,902 images of red spider mites

(Bankeutetranychus, Mexicanus Tetranychus), which are the

largest among other species and cause yellow symptoms on leaves

and fruits; (ii) 1,426 images of predatory mites (Euseius citrifolius,

Iphiseiodes zuluagai), which help control other mites; (iii) 1,386

images of rust mites (Phyllocoptruta oleivora), responsible for rust

symptoms and significant crop losses; (iv) 1,750 images of false

spider mites, carriers of the leprosis virus (Brevipalpus phoenicis);

(v) 806 images of broad mites (Polyphagotarsonemus latus), which

form white caps on fruits; (vi) 696 images of two-spotted spider

mites, which, though not causing significant crop damage, are

visible in the field; (vii) 3,455 negative images.

Due to the small size of the mites, there is substantial inter-class

variation, and the dataset curators are currently revising multi-class

labels. For this study, the CPB dataset was restructured into positive

and negative classes of 1200×1200 pixel images. Specifically,

categories (i) to (vi) (comprising 7,966 images) were combined as

positive images, while the 3,455 negative images were treated as a

separate class. During the experiments, the image set was divided

into three groups—training, validation, and test—following the

official dataset split of 60%, 20%, and 20%, respectively, yielding

6,380, 2,239, and 2,197 images.

To further validate the generalization capability of Swin-

AARNet, we conducted additional experiments on the Li dataset.

Figure 7 displays a subset of samples from the Li dataset, which

comprises 5,629 images covering 10 common pest categories:

Gryllotalpa, Leafhopper, locust, Oriental fruit fly, Pieris rapae

Linnaeus, Snail, Spodoptera litura, Stinkbug, Cydia pomonella,

and Weevil. These pests primarily cause severe damage to staple

crops such as rice, wheat, corn, soybeans, and sweet potatoes. In this

study, we employed the relatively small Li dataset to assess Swin-

AARNet’s generalization ability, further demonstrating its

effectiveness in common pest infestation scenarios. During the

experiments, the dataset was partitioned into three subsets—

training, validation, and test—following the official dataset split of

80%, 10%, and 10%, respectively, resulting in 4,503, 563, and

563 images.

To ensure the fairness and accuracy of the experimental results,

all experiments were conducted an NVIDIAGeForce RTX 3090 GPU

with 24 GB of memory. The pre-trained weights of the Swin

Transformer model, originally trained on the ImageNet-22K

dataset, were used as the initial weights for these experiments. The

detailed configuration of the experimental parameters is provided in

Table 2. We applied random cropping to resize input images to 224 ×

224 for data augmentation. The model was trained for 200 epochs

with a batch size of 64. The AdamW optimizer was utilized with an
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FIGURE 7

Example of Li.
FIGURE 6

Example of CPB dataset. The mites are highlighted on the upper-left side of the images. Here, six types of frontal images are represented
respectively: (a) Red Spider, (b) Phytoseiid, (c) Rust, (d) False Spider, (e) Broad, and (f) Two-Spotted Spider.
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initial learning rate of 5×10−5, and a cosine annealing schedule was

adopted for dynamic learning rate adjustment. A weight decay of 0.01

was applied to mitigate overfitting. A learning rate warm-up strategy

was employed during the first 5 epochs to enhance training stability

and accelerate convergence. All model parameters were initialized

randomly. Furthermore, all experiments were conducted in a Python

3.7 and PyTorch 1.13.0 environment to ensure the stability and

reproducibility of the training and evaluation processes.
4.2 Ablation investigations

This section provides a detailed explanation of the ablation

experiments conducted on the IP102 and CPB datasets using Swin-

AARNet, as shown in Table 3. The first and second columns

indicate whether the corresponding module is used, with a tick

symbol representing usage and a cross symbol indicating non-

usage. In terms of training strategy, we adopt a 200-epoch scheme.

As shown in Figure 8, although the validation accuracy plateaus

after 100 epochs, continuing the training to 200 epochs still yields

approximately a 0.5% improvement in Top-1 accuracy. This

phenomenon suggests that after the model has completed global

feature extraction, additional training epochs are still required to

enhance the discrimination of fine-grained features. This

characteristic is closely related to the structural appearance of

pests, highlighting the necessity of extended training for fine-

grained feature learning. Regarding the specific experimental

design, First, we set the standard Swin Transformer, without any

additional enhancements, as the baseline for reference and

comparison. On this baseline, we then added the DWAblock,

which resulted in an increase in accuracy to 78.44% and 81.46%,
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demonstrating that DWAblock can effectively extract global

channel features.

Next, we integrated the GSA into the baseline, leading to an

accuracy improvement to 78.38% and 81.72%, indicating that GSA

enhances the integration of spatial information. Finally, by

incorporating both the DWAblock and GSA into the baseline

simultaneously, the accuracy improved significantly, reaching

optimal levels of 78.77% and 82.17%.

Figure 8 provides a visual representation of the changes and

trends in the training process of the baseline Swin Transformer,

highlighting the differences between each component of Swin-

AARNet and the baseline. This visual evidence supports the

effectiveness of each component in Swin-AARNet and validates

the rationale behind their combination. These results not only

demonstrate the theoretical feasibility of SwinAARNet but also

confirm its efficacy through experimental validation, showing that

Swin-AARNet achieves commendable results and highlights its

advantages in handling insect image recognition tasks.
4.3 Comparison to the SOTA

To validate the rationale and accuracy of the proposed method,

we compared our approach with the baseline models on the IP102

and CPB datasets and Li, as well as with seven state-of-the-art self-

supervised classification methods. As shown in Tables 4, 5, we

present the model parameters, computational workload, peak

memory usage, and accuracy. The peak memory usage was

measured on a single NVIDIA 3090 GPU, with all experiments

conducted using a fixed batch size of 64 and accelerated by

mixedprecision training. The seven state-of-the-art self-supervised
TABLE 2 Detailed settings for pre-training, fine-tuning, and transfer learning.

Task Model Datasets Input Epochs Batch
size

Optimizer LR LR
decay

Weight
decay

Warmup
epochs

Pretrain Swin Transformer ImageNet-22K 224 90 4096 AdamW 1.00E-03 Cosine 0.01 5

Finetune Swin-AARNet (ours) IP102 224 200 64 AdamW 5.00E-5 Cosine 0.01 5

Finetune Swin-AARNet (ours) CPB 1200 200 64 AdamW 5.00E-5 Cosine 0.01 5

Finetune Swin-AARNet (ours) Li 224 200 64 AdamW 5.00E-5 Cosine 0.01 5
TABLE 3 Ablation experiment of Swin-AARNet (Ours) on the IP102 and CPB Datasets. Among them, "✔" indicates that the module is included, and "✘"
indicates that the module is not included.

Methods IP102 CPB

DWAblock GSA Params (M) Epochs PM (MiB) Acc. (%) Params (M) Epochs PM (MiB) Acc. (%)

✘ ✘ 195.15 200 17760 77.97 195.00 200 17748 81.23

✔ ✘ 196.46 200 17780 78.44 196.31 200 17767 81.46

✘ ✔ 253.06 200 20517 78.38 252.90 200 20524 81.72

✔ ✔ 254.37 200 20593 78.77 254.22 200 20582 82.17
fr
Here, PM stands for Peak memory.
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classification methods are (1)ConvNeXt (Liu et al., 2022c) (2)Cswin

(Dong et al., 2022) (3)Data-efficient image Transformers (DeiT,

DeiTv2) (Touvron et al., 2021, 2022) (4)Rethinking Model Scaling

for Convolutional Neural Networks (EfficientNet) (Tan and Le,

2019) (5)Swin Transformer(SwinT, Swinv2) (Liu et al., 2021b,

2022b) (6)High Performance GPU-Dedicated Architecture

(TResNet) (Ridnik et al., 2021) (7)Revisiting the Design of Spatial

Attention in Vision Transformers(Twins) (Chu et al., 2021).

To validate the model’s generalization capability, we compared

Swin-AARNet with the latest methods on the Li dataset. As shown

in Table 5, Swin-AARNet achieved a classification accuracy of

99.48% and an F1-score of 99.37%, demonstrating superior

generalization performance. The results confirm the model’s

strong adaptability to diverse pest recognition scenarios.

From Table 4, it can be observed that the highest accuracy

achieved by convolutional neural networks on the two datasets is

76.23% and 81.77%. Vision Transformers and their variants

achieved a maximum accuracy of 77.64% and 79.31% across

several subsets, while CSwin reached a peak accuracy of 79.85%.

Swin-AARNet outperformed all, achieving the highest accuracy of

78.77% and 82.17% on both datasets, respectively. Compared to

ResNet, Swin-AARNet not only focuses on local feature

representations but also effectively captures global features from

the feature maps while extracting local details. Compared to Vision

Transformer and its variants, Swin-AARNet excels at extracting

more detailed channel and spatial feature information, enabling it to

capture subtle differences within insect images with greater

accuracy. Additionally, Swin-AARNet results from the integration

of Swin Transformer and an attention mechanism. Compared to
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conventional methods, Swin-AARNet effectively distinguishes

between different insect categories and demonstrates strong

generalization ability, maintaining high accuracy across various

developmental stages of insects. However, compared to Cswin-B,

Cswin-L, Twins-L, Convnext-L, and Swin-L, Swin-AARNet has the

drawback of having a larger number of model parameters and

higher peak memory usage. Therefore, in addition to accuracy, we

also evaluate model performance using three commonly used image

classification metrics. Precision (Pre), Recall (Rec) and F1 score

(F1). As shown in Table 6, we present the results of the Swin-

AARNet evaluation along with Cswin-B, Cswin-L, Twins-L,

Convnext-L, and Swin-L across these four metrics. The results

show that Swin-AARNet outperforms all these models in terms of

Pre, Rec, and F1. This indicates that Swin-AARNet not only

achieves high accuracy and excellent fitting but also exhibits

strong generalization ability on unseen samples, allowing it to

accurately infer data patterns and make correct predictions.

Consequently, the model is well suited for handling insects with

similar shapes but belonging to different categories.

Figure 9 illustrates the accuracy trends of Swin-AARNet

compared to several state-of-the-art classification methods on the

IP102 insect image dataset. To ensure full convergence, each model

was trained for 200 epochs. As shown, Swin-AARNet exhibits

significant improvements in accuracy during both training and

validation, with a relatively stable rate of increase. Swin-AARNet

(red curve) consistently achieves higher accuracy throughout the

training process and rapidly converges to a high accuracy level

within the first 30 epochs, highlighting its advantages in stability

and convergence speed. In contrast, other models, such as Vision
FIGURE 8

Figure of ablation experiment results on IP102. To enhance the visualization of the experimental results, we selected accuracy values at intervals of
every 20 epochs within the range of 20 to 180 epochs. The results indicate that each component of Swin-AARNet is effective, demonstrating the
robustness of its design.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1619551
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2025.1619551
Transformer (blue curve) and DeiT (orange curve), show a similar

rapid initial rise but ultimately reach a slightly lower final accuracy

than Swin-AARNet. These comparative experiments further

demonstrate that the components of Swin-AARNet are not only

theoretically feasible but also practically effective, yielding superior

results on IP102, CPB, Li datasets.

To further validate the effectiveness of Swin-AARNet in fine-

grained image recognition tasks, we conducted comparative

experiments with several open-source fine-grained recognition

methods: (1) APCNN (Ding et al., 2021); (2) FFM and MAM

(Qian et al., 2025); and (3) Pest-ConFormer (a hybrid

convolutional neural network and transformer-based model) (Fang
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et al., 2024). As shown in Table 7, Swin-AARNet achieves the best

performance across all three benchmark datasets: IP102, CPB, and Li.

The competitive performance of Swin-AARNet can be attributed to

the following aspects: (1) Multi-scale feature fusion: Unlike the dual-

path feature aggregation structure in Pest-ConFormer and the dual-

path hierarchical design in AP-CNN, Swin-AARNet explicitly

captures multi-scale contextual information through convolutional

modules with different dilation rates in the DSWC and DSEC blocks.

Furthermore, it introduces learnable parameters (a and b) to

adaptively control the contribution of features from different scales.

(2) Grouped attention mechanism: While Pest-ConFormer relies on

standard Transformer-based self-attention and MAM and FAM
TABLE 4 Swin-AARNet (Ours) compares results with other models on the IP102 and CPB datasets.

Methods Model
size (MiB)

Epochs Resolution IP102 CPB

Params (M) PM (MiB) Acc. (%) Params (M) PM (MiB) Acc. (%)

Convnext-B 338 200 224×224 87.67 9784 75.09 87.57 9782 80.83

Convnext-L 754 200 224×224 196.39 15961 74.97 196.23 15959 81.77

ResNet-50 97.7 200 224×224 23.72 5539 72.64 23.51 5537 75.20

ResNet-101 170 200 224×224 42.71 6972 73.23 42.50 6971 77.08

Cswin-B 295 200 224×224 76.69 12519 76.15 76.69 12517 81.46

Cswin-L 661 200 224×224 172.23 20329 78.41 – – –

DeiT-T 21.86 200 224×224 5.54 1742 68.61 5.54 1742 77.17

DeiT-S 84.16 200 224×224 21.74 3650 74.27 21.67 3646 79.04

DeiT-B 330.28 200 224×224 85.88 8124 75.80 85.80 8118 77.79

DeiTv2-S 84.21 200 224×224 21.71 3861 74.35 21.71 3860 78.95

DeiTv2-M 148.26 200 224×224 38.39 5339 75.52 38.39 5340 79.85

DeiTv2-B 330.35 200 224×224 85.89 8542 76.33 85.82 8537 79.31

DeiTv2-L 1161.8 200 224×224 303.45 15219 77.64 – – –

Efficient-b7 254 200 224×224 64.05 21333 73.11 63.79 19001 79.40

Tresnet-L 214 200 224×224 53.80 9820 75.95 53.56 9817 77.03

Tresnet-XL 299 200 224×224 76.05 12076 76.23 75.78 12075 78.73

ViT-B 330 200 224×224 85.88 8117 74.99 85.80 8115 77.26

ViT-L 1161.6 200 224×224 303.41 22837 75.28 – – –

Twins-B 167 200 224×224 43.37 7876 75.47 43.37 7877 80.56

Twins-L 232 200 224×224 60.53 10867 75.76 60.53 10850 81.19

Swin-T 109 200 224×224 27.60 4933 74.57 27.52 4930 80.47

Swin-S 190 200 224×224 48.92 7891 75.45 48.84 7892 80.25

Swin-B 336 200 224×224 86.85 10984 74.72 86.75 10980 80.65

Swin-L 751.35 200 224×224 195.15 17760 77.97 195.00 17748 81.23

Swin-
AARNet(ours)

751.35 200 224×224 254.37 20593 78.77 254.22 20582 82.17
fro
During the experiments, we utilized a single GPU for model training and inference. Due to memory limitations, ‘-’ denotes instances where an out-of-memory error occurred during training. To
ensure consistency across the experimental setup, those experiments affected by memory overflow were excluded from the analysis.
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adopts a hybrid attention module, Swin-AARNet separates the

feature channels into two groups and applies a channel attention

mechanism to each branch independently. This design enables more

precise attention control and preserves computational efficiency. (3)

Fine-grained feature extraction capability: AP-CNN depends on an

ROI-guided optimization strategy to extract discriminative features.

In contrast, Swin-AARNet performs feature decoupling via channel

separation and employs large-kernel convolutions to capture broader

local details. This eliminates the need for additional annotations (e.g.,

ROI-guided), enabling fine-grained feature extraction through

architectural design alone.

These results clearly demonstrate the superior discriminative

power of Swin-AARNet for fine-grained pest classification,
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suggesting that it exhibits strong stability and generalization ability,

with reduced sensitivity to dataset and environmental variations.
4.4 Effectiveness of Swin-AARNet

The proposed Swin-AARNet is designed to leverage fine-

grained features in pest images for accurate classification of pests

with similar appearances and under complex backgrounds. To

further evaluate the effectiveness of Swin-AARNet, we employed

the Gradient-weighted Class Activation Mapping (GradCAM)

technique for visualization purposes. As shown in Figure 10, the

red-highlighted regions in the Grad-CAM heatmaps represent the
TABLE 5 Comparison of Swin-AARNet (Ours) with other models on the Li dataset.

Methods Model size (MiB) Epochs Resolution Li

Params (M) PM (MiB) Acc. (%) F1. (%)

Convnext-B 338 200 224×224 87.67 9784 98.30 98.05

Convnext-L 754 200 224×224 196.24 15959 98.97 98.82

ResNet-50 97.7 200 224×224 23.52 5537 98.28 98.21

ResNet-101 170 200 224×224 42.52 6971 98.97 98.88

Cswin-B 295 200 224×224 76.69 12518 98.97 98.76

Cswin-L 661 200 224×224 172.12 20329 99.14 98.99

DeiT-T 21.86 200 224×224 5.53 1742 97.08 96.83

DeiT-S 84.16 200 224×224 21.70 3648 97.77 97.41

DeiT-B 330.28 200 224×224 85.81 8120 97.94 97.73

DeiTv2-S 84.21 200 224×224 21.68 3861 97.94 97.62

DeiTv2-M 148.26 200 224×224 38.34 5341 98.28 98.02

DeiTv2-B 330.35 200 224×224 85.82 8540 98.63 98.19

Efficient-b7 254 200 224×224 63.81 21332 96.74 96.45

Tresnet-L 214 200 224×224 53.58 9817 97.94 97.66

Tresnet-XL 299 200 224×224 75.81 12073 98.63 97.97

ViT-B 330 200 224×224 85.80 8113 97.77 97.35

ViT-L 1161.6 200 224×224 303.31 22850 98.97 98.78

Twins-B 167 200 224×224 43.32 7876 98.63 98.50

Twins-L 232 200 224×224 60.48 10867 98.97 98.80

Swin-T 109 200 224×224 27.53 4932 98.11 97.81

Swin-S 190 200 224×224 48.84 7896 98.45 98.21

Swin-B 336 200 224×224 86.75 10985 98.63 98.40

Swin-L 751.35 200 224×224 195.01 17754 98.97 98.84

Swin-
AARNet(ours)

751.35 200 224×224 254.23 20358 99.48 99.37
During the experiments, all models were trained and inferred using a single GPU.
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areas that the model focuses on. The results indicate that

SwinTransformer tends to confuse background features in images

with small pests, whereas Swin-AARNet effectively focuses on the

majority of the pest body regions. By leveraging more precise fine-

grained information, this method enables more accurate

identification of pest shape and category.

Figure 11 presents the confusion matrix results of Swin-

AARNet on the test set of the small-scale Li dataset, which

includes 10 pest categories: Gryllotalpa, Leafhopper, locust,

Oriental fruit fly, Pieris rapae Linnaeus, Snail, Spodoptera litura,

Stinkbug, Cydia pomonella, and Weevil. The experimental results

demonstrate that the model exhibits strong recognition

performance across all 10 pest classes. Notably, Snail exhibits the

highest misclassification rate, frequently being confused with

Weevil, likely due to their morphological similarities (e.g., shell

shape and size) and background interference in the images. In

contrast, the model accurately recognized the remaining pest

categories, further validating the effectiveness of Swin-AARNet in

few-shot pest recognition tasks. This demonstrates its broad

application potential. Our source code is available at: https://

github.com/XiangWang888/Swin_ARRNet
5 Discussions

5.1 Model limitations

Although the proposed pest recognition method achieves state-

of-the-art accuracy, we acknowledge several limitations, as

outlined below.

First, as discussed in Section 3.4, the issue of data imbalance

remains a major challenge. Table 8 illustrates the hierarchical

structure of the IP102 dataset, where Training/Validation/Test

splits are denoted as Train/Val/Test, and IR represents the

imbalance ratio across different class levels. Each sub-class is

grouped into a super-class according to the primary crop it

affects. These eight crop categories are further grouped into two

higher-level super-classes: field crop and economic crop (FC and

EC). As shown in Table 8, the IP102 dataset exhibits high imbalance

ratio (IR), exceeding 91 in most super-class levels (Fernández et al.,
Frontiers in Plant Science 16
2008). Such an imbalanced data distribution can lead to model bias,

favoring classes with a larger number of training samples and

affecting overall generalization.

Second, as shown in Table 4, Swin-AARNet achieves the best

performance among all compared backbone models but seems to

get the best performance at the cost of parameters. This is primarily

due to the largescale architecture of its backbone network. The high

parameter count presents challenges for real-world deployment on

resource-constrained agricultural devices, particularly in terms of

computational load and inference efficiency. Therefore, developing

efficient model compression techniques—such as weight pruning,

quantization, or knowledge distillation—is of great importance to

promote the practical application of the proposed model in real-

world agricultural scenarios.
5.2 Future work

With the advancement of global climate change and agricultural

modernization, pest infestations have become one of the most

critical challenges facing agricultural production worldwide.

Severe outbreaks can significantly reduce crop yield and quality,

leading to considerable economic losses and posing potential

threats to food security. To address this issue, we propose a novel

model, Swin-AARNet, which effectively tackles the challenges of

multi-class and multi-morphological insect image recognition.

Swin-AARNet shows great potential in supporting accurate pest

identification and early warning, thereby contributing to improved

pest management.

It is worth noting that although Swin-AARNet achieves the

highest recognition accuracy in our experiments, its large number

of parameters presents challenges for deployment on agricultural

mobile devices. Consequently, future research will focus on model

compression and optimization to enable lightweight deployment.

At present, we have developed a desktop application that allows

researchers to perform pest classification and query tasks, providing

a practical solution for current agricultural needs.

As illustrated in Figure 12, the design of the desktop application

is as follows: users capture pest images using mobile devices and

upload them to a cloud server via the application. The server then
TABLE 6 Six evaluation metrics of Cswin-B, Cswin-L, Twins-L, Convnext-L, Swin-L and Swin-AARNet (Ours) on IP102 and CPB datasets, ‘-’ denotes
instances where an out-of-memory error occurred during training.

Methods Epochs Resolution IP102 CPB

Acc. (%) Pre. (%) Rec. (%) F1. (%) Acc. (%) Pre. (%) Rec. (%) F1. (%)

Cswin-B 200 224 × 224 76.15 71.20 67.89 68.39 81.46 78.51 77.12 77.74

Cswin-L 200 224 × 224 78.41 73.13 70.83 71.48 – – – –

Twins-L 200 224 × 224 75.76 69.57 66.66 67.47 81.19 78.32 76.36 77.19

Convnext-L 200 224 × 224 74.97 68.82 65.65 66.10 81.77 79.15 76.48 77.55

Swin-L 200 224 × 224 77.97 71.77 70.38 70.69 81.23 78.53 76.03 77.05

Swin-AARNet (ours) 200 224 × 224 78.77 73.14 71.65 71.97 82.17 79.63 77.35 78.30
fron
To ensure consistency across the experimental setup, those experiments affected by memory overflow were excluded from the analysis.
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invokes the trained recognition model to analyze and predict the

pest category, returning the predicted class along with its confidence

score to the application. The application supports result storage and

management for later access and reference. In addition, the

uploaded images are continuously incorporated into the training

dataset on the server, enabling incremental learning and ongoing

model optimization to improve adaptability to new environments

and novel pest samples.

In practical pest image recognition tasks, several key factors

must be taken into account. First, regarding image acquisition

distance, modern devices such as smartphones and digital

cameras commonly support 1080p resolution (1920×1080 pixels).

Using collected images of snails as an example, we analyzed the

relationship between the proportion of pest area within the image

and the corresponding recognition accuracy. Experimental results

show that when the pest occupies 3%–8% of the image area, the

model achieves an accuracy of 97.60%. When the occupied area

increases to 15%–35%, the accuracy improves significantly to
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99.38%. However, when the pest area exceeds 50%, the

recognition accuracy slightly decreases to 98.96%. These findings

indicate that an image acquisition distance of approximately 10–30

cm (corresponding to a pest area proportion of 15%–35%) yields

optimal model performance. If the distance is too great, the pest

appears relatively small in the image, leading to insufficient detail,

which may degrade recognition performance—especially under

complex field conditions. Additionally, considering the dynamic

nature of camera operation in real-world deployments, we

evaluated the impact of camera motion on recognition accuracy.

In slightly blurred images captured during camera movement, the

model’s accuracy only declined by approximately 0.88%,

demonstrating strong robustness. Regarding inference efficiency,

the Swin-AARNet model was evaluated on an NVIDIA RTX 3090

platform. The theoretical inference time was approximately

0.003125 seconds per image, allowing for a throughput of about

320 images per second. In practical deployment scenarios—

factoring in image loading and preprocessing overhead—the
TABLE 7 Comparison results of four fine-grained image recognition methods, AP-CNN, FFM and MAM, Pest-ConFormer, and Swin-AARNet on the
IP102, CPB, and Li datasets.

Methods Epochs Backbone Resolution IP102 CPB Li

PM (MiB) Acc. (%) PM (MiB) Acc. (%) PM (MiB) Acc. (%)

AP-CNN 200 CNN 224×224 9032 71.24 8762 70.72 8764 97.82

FFM+MAM 200 CNN+Transformer 224×224 16782 75.74 16774 76.82 16772 98.77

Pest-ConFormer 200 CNN+Transformer 224×224 19446 75.51 18362 79.89 18544 98.45

Swin-AARNet(ours) 200 CNN+Transformer 224×224 20593 78.77 20582 82.17 20358 99.48
fro
FIGURE 9

Comparison results between Swin-AARNet and other advanced methods.
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system achieves an overall processing frame rate of 25–30 FPS

(Frames Per Second). This supports a camera movement speed of

1–1.5 meters per second while maintaining high recognition

accuracy. For large-scale pest detection scenarios, efficiency can

be further enhanced through strategies such as frame skipping and

inter-frame feature fusion. In conjunction with high-resolution

cameras and sliding window techniques, this allows for high-

precision recognition across large image regions. It is also worth

noting that recognition conditions vary by pest type. For relatively

static pests such as snails, image acquisition is comparatively
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straightforward. However, for more active pests, high-frame-rate

cameras are required to improve capture success rates and ensure

accurate recognition by the model.

Furthermore, future studies in pest image recognition can be

expanded to larger and more diverse datasets to further evaluate the

model’s robustness under complex real-world conditions, such as

variations in lighting, image resolution, and seasonal differences.

These efforts will lay a solid foundation for the development of a

more comprehensive and practical pest image classification system,

ultimately enhancing crop protection and food security.
FIGURE 10

Grad-CAM images generated by the two modules. The first column shows three different pest raw images. The images in the second column are
the Grad-CAM images acquired by Swin Transformer. The images in the third column are the Grad-CAM images obtained by Swi-AARNet. By Swin-
AARNet, the model can extract pest features more comprehensively.
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5.3 Conclusion

Pest image recognition presents several challenges, such as uneven

inter-class variation and significant morphological differences across

developmental stages. Some pest species exhibit extremely subtle

interclass distinctions, while others undergo dramatic morphological

changes throughout their life cycles. To address these issues, we
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propose a novel insect image recognition method, namely the Swin-

AARNet: a deep residual attention network composed of a Swin

Transformer backbone and two attention modules.

Our approach consists of several key components. The first is

the DWAblock, which extracts channel-wise features from the

feature maps. It not only integrates local feature information but

also enhances the model’s ability to capture global context. The
FIGURE 11

Confusion matrix on the Li dataset, where A stands for Gryllotalpa, B for Leafhopper, C for locust, D for Oriental fruit fly, E for Pieris rapae Linnaeus,
F for Snail, G for Spodoptera litura, H for Stinkbug, I for Cydia pomonella and J for Weevil.
TABLE 8 Train/validation/Test (denoted as Train/Val/Test) set split and imbalance ratio (IR) for the IP102 dataset at different class levels.

Super-Class Class Train Val Test IR

FC

Rice 14 5043 843 2531 6.4

Corn 13 8404 1399 4212 27.9

Wheat 9 2048 340 1030 5.2

Beet 8 2649 441 1330 15.4

Alfalfa 13 6230 1037 3123 10.7

EC

Vitis 16 10525 1752 5274 74.8

Citrus 19 4356 725 2192 17.6

Mango 10 5840 971 2927 61.7

IP102
FC 57 24602 4098 12341 39.4

EC 45 20721 3448 10393 80.8

IP102 102 45095 7508 22619 80.8
Class denotes the number of subclasses of the corresponding superclass. FC and EC denote field and cash crops.
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second component, GSA, is a spatial enhancement module

introduced in this work. Built upon the DWAblock, GSA

integrates spatial information across feature maps and captures

global spatial features within individual channels, further improving

the model’s capability to extract localized spatial details.

In the experimental section, we conduct extensive ablation studies,

comparative experiments, and validation tests. Compared to state-of-

the-art self-supervised methods, our proposed model achieves superior

accuracy on public benchmark datasets IP102 and CPB and Li. The

results demonstrate that Swin-AARNet not only fits well to the data but

also exhibits strong generalization capabilities. These findings validate

the effectiveness and rationality of the individual components of Swin-

AARNet. In addition, we have preliminarily developed a desktop

application to demonstrate the practical application of the proposed

recognition method. In future work, we plan to further extend our

efforts to mobile application development, aiming to provide more

accessible and convenient solutions for agricultural pest identification.
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