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Boreal coniferous forests play important roles in global ecological and economic

processes. Mongolia, rich in forest resources and part of the boreal ecosystem,

faces significant deforestation due to Erannis jacobsoni Djak (Lepidoptera:

Geometridae), a rapidly spreading needle pest in coniferous forests. This study

aims to provide with rapid and precise pest occurrence data, enabling timely and

effective control measures to preserve and enhance the agroforestry ecological

environment. In vegetation disturbance detection, UAV remote sensing exhibits

operational performance with unique spatiotemporal advantages (notably cm-

resolution data acquisition and flexible revisit cycles) unattainable through

traditional ground surveys or satellite platforms. Therefore, we used unmanned

aerial vehicle (UAV) imagery from representative areas affected by E. jacobsoni,

calculated conventional and red edge spectral indices, extracted features

sensitive to pest infestation levels, detected disturbances using machine-

learning algorithms, and analyzed the pest’s spatial distribution. The sequential

forward selection (SFS) and successive projection algorithms (SPA) can effectively

extract features sensitive to the response to pest disturbance, in which the red

edge (RE) features have a greater effect than the conventional (CONV) features in

detecting the pest. The detection models developed using machine learning all

achieved accuracy rates above 82%, with the Back Propagation Neural Network

(BPNN) performing the best. Spatial distribution analysis based on the model

revealed that E. jacobsoni primarily exhibited a pattern of outward diffusion from

the center of aggregation during the outbreak period.
KEYWORDS
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1 Introduction

Coniferous taxa are distributed in most vegetation biomes

worldwide (Rautiainen et al., 2018). Of these, boreal coniferous

forests play an important part in terrestrial ecosystems (Zheng et al.,

2023), serving as biodiversity refuges and major CO2 filters (Diez

et al., 2021), with large pools of atmospheric CO2 stored in their

organisms and soils (Ciais et al., 2013; Duarte et al., 2022; Yang

et al., 2023). They also hold economic value through softwood

production and petroleum substitutes, making them vital to global

ecological and economic processes (United Nations Economic

Commission for Europe/Food and Agriculture Organization of

the United Nations (UNECE/FAO), 2016; FAO and UNEP,

2020). Intensifying climate change has disrupted natural

disturbance cycles, including wildfires and pest outbreaks,

significantly affecting coniferous forests (McCullough et al., 1998;

Ramsfield, 2016; Seidl et al., 2017). Among these, the increasing

frequency and scale of pest outbreaks in forests worldwide have

garnered significant attention (Seidl et al., 2016; Jactel et al., 2019;

Przepióra et al., 2020). According to reports, between 2002 and

2010, an average of 14.5 million m3 of timber in Europe was affected

annually by bark beetle infestations (Sommerfeld et al., 2021); in

temperate forests of North America, the area impacted by pests and

diseases each year was nearly 50 times that of wildfires (Dale et al.,

2001); from 2003 to 2012, approximately 85 million hectares of

global forest were disturbed by pests (van Lierop et al., 2015); and

most global climate change scenarios favor an increase in the

outbreak rates of pests in temperate forests in the future (Logan

et al., 2003). This indicates that the health of coniferous trees will be

compromised (Gromtsev, 2002), and the cyclical processes of

coniferous forest ecosystems will face more significant disruptions.

Mongolia is rich in forest resources, amounting to 18.6 million

hectares, of which 14.2 million are coniferous forests. These are an

important part of the Mongolian and boreal forest ecosystems

(FAO, 2020; Tungalag et al., 2020). Since 1980, approximately

11.52 million hectares of forests in Mongolia have been infested

by pests, resulting in a 0.39% decline in forest cover, 30% forest

degradation, and 17% of forests classified as severely damaged and

at risk of extinction (Ma et al., 2022). Additionally, forestry

department statistics show that between 2016 and 2020, pest

infestations affected 1.79 million hectares. Among these, Erannis

jacobsoni Djak (Lepidoptera, Geometridae) is one of Mongolia’s

most widespread and characteristic conifer pests. It was first

identified in Russia’s South Siberian region by Soviet scholar

Djakonov (Djakonov, 1926). Subsequently, in 1929, another

former Soviet scholar, Viedalep, observed that the pest had spread

to Mongolia’s Zavkhan Province (Viedalep, 1975). Currently, its

outbreaks are primarily concentrated in the northern forests of

Mongolia. The E. jacobsoni poses a severe threat to forest trees. Its

larvae feed on larch needles between May and June, causing a

gradual reddening of the forest’s appearance or tree death, resulting

in a generalized decline in coniferous forests (Bai et al., 2021). This

pest is highly adaptable to the environment and rapidly becomes a

dominant species once it invades (Huang and Bao, 2017). Since

2010, E. jacobsoni infestations in Mongolia’s larch forests have
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expanded from tens of thousands to hundreds of thousands of

hectares, significantly impacting coniferous forest ecosystems (Ma

et al., 2022).Traditional pest control in Mongolia relies on manual

field surveys and monitoring records, which are limited by weather,

terrain, and time delays. These limitations hinder large-scale

monitoring of E. jacobsoni. It also involves a time lag and lacks

timeliness in specific surveys, resulting in delayed transmission of

outbreak information. Therefore, there is an urgent need for

technologies capable of meeting both spatial and temporal

requirements to perform large-scale, accurate monitoring of E.

jacobsoni pests. This will provide necessary information on the

pest situation to the relevant forestry departments, and to achieve

effective maintenance of the balance of the ecosystem of

coniferous forests.

When a tree is infested by a pest, its appearance and physical

and chemical indicators, such as chlorophyll, nitrogen, and

moisture content, are abnormal, causing the spectral reflectance

to rise and fall (Imran et al., 2020; Jiang et al., 2021; Lv et al., 2024).

This makes it a key tool for pest and plant health monitoring,

offering potential for real-time assessment of pest-induced damage.

Over the past three decades, remote sensing technologies have

rapidly advanced and become increasingly prominent in plant

health monitoring. Among these, unmanned aerial vehicle (UAV)

remote sensing is widely favored by researchers (Brovkina et al.,

2018; Wang et al., 2022). UAV has some advantages over traditional

monitoring methods, including: (1) Lower labor intensity, (2)

Reduced time costs, (3) Flexible sampling intervals, (3)

monitoring of diverse and even hardly accessible habitats (Garcia,

2020). As a low-altitude remote sensing platform, UAVs can

acquire higher-resolution imagery compared to satellite remote

sensing and enable short-notice revisits to target areas as needed.

This effectively solves the problem of frequent data gaps in satellite

imaging caused by adverse weather conditions such as clouds, rain,

and fog (Lu et al., 2022), making it especially valuable for small and

medium scale research (Banu et al., 2016; Senthilnath et al., 2017).

Equipped with highresolution sensors, the device offers strong

potential for canopy-scale pest detection (Yang et al., 2017; Yu

et al., 2021). Among these, airborne multispectral sensors have been

widely adopted in the UAV industry due to their advantages in cost,

operation, size, and weight (Eugenio et al., 2021). Integrating it with

traditional surveys would help minimize the cost of pest monitoring

(Duarte et al., 2022). Huang et al. (2018) combined UAV-based

multispectral sensor-collected images and ground survey data to

detect the level of spider mite infestation. Marston et al. (2019)

detected stress on farmland caused by Soybean Aphid infestation

through UAV multispectral imagery. Zhang J. et al. (2018) targeted

the Yunnan pine forest area invaded by the bark beetle Tomicus

yunnanensis (Coleoptera, Curculionidae, Scolytinae) and achieved

high-precision pest area identification based on UAV multispectral

images. Most studies have applied UAV multispectral applications

to the detection of agricultural diseases, weeds, and forest borer

pests. Among these, positioned between the red band, associated

with strong chlorophyll absorption, and the near-infrared band,

linked to light scattering in the leaf mesophyll, the red edge band is

sensitive to vegetation growth conditions, and physiological and
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biochemical parameters. Therefore, it is the most informative and

important band reflecting the plant’s growth and cover (Huang

et al., 2003; Delegido et al., 2013; Jin et al., 2014). It has been used in

some vegetation health monitoring studies and demonstrated

superior performance compared to conventional features

(Bhattarai et al., 2020). Therefore, employing red edge related-

features for detecting E. jacobsoni damage levels is likely to yield

optimal results and enhance control efforts.

In plant pest research, appropriate features play a critical role in

subsequent detection and classification. Therefore, it is crucial to

select remote sensing indicators that are highly responsive to pest

damage and integrate them with effective classification models to

enhance detection performance (Duarte et al., 2022; Xu et al., 2022a;

Shi et al., 2024). Among feature screening algorithms, analysis of

variance (ANOVA), which evaluates the impact of different factors

on data variability (Kim and Park, 2018) and importance metrics,

which quantify the contribution of features to model performance

(Duarte et al., 2020) have gained widespread attention (Duarte et al.,

2022). The successive projection algorithm (SPA) is a method that

minimizes collinearity between variables through iterative

projections.It has been applied and achieved positive results in

previous studies on the pest infestation of E. jacobsoni. For instance,

Xi et al. (2022) extracted hyperspectral features sensitive to needle

chlorophyll and water content from E. jacobsoni-damaged trees, Ma

et al. (2022) identified multispectral and texture features responsive

to E. jacobsoni outbreaks, while Bai et al. (2024)successfully

extracted RGB features sensitive to E. jacobsoni occurrence. In

terms of classification models, many algorithms have successfully

detected symptoms in disturbed plants (Ecke et al., 2022). The

Random Forest (RF), which integrates multiple decision trees,

performs exceptionally well in geographic objects-based small-

sample image analysis, and Duarte et al. (2020) successfully used

this algorithm to detect damage caused by Eucalyptus Longhorned

Borers. The Back Propagation Neural Network (BPNN), based on

the chain rule and gradient descent principles, is highly popular for

predicting complex nonlinear systems, and Ma et al. (2019) applied

this method to identify powdery mildew and aphids in winter

wheat, achieving an accuracy of 82.6%. The Convolutional Neural

Network (CNN), due to its ability to automatically learn features,

exhibits excellent performance in processing one-dimensional

spectral data, and He et al. (2025) employed this algorithm to

detect the severity of damage caused by Pantana phyllostachysae

Chao and obtained satisfactory results.

Different pests exhibit significant variations in spatial

distribution patterns and damage symptoms (Kozár et al., 1994;

Stone and Mohammed, 2017). Although the application of UAV-

based red edge indices in vegetation detection is advancing, research

on their use for geometrid pests remains unclear, particularly in

assessing responses to damage severity levels and characterizing

spatial distribution patterns. This gap constitutes a critical research

priority. Based on this, we posit the underlying hypothesis: red

edge-related (RE) features can effectively quantify pest infestation

severity and characterize spatial distribution patterns. The

objectives of this study were to (I) examine whether the RE
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feature has an advantage over the conventional (CONV) feature

in monitoring the disturbance of E. jacobsoni, (II) compare the

effectiveness of several feature selection methods and machine-

learning models in the detection of pests, and (III) obtain the spatial

distribution pattern of pest disturbance. Using UAV multispectral

imagery from Binder, Khentii Province (a representative E.

jacobsoni outbreak zone), we screened sensitive features through

ANOVA, SPA, and the importance-based sequential forward

selection (SFS) method, and assessed damage levels using

machine learning algorithms. The findings provide empirical

insights and scientific references for large-scale forest

pest management.
2 Materials and methods

2.1 Experimental site

The study area was located in a typical area of E. jacobsoni

infestation in Binder, Kentii Province, Mongolia, as a forest area

600 m long and 300 m wide, with central coordinates at 110°

46’16.616”E, 48°26’25.667”N, and has an average elevation of

1,182m (Figure 1). The vegetation is predominantly deciduous

coniferous forest, primarily consisting of Siberian larch (Larix

sibirica) trees ranging in height from approximately 6 to 20

meters, with a very sparse admixture of birch (Betula platyphylla)

and minimal understory shrub cover. This relatively simple forest

structure is less resistant to pest invasion and thus suitable for the

occurrence of E. jacobsoni (Rigot et al., 2014). Through on-site

investigation in early June 2020, the area was severely infected with

E. Jacoboni and became a dominant species, with no observable

signs of other pests, wildfire or drought. Orthophoto imagery was

subsequently acquired via UAVs on June 20, serving as the primary

dataset for detection research.
2.2 Data preprocessing

2.2.1 Field survey data
Field data collection was conducted within five days before and

after the UAV flight. We evaluated damage levels in 840 sample

trees using the canopy leaf loss rate (LLR), resulting in a distribution

of 210 trees each in the healthy, mild, moderate, and severe

categories. The spatial distribution and images of trees at each

level are shown in Supplementary Figures S1A and B. The

methodology is as follows: Multiple staff members observed

several branches deemed representative of each sample tree’s

condition. After consolidating their observations, we selected nine

sample branches for counting healthy and damaged needles. The

LLR was then calculated for each tree using the following formula

(Huang et al., 2019):

LLRi =
Ldi

Lhi + Ldi
� 100%
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Where LLRi denotes the relative leaf loss rate of the ith sample

tree, which ranges from 1 to 100%, and Lhi and Ldi are the numbers

of healthy and damaged needles in the ith sample tree, respectively.

On this basis, the level of damage to each sample tree was evaluated,

with the association between the LLR and the level of damage (Ma

et al., 2022; Bai et al., 2024).

2.2.2 UAV remote sensing data
UAV aerial photography, conducted with a field survey, utilized

a DJI Phantom 4 multispectral quadcopter drone (Supplementary

Figure S1C) with a 5-band multispectral sensor (blue, green, red,

red edge, near-infrared) offering 200-pixel and centimeter-level

resolutions. Data was collected under clear, cloudless, windless

conditions from 10:00 to 14:00 in Beijing, at a 100 m altitude and

8 m/s speed. The camera, calibrated with a whiteboard pre-flight,

was directed vertically downward during capture. Images were pre-

processed in DJI Terra with reflectance and geometric corrections,

and ArcGIS 10.3 overlaid them with ground survey data to map
Frontiers in Plant Science 04
ROIs of sample tree crowns, minimizing shadow and vegetation

effects, for extracting tree features.

2.2.3 Feature calculation
Spectral vegetation indices, which are combinations of two or

more reflectance wavelengths, can enhance the differences in

reflectance between stands at various levels of damage and are

less affected by light and the background. Among these, the RE

indices are advantageous for monitoring vegetation stress

(Runesson, 1991; Abdullah et al., 2019; Liao et al., 2022; Ma et al.,

2022). In this study, 62 vegetation indices, commonly used in

vegetation monitoring research, were selected as features to detect

the damage level of E. jacobsoni (Supplementary Table S1),

including 31 RE index features (Tian et al., 2020; Yang et al.,

2020; Niu et al., 2021; Sa et al., 2024). The ENVI Bandmath module

was used to calculate the vegetation index for each sample ROI

stepwise, with the average value of each ROI serving as the

eigenvalue for the corresponding sample tree.
FIGURE 1

Study area for Erannis jacobsoni disturbance detection in 2020. (a) Specific geographical locations of study area in Mongolia; (b) Study site location
(X) in Binder Soum (red border), Khentii Province (pink border); (c) 3D visualization of the experimental area generated by integrating UAV aerial
photography with Digital Elevation Model (DEM); (d) Field photographs of the experimental area, with the damaged trees marked in red circles.
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2.3 Data analysis

Here, we analyzed the response of spectral indices to E.

jacobsoni damage levels by integrating field-assessed damage

ratings of sample trees with spectral feature data obtained from

the experimental area. We extracted the sensitive feature set using

the ANOVA, SPA, and SFS algorithms, and conducted a study on

the detection of the E. jacobsoni disturbance using three algorithms,

namely, RF, CNN, and BPNN. The overall methodology pipeline is

shown in Figure 2.

2.3.1 Sensitive feature extraction
In classification tasks, all types of algorithms benefit from

feature space downscaling to reduce the risk of overfitting and

improve model accuracy (Guyon et al., 2002). Therefore, three
Frontiers in Plant Science 05
dimensionality reduction algorithms were used in this study to filter

features sensitive to pest damage variation.

1. Analysis of variance.

ANOVA is a technique used to analyze the extent to which the

mean values of variables are affected by different types and

combinations of factors (Bewick et al., 2004). By calculating the

F-value between pest damage levels and the original features

through ANOVA, the variation between classes can be

determined, identifying characteristics that significantly respond

to the target variable.

2. Successive projection algorithm.

The SPA is a forward variable selection algorithm that uses

projection operations to minimize covariance among modeling

variables by selecting those with the largest projection in the

orthogonal subspace of previously chosen variables (Zhang N.
FIGURE 2

Method pipeline of Erannis jacobsoni disturbance detection.
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et al., 2018). This eliminates redundant information in vegetation

indices, allowing the extraction of a few independent features to

improve model accuracy (Huang et al., 2019; Liu and Guo, 2015).

3. Sequence forward selection.

SFS is a feature selection algorithm that enhances model accuracy

and prevents overfitting by selecting the optimal subset of features

(Işık, 2020). It ranks features based on their importance for detecting

pest damage levels using mean decrease in accuracy, then iteratively

adds the most important features to the model, evaluating accuracy

each time, until all features are included. The combination with the

highest accuracy and fewest features is chosen as the input for the pest

detection model (Zhu et al., 2009; Du et al., 2023).

2.3.2 Model building
In this study, the sensitive feature subset, comprising sensitive

indicators from both CONV and RE feature sets, is regarded as the

explanatory variable. The damage level of E. jacobsoni is detected in

MATLAB based on three models, that is, the traditional machine-

learning model RF and the deep learning models CNN and BPNN.

1. Random forest.

RF is an ensemble learning algorithm that constructs multiple

independent decision trees, each trained on a bootstrapped sample

and a random subset of features from the original dataset. The final

classification is determined by majority voting across all trees,

enhancing accuracy and generalization compared to individual

decision trees (Torres and Qiu, 2014; Pádua et al., 2020).

2. Convolutional neural network.

A CNN is a feed-forward neural network that uses convolutional

layers to extract features. It typically consists of input, convolutional,

pooling, fully connected, and output layers (Yan et al., 2021). The

convolutional layers extract local features using various kernels, pooling

layers filter features and reduce parameters (commonly viamax or average

pooling), fully connected layers integrate features, and the output layer

classifies the data (Kang et al., 2024). CNNs map high-dimensional

nonlinear data to a low-dimensional space, reducing parameters and

mitigating overfitting (Ma et al., 2022). In this study, a 1D-CNN was

chosen for pest damage detection using spectral data (Hu et al., 2015).

3. Backpropagation neural network.

A BPNN is a multilayer mapping network with an input layer,

one or more hidden layers, and an output layer, using a structure

learning algorithm to minimize backward error during forward

information transmission (Liu et al., 2013). It features a simple

structure, ease of construction, fast computation speed, and

effectiveness in tackling nonlinear problems (Zhu et al., 2019).

Trained through supervised learning with backpropagation, it

employs activation functions—typically the sigmoid function

(ranging from 0 to 1)—to scale neuron outputs before passing

them to the next layer (Geethanjali et al., 2008; Zin et al., 2015). This

process aims to minimize cumulative error in the training set and

maximize recognition performance (Chen et al., 2022).

2.3.3 Model evaluation
In this study, the dataset was randomly split into training and

test sets at a 3:1 ratio. The detection model was constructed using
Frontiers in Plant Science 06
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performance was evaluated using the test data with metrics

including overall accuracy (OA) (ratio of correctly classified

samples to total samples, ranging from 0 to 1), kappa coefficient

(proportion of error reduction over random classification, typically

0 to 1), recall (ratio of retrieved to relevant samples), F1 score

(harmonic mean of precision and recall, balancing specificity and

sensitivity) (Zhang X. et al., 2019; Xu et al., 2021), and the confusion

matrix (providing user precision (UA) and producer precision (PA)

by comparing predicted and actual damage levels). These metrics,

derived from true positives (TP), false positives (FP), true negatives

(TN), and false negatives (FN), assess the model’s classification

accuracy across damage levels. The detailed formulas are as follows:

OA =
TP + TN

TP + TN + FP + FN
� 100%

Kappa =
OA − ok

i=1
NP�Nt

S2

1 − ok
i=1

NP�Nt

S2

Recall =
TP

TP + FN

F1 =
2TP

2TP + FP + FN

where k is the number of categories, Np is the number of

predictions, Nt is the number of measurements, and S is the

sample size.
3 Results

3.1 Feature sensitivity analysis and
extraction

3.1.1 Sensitivity analysis
The distribution of the mean differences in eigenvalues among

the damage classes was plotted to determine whether the selected

original vegetation indices were responsive to changes in the level of

pest damage (Figure 3). As shown in the Figure, except for EVI,

SIreg, and SI1reg*, which showed a weaker response to changes in

damage level (EVI had a positive difference of 0.0019 and 0.0013 in

healthy–mild and mild–moderate, and a negative value of −0.0056

in moderate–severe. SIreg showed positive differences of 0.2119 and

0.1308 between healthy–mild and mild–moderate levels,

respectively, and a negative difference of −0.0272 between

moderate–severe. SI1reg* was negative −0.1235 in healthy–light

and positive 0.0204 and 0.0227 in mild–moderate and moderate–

severe). All other index features exhibited consistent trends,

indicating the selected vegetation indices are promising for pest

detection. Among them, SCCI, EVIreg, NDSIreg, and NDSIreg*

increased steadily with rising damage levels from healthy to mild,

moderate, and severe. Meanwhile, the remaining indices showed a

gradual decline.
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3.1.2 Sensitive features extraction
To obtain features that were sensitive to changes in the level of

pest damage, a subset of sensitive RE features and a subset of

sensitive CONV features were filtered from the original set using

ANOVA, SPA, and SFS, respectively, and were used as the input

variables of the pest detection model.

1. ANOVA-based feature selection results.

The ANOVA-based variance distributions of the CONV and

RE features are shown in Figure 4. The feature statistic F-value is

greater than a given threshold value of p < 1 × 10-10, indicating that

features with F greater than 13.57 are highly significantly sensitive
Frontiers in Plant Science 07
to the level of pest damage. Therefore, features with F-values below

the threshold of 13.57 were excluded, and the remaining features

were retained as the sensitive feature subset. Among the CONV

features, only EVI was excluded due to its low F-value of 0.1898. In

contrast, all other CONV features had F-values exceeding 500 and

were selected as sensitive features. Among the RE features, the F-

values of EVIreg and EVIreg* were 1.4689 and 3.6037, respectively.

Therefore, they were excluded, while the F-values of the rest of the

features were all higher than 40 and were selected as sensitive

RE features.

2. SPA-based feature selection results.
FIGURE 4

Screening plot of conventional and red edge features for modeling the detection of Erannis jacobsoni damage levels using ANOVA. Features with
F-values exceeding the sensitivity threshold (red dashed line) are selected as sensitive features.
FIGURE 3

Mean variations of features across Erannis jacobsoni damage levels, with red circles highlighting features exhibiting low responsiveness to damage
progression. (a) Conventional features; (b) red edge features.
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The number of features and the corresponding RMSE based on

the SPA are shown in Figure 5. In both the CONV and RE feature

sets, the RMSE values decreased as the number of features increased,

reaching near-minimum values of 0.4044 and 0.3995 at 13 and 6

features, respectively. Beyond these points, further increases in

features yielded diminishing RMSE reductions. Therefore, the

algorithm uses the principle of minimum redundant information

and minimum RMSE among features (Zhang et al., 2022), and

selects 13 features (2NLI, CI, GDVI, GLI, GMNLI, GSAVI, InRE,

MNLI, MTVI2, NLI, RVI, TVI, and WDRVI) and six features (ARI,

DVIreg, Int2reg*, NDSIreg*, SIreg, and TCARI) as sensitive feature

subsets in the CONV and RE features, respectively.

3. SFS-based feature selection results.

After ranking the importance of the original feature set using

RF (Figures 6a, c), the number of features based on SFS and the

corresponding accuracy varied, as shown in Figures 6b, d. For

the CONV features, the accuracy increased rapidly with an

increase in the number of features until the accuracy tended to

be stable when it reached five. The classification accuracy

reached its peak at 0.8905 when the number of features

increased to 24. Accordingly, 24 features were selected as the

sensitive subset of CONV features. These included the majority

of features, excluding RDVI, 2NLI, TVI, lnRE, EVI, GDVI, and

DVI, all of which had importance values below 0.017. In

contrast, for the RE feature set, the accuracy improved

markedly with the addition of features, peaking at 0.9095 when

the number of features reached six, after which it leveled off. Six

features were selected as a subset of the sensitive RE features,

including NDSIreg*, RVIreg*, NDVIreg*, DVIreg*, ARI, and

TCARI, with the importance of all being higher than 0.06.
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3.2 Model accuracy

Based on the subset of sensitive RE features screened by the three

data dimensionality reduction methods, a model for detecting the

damage level of E. jacobsoniwas constructed with the help of RF, CNN,

and BP algorithms and compared with the CONV features. The results

are presented in Tables 1 and 2. Most RE-based models demonstrate

improved accuracy compared to CONV models, with particularly

notable gains in the SPA-CNN and SFS-CNN models. Specifically,

OA, kappa, recall, and F1 scores improved by 8.57%, 0.0927, 0.0598,

and 0.0609, and by 8.58%, 0.1019, 0.0923, and 0.093, respectively. The

optimal RE model was SPA-BPNN, achieving OA, kappa, recall, and

F1 scores of 92.86%, 0.9086, 0.9267, and 0.9263. These values represent

improvements of 0.96%, 0.0118, 0.0102, and 0.0104, respectively, over

the best-performing CONV model (SPA-BPNN).

Among the three feature selection methods, selection based on

SPA and SFS was the most effective. Taking the RE features as an

example, the accuracy of SPA-RF improved by 1.91%, 0.0222,

0.0165, and 0.0163 compared with that of ANOVA-RF. The

accuracy of SPA-BPNN improved by 3.81%, 0.0459, 0.0356, and

0.0343 in OA, kappa, recall, and F1, respectively, compared to

ANOVA-BPNN. Although SPA-CNN showed slight decreases in

recall (−0.0052) and F1 (−0.0049) due to omission errors compared

to ANOVA-CNN, it achieved improvements of 1.9% and 0.0183 in

OA and kappa, respectively. The accuracy of SFS-RF increased by

4.76%, 0.0569, 0.0502, and 0.0499 in OA, kappa, recall, and F1,

respectively, compared to ANOVA-RF. The accuracy of SFS-CNN

improved by 7.62%, 0.0877, 0.0658, and 0.0662 compared to

ANOVA-CNN. The accuracy of SFS-BPNN improved by 3.33%,

0.0401, 0.0319, and 0.0313 compared to ANOVA-BPNN.
FIGURE 5

Feature quantity and corresponding RMSE of SPA-screened conventional and red edge features for Erannis jacobsoni damge levels detection
modeling.
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To examine the model detection performance at each damage

level, the confusion matrices of the SPA and SFS models based on the

RE features were plotted (Figure 7). The accuracy of each model

reached more than 0.94 in the detection of healthy trees, especially in

the BPNN model, where no misclassification occurred. A satisfactory

accuracy of over 0.87 was achieved in detecting severe damage levels.

Although there was slight confusion between mild and moderate

levels, resulting in a decrease in accuracy, the performance still met

the requirements for pest monitoring. Among the models,
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SFS-BPNN and SPA-BPNN models achieved optimal results in

mild and moderate detections, respectively, with PA and UA values

of 0.9107 and 0.9273 for mild, and 0.8654 and 0.9184 for severe.
3.3 Spatial distribution of pest disturbance

To show the detection effect of this study more intuitively, based

on the optimal model (RE-SPA-BPNN), the damage level of 2938
TABLE 1 Performance evaluation results of Erannis jacobsoni disturbance detection models based on red edge features.

Dataset Model OA Kappa Recall F1

RE

ANOVA-RF 86.19% 0.8280 0.8550 0.8551

SPA-RF 88.10% 0.8502 0.8715 0.8714

SFS-RF 90.95% 0.8849 0.9052 0.9050

ANOVA-CNN 82.86% 0.7915 0.8358 0.8339

SPA-CNN 84.76% 0.8098 0.8306 0.8290

SFS-CNN 90.48% 0.8792 0.9016 0.9001

ANOVA-BPNN 89.05% 0.8627 0.8911 0.8920

SPA-BPNN 92.86% 0.9086 0.9267 0.9263

SFS-BPNN 92.38% 0.9028 0.9230 0.9233
Bold values denote the best-performing model for each evaluation metric.
FIGURE 6

SFS-screened conventional and red edge features for Erannis jacobsoni damge levels detection Modeling. (a) Importance of conventional features.
(b) Quantity and accuracy of selected conventional features. (c) Importance of red edge features. (d) Quantity and accuracy of selected red edge
features.
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larch trees growing in the test area was inverted. The spatial

distribution of the damage level of E. jacobsoni was then plotted

(Figure 8). As a result, 685, 800, 221, and 1232 larch trees were

found to be healthy, mildly, moderately, and severely damaged,

accounting for 23.32%, 27.23%, 7.52%, and 41.93% of the total

number of trees, respectively. Regarding spatial distribution, severe

damage levels were concentrated in the southwestern part of the
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study area. Moderate levels were scattered among the severe levels,

while mild and healthy levels surrounded the severe areas. Forest

damage gradually decreased from the center of the study area

outward, following a pattern of severe, moderate, mild, and

healthy. This distribution was similar to the spatial pattern

observed in predicting mulberry looper occurrences, as reported

by Jia et al (Jia et al., 2019).
FIGURE 7

Confusion matrices of high-performance Erannis jacobsoni disturbance detection models: RF, CNN, and BPNN models developed using red edge
features selected via SPA and SFS.
TABLE 2 Performance evaluation results of Erannis jacobsoni disturbance detection models based on conventional features.

Dataset Model OA Kappa Recall F1

CONV

ANOVA-RF 88.57% 0.8563 0.8801 0.8798

SPA-RF 87.14% 0.8394 0.8659 0.8638

SFS-RF 89.05% 0.8620 0.8846 0.8844

ANOVA-CNN 80.48% 0.7638 0.8124 0.8042

SPA-CNN 76.19% 0.7171 0.7708 0.7681

SFS-CNN 81.90% 0.7773 0.8093 0.8071

ANOVA-BPNN 89.05% 0.8626 0.8934 0.8930

SPA-BPNN 91.90% 0.8968 0.9165 0.9159

SFS-BPNN 90.48% 0.8798 0.9058 0.9050
Bold values denote the best-performing model for each evaluation metric.
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4 Discussion

4.1 Potential of RE features for pest
identification detection

Previous studies have shown that outbreaks of E. jacobsoni

infestations can lead to significant changes in the chlorophyll

content of trees (Li et al., 2023). The RE band has been found to

have advantages in measuring vegetation chlorophyll content (Lu

et al., 2019; Bhattarai et al., 2020; Miao et al., 2025), and the results

of this study on forest trees are consistent with these findings. To

investigate the underlying reasons, the correlation graphs between

the reflectance of each band and the level of damage in the canopy

of samples were plotted (Figure 9). Linear fitting was performed

based on the changes to analyze the degree of response of the

spectral reflectance, where k is the slope, and R is the coefficient of
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determination. Figure 9 shows that in the process of improving the

damage level, the reflectance of the green band in the severe level

increased instead of decreasing. This may be due to the high LLR of

the trees at the severe level, which allowed the reflectance of the

understory soil background to contribute to the canopy reflectance,

thereby increasing the green band reflectance. The k values of the

fitted curves for reflectance in the blue and red bands were 0.0256

and 0.0329, respectively, indicating a gradual increase with the

decline in foliage volume and biochemical fractions of the trees. The

k values of the fitted reflectance curves in the RE and NIR bands

were 0.058 and 0.1077, respectively, showing a rapidly decreasing

trend. This indicates that the RE and near-infrared (NIR) bands are

more responsive to the changes in the pest damage levels. Among

them, the RE reflectance fitting curves are flatter than those of the

NIR band. However, the data at each damage level is more

aggregated, with fewer outliers. The standard deviations of the
FIGURE 8

Spatial distribution of Erannis jacobsoni damage levels predicted by optimal model RE-SPA-BPNN, with magnified views of blue-framed regions.
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data distributions at the four levels are lower than those of the NIR

band by 0.02846, 0.02926, 0.02178, and 0.01702. This improves the

detection effect, thus further affecting the derived RE features.

Therefore, a better model was achieved by incorporating the RE

band into the detection of E. jacobsoni damage levels. Similar results

have been reported in the field of remote sensing detection, such as

the conclusions reached by Schuster et al. (2012); Immitzer et al.

(2016), and Zhang et al. (2017) in studies on crop classification, tree

species identification, and land-use classification.
4.2 Impacts of feature selection methods
on model accuracy

In this study, the feature data were downsized by three feature

filtering methods. ANOVA has the smallest downsizing degree, and

only two and one redundant features are eliminated from the

original RE and CONV sets, respectively. This causes the

ANOVA-based model to be less accurate. In addition, in

ANOVA-RF, the poor performance of the RE features compared

to the CONV features may be due to the model’s instability caused

by overlapping data. While SPA eliminates 25 and 18 redundant

features from the original RE and CONV sets, respectively, SFS

removes seven CONV features and 25 RE features based on feature

importance, yielding positive results. This is especially true for RE-

based pest detection, where the OA consistently exceeded 84%. The

complexity of vegetation indices’ responses to pest damage levels

cannot be described by a simple linear relationship. ANOVA

focuses on linear problems and tends to exclude feature
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correlations, making it difficult to optimally extract features (Xu

et al., 2022b). Meanwhile, SPA and SFS can analyze both linear and

nonlinear complex patterns; the correlation between features can be

considered by feature covariance minimization and importance,

respectively (Rogers and Gunn, 2006; Zeng and Ye, 2012; Sauwen

et al., 2017; Schonlau and Zou, 2020). Features are added gradually

from a small number of features in a forward selection manner, and

the optimal subset of features is then obtained to improve

model accuracy.

In the process of selecting the sensitive RE subset, ARI,

NDSIreg*, and TCARI were selected by both SPA and SFS. All

had F-values over 1000 in the ANOVA (Figure 5). Among them,

ARI is extremely sensitive to the anthocyanin and pigment content

of trees and can characterize the pigment uptake state of affected

trees (Gitelson et al., 2006; Skoneczny et al., 2020). It was also

selected as an effective index for detecting tree defoliation in the

study by Bhattarai et al. (2020). NDSIreg* can characterize the

chlorophyll and water uptake status of needles in damaged trees

based on the composition of red and red edge band differences,

showing strong correlation with chlorophyll content in Bai et al.

(2023) research. TCARI is extremely sensitive to changes in

chlorophyll during vegetation damage (Zarco-Tejada et al., 2005),

and demonstrated particular utility in Wu et al. (2021) study.

Taking these three indices as examples, we plotted the variation

of red-edge (RE) feature values with damage severity and compared

them against the three optimal CONV features (GLI, MNLI,

WDRVI) (Figure 10). The slopes of change increased after the

features were constructed using the RE band, particularly for

NDSIreg* and TCARI, which exceeded 0.2. This represented a
FIGURE 9

Canopy spectral (blue, green, red, red edge, NIR) response of Larix sibirica to Erannis jacobsoni damage levels, with trend slope k derived from linear
regression of class-mean reflectance.
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significant improvement compared to the CONV features. The

slope of change in ARI was lower, likely because it is an auxiliary

feature that provides supplementary information related to

anthocyanins for other RE features. Its contribution to pest

detection is relatively small but essential. These results are

consistent with the results of Chang et al. (2020), who

demonstrated that RE indices can more effectively reveal spectral

differences between healthy and infested plants compared to CONV

indices. However, our results diverge from Guerra-Hernández et al.

(2021) UAV-based tree health classification study, where CONV

features outperformed RE features. This discrepancy may stem

from the narrow bandwidth (10 nm) of the red edge band in

their sensor, potentially limiting detection of pigment-driven

spectral variations. Similarly, Santos et al. (2022) observed

superior discriminatory performance in green and near-infrared

(NIR) bands over red-edge features for plant-nematode damage

detection. This outcome may be attributed to two factors: the

narrow red-edge bandwidth (10 nm) and the established principle

that red-edge bands exhibit greater effectiveness in high-biomass

vegetation (Curran et al., 1990). The lower biomass of their target

plants relative to forest ecosystems likely contributed to these

divergent results.
4.3 Model performance evaluation

In this study, based on RE features, three widely applied

algorithmic models were used to detect the damage level of

E. jacobsoni. These algorithms have been proven effective in prior
Frontiers in Plant Science 13
studies on pest infestations (Ma et al., 2019; He et al., 2025).

Specifically, RF offers high-precision classification through

ensemble learning, CNN excel at extracting intricate local spatial

features, and BPNN are advantageous in identifying nonlinear

relationships. By applying models with diverse operational

principles, the likelihood of successfully detecting vegetation

damage or pest infestations is increased (Miao et al., 2025., He

et al., 2025). To evaluate the potential of the three models more

intuitively, the four evaluation indicators were combined into one

indicator, CA, with the same weights. The results are shown in

Figure 11. BPNN is the most effective across different sensitive

datasets, with CA of up to 92.26% (SPA-BPNN), followed by RF

with a CA of 90.12% (SFS-RF). CNN is slightly less effective, with the

highest CA of 89.64% (SFS-CNN), but it is still fully capable of being

used in pest detection studies. In general, deep learning outperforms

traditional machine learning in classification and recognition tasks

(Liu and Wang, 2021). However, the performance of CNN in this

study is slightly lower compared to RF, and CNN reduces by 2.75,

3.92, and 0.48% compared to RF in the sensitive datasets based on

ANOVA, SPA, and SFS, respectively. This is partly due to the fact that

while CNN can implicitly learn features from training data, it still

faces the challenge of feature selection when working with a relatively

small sample size. A sufficient sample size is often difficult to obtain,

which may affect its classification performance (Yu et al., 2021;

Alzubaidi et al., 2021). In this study, a detection model was

constructed through a one-dimensional vector relationship between

RE features and the level of damage, while a CNN is more suitable for

damage-level recognition directly from visible-light images in a

multidimensional perspective (Sudowe and Leibe, 2011).
FIGURE 10

Canopy response of conventional and red edge features in Larix sibirica to Erannis jacobsoni damage levels, with slope k derived from linear
regression of class-mean feature values.
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4.4 Patterns of spatial distribution of pests

Herein, we realized the inversion of the spatial distribution of

the damage level of E. jacobsoni using an optimal model. Based on

the Global Moran’s I value, Anselin Local Moran’s I, and Getis-Ord

Gi*, indicators of global and local statistics (Moran, 1948; Anselin,

1995; Getis and Ord, 2010) further revealed the spatial correlation

and clustering of E. jacobsoni disturbances (Figure 12). In terms of
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global statistics, a significant positive autocorrelation in the overall

spatial distribution of pest damage levels can be inferred from

Moran’s I, Z-value, and P-value, as shown in Figure 12. For local

statistics, the two indicators consistently characterized the

aggregation of pest damage levels at the local scale. Using

Anselin’s Local Moran’s I, this study classified the four infestation

types—high–high, high–low, low–high, and low–low—into spread

distribution, saltatory distribution, latent distribution, and healthy
FIGURE 12

Spatial autocorrelation visualization of predicted Erannis jacobsoni damage distribution from optimal model. (a) Anselin Local Moran’s I (for cluster-
outlier detection); (b) Getis-Ord Gi*(for hot spot identification).
FIGURE 11

Comprehensive accuracy assessment of Erannis jacobsoni infestation detection using red edge-based modeling.
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areas, respectively (Figure 12a). Most of the infested areas were

dominated by a spread distribution. This is consistent with what

was mentioned by Weseloh (Weseloh, 1989) and was distributed in

the northwestern part of the experimental area. Meanwhile, the

healthy areas surrounded the spread distribution, which was mainly

distributed in the southeastern part of the experimental area. This

indicated that the diffusion pattern of the infestation spread

outward from the aggregated centers gradually to the healthy areas.

Saltatory and latent distributions were scattered in the spread

distribution and healthy areas, respectively. This may be attributed

to factors such as wind force and wind direction, which affect

diffusion patterns and result in the saltatory distribution of the pest.

The strong resistance of some forest trees temporarily reduces the

infestation rate, resulting in delayed infestation and allowing

damage to be distributed latently (He and Alfaro, 1997, 2000).

For Getis-Ord Gi* (Figure 12b), the extremely significant hotspots

—areas with high damage values —were mainly clustered in the

central to northwestern part of the study area. These hotspots were

surrounded by sporadic significant hotspots and, further outward,

by areas of low or no damage, which can be considered spatially

clustered cold spots. This pattern is consistent with the results of the

inversion. The reason for this is that, according to the field

investigation, E. jacobsoni uses the soil under the canopy of the

larch as the egg-laying site during reproduction. After the larvae

from the originating site have passed the incubation period and

drilled out of the soil, they take the larch as the host and feed on its

needles. E. jacobsoni is not a particularly mobile insect. When its

host trees are severely damaged and lack needles, the insect spits silk

and either falls to the ground or is carried by the wind. It can also

crawl to nearby trees, where it begins to feed on the new needles

until they are completely consumed. This behavior causes a regular

spatial change in the level of damage. Therefore, it is recommended

that forestry managers utilize the current spread patterns of E.

jacobsoni, in conjunction with field surveys and monitoring data, to

implement targeted control measures such as pesticide spraying,

fumigation, and biological control. Additionally, employing aerial

application methods for radial control along the pest’s dispersal

direction and establishing pheromone-based trapping networks can

enhance management efficacy. This integrated strategy aims to

reduce labor and financial inputs, lower operational costs, and

achieve cost-effective pest management.
4.6 Challenges and prospects

This study was based on single-time-phase UAV multispectral

imagery to identify disturbances in the pre-mid phase of pest

infestation and obtain ideal results. Nevertheless, detection accuracy

for early-stage infestations (mild level) remains suboptimal, primarily

due to minimal spectral separability between healthy and mildly

stressed vegetation—a critical challenge requiring resolution. Notably,

integrated approaches incorporating thermal infrared, fluorescence,

and radar data with optical remote sensing have gained traction among

researchers, proving instrumental in generating more reliable results

(Lin et al., 2019; Duarte et al., 2022; Zhang J. et al., 2019). Concurrently,
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multi-angular remote sensing techniques represent a promising

strategy worthy of exploration to improve pest detection efficiency

(Li et al., 2015). Therefore, multisource data fusion and multi-angle

aerial photography schemes are expected to be used in future

experiments. In terms of the spatial distribution of pests, under high

population density conditions, competition and movement should

reduce aggregation and approach randomness (Waters, 1959; Taylor,

1984). If aggregation behavior does not decrease with increasing

density, populations are behaviorally limited (Henson, 1959). During

the outbreak phase, the spatial distribution pattern of the infestation

changes as it shifts from low to high-density populations. However,

single-time-phase data acquisition constrains observation of

spatiotemporal infestation patterns throughout developmental cycles.

Consequently, we will incorporate multitemporal images during the

infestation period into our future experiments to analyze the spatial

distribution of E. jacobsoni in more detail. Moreover, while drone-

based remote sensing has been employed for pest detection, it exhibits

significant limitations in applications requiring time series analysis and

large-scale monitoring. These limitations include a scarcity of historical

data, the substantial financial and labor costs associated with acquiring

long-term continuous datasets, and the inherent challenges in

obtaining large-scale data. Consequently, satellite remote sensing is

often more suitable for studies necessitating extensive spatial and

temporal coverage (Luo et al., 2023). Nevertheless, data derived from

UAV can provide essential training and validation samples. When

integrated with satellite imagery, this approach enables enhanced

precision in pest detection across broader spatial scales, offering

valuable insights for large-scale pest management strategies.
5 Conclusion

In this study, we utilized UAV images and field survey data of

the origin of the E. jacobsoni infestation to derive the RE spectral

features, and integrated feature extraction and machine learning

algorithms to detect disturbances caused by the E. jacobsoni.

Results demonstrate that SPA and SFS exhibited exceptional

feature selection capabilities: SPA identified 6 RE and 13 CONV

features, while SFS selected 6 RE and 24 CONV features, with

these optimized combinations proving effective for E. jacobsoni

detection. Most RE-based models showed superior accuracy to

CONV features, reaching peak overall accuracy of 92% (vs. 91%

for optimal CONV performance) while demonstrating robust

pest detection capabilities. After inverting the damage levels of

all trees using this model, the spatial autocorrelation was

analyzed. It was found that E. jacobsoni exhibited a clumped

distribution, with damage levels gradually decreasing from the

point of origin outward. This pattern is linked to the life habits of

the pests.

Overall, this study has shown the advantages of RE features in

pest detection, aiming to provide an experimental basis for the

development and application of detection technology in pest

control and contribute to a solid foundation for the next step of

large-scale and high-precision pest monitoring, early warning, and

familiarization with the occurrence pattern.
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SUPPLEMENTARY FIGURE 1

(a) Spatial distribution of samples: green dots represent healthy trees, yellow

dots indicate mild damage, orange dots show moderate damage, and red
dots denote severe damage. (b) Field photographs of sample trees (Larix

sibirica) affected by Erannis jacobsoni at different damage levels. (c) The UAV

utilized in this study for capturing images of the Erannis jacobsoni occurrence
area: DJI Phantom 4 Multispectral Version, along with its sensor parameters.

SUPPLEMENTARY FIGURE 2

Evaluation results of the Erannis jacobsoni disturbance detectionmodel using
conventional features based on comprehensive accuracy.

SUPPLEMENTARY TABLE 1

Spectral indices used in the development of the Erannis jacobsoni

detection model.
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