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GhostConv+CA-YOLOv8n: a
lightweight network for rice
pest detection based on the
aggregation of low-level
features in real-world
complex backgrounds
Fei Li, Yang Lu*, Qiang Ma, Shuxin Yin and Rui Zhao

College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University,
Daqing, China
Deep learning models for rice pest detection often face performance

degradation in real-world field environments due to complex backgrounds and

limited computational resources. Existing approaches suffer from two critical

limitations: (1) inadequate feature representation under occlusion and scale

variations, and (2) excessive computational costs for edge deployment. To

overcome these limitations, this paper introduces GhostConv+CA-YOLOv8n, a

lightweight object detection framework was proposed, which incorporates

several innovative features: GhostConv replaces standard convolutional

operations with computationally efficient ghost modules in the YOLOv8n’s

backbone structure, reducing parameters by 40,458 while maintaining feature

richness; a Context Aggregation (CA) module is applied after the large and

medium-sized feature maps were output by the YOLOv8n’s neck structure.

This module enhance low-level feature representation by fusing global and local

context, which is particularly effective for detecting occluded pests in complex

environments; Shape-IoU, which improves bounding box regression by

accounting for target morphology, and Slide Loss, which addresses class

imbalance by dynamically adjusting sample weighting during training were

employed. Comprehensive evaluations on the Ricepest15 dataset, GhostConv

+CA-YOLOv8n achieves 89.959% precision and 82.258% recall with

improvements of 3.657% and 11.59%, and the model parameter reduced 1.34%,

over the YOLOv8n baseline while maintaining a high mAP (94.527% vs. 84.994%

baseline). Furthermore, the model shows strong generalization, achieving a

4.49%, 5.452%, and 3.407% improvement in F1-score, precision, and recall on

the IP102 benchmark. This study bridges the gap between accuracy and

efficiency for in field pest detection, providing a practical solution for real-time

rice monitoring in smart agriculture systems.
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1 Introduction

Heilongjiang province, situated in northeastern China (121°11′–

135°05′ E, 43°26′–53°33′ N), with good water and heat conditions,

providing a favorable climate for rice growth (Gao and Liu, 2011).

However, rice insect pests will cause considerable yield losses yearly,

threatening China’s ‘rice bowl.’ Pests and diseases not only affect rice

production but also cause ecological damage due to the use of

pesticides (Dawei et al., 2019). Therefore, timely and rapid

identification and detection of rice insect pests have become

necessary for agricultural production and environmental protection.

Traditional methods of identifying rice pests mainly rely on

manual identification. These methods have the shortcomings of

intense subjectivity, low efficiency, time-consuming, and labor-

intensive (Zhao et al., 2021). Machine learning-based pest and

disease detection methods use SIFT (Dawei et al., 2019), HOG,

LBP, etc., to extract shape, color, and texture features. Then it uses

SVM (Yalcin and Razavi, 2016), backpropagation (BP) (Wang et al.,

2012; Zhao et al., 2008) neural network, Bayesian (Sachdeva et al.,

2021) to classify the image into different categories according to the

extracted features. However, the above method can only achieve the

best effect in high-quality images with high contrast between insect

and non-pest areas and low image noise. Meanwhile, changing the

threshold or redesigning the algorithm is often necessary when the

imaging environment or plant pest class changes (Wang et al.,

2025). Significantly, the above method is lacking in the recognition

effect in a complex environment where crops grow naturally (Zhang

et al., 2022).

Many rice conditions exhibit unique visual symptoms well-

suited for deep learning-based identification and classification. For

example, (Rajalakshmi et al., 2021) focused on pest monitoring

using a dataset comprising 16 categories of pests captured in the

field through camera imagery. They then employed CNN to develop

a robust framework capable of accurately identifying and classifying

the pest species. (Azath et al., 2021) also use CNN to detect

common cotton leaf diseases and pests. (Tetila et al., 2020) used

UAVs equipped with high-resolution cameras to obtain soybean

pest images and deployed various deep-learning models, including

VGG, CNN, YOLO series, etc. These models analyzed the collected

soybean pest images, aiming to identify and classify pests that

commonly infest soybean plants. (Singh et al., 2021) used multiple

image segmentation methods to automatically segment the pest-

infected areas of the collected coconut palm images. Then, the pre-

trained VGG, InceptionResNetV2, and DenseNet, etc. were fine-

tuned through the inductive transfer method to classify coconut

palm diseases or pests. In (Wang et al., 2021), the authors proposed

improved YOLOv3 to detect tomato diseases and pests in a natural
Nomenclature: SVM, support vector machine; UAVs, Unmanned Aerial

Vehicles; CNN, Convolutional Neural Networks IOU Box Intersection Ratio;

ViT, vision transformer; GIoU, Generalized Intersection over Union; DIoU,

Distance Intersection over Union; CIoU, Complete Intersection over Union;

SIoU, Scaled Intersection over Union; SIFT, Scale Invariant Feature Transform;

HOG, Histogram of Oriented Gradients; LBP, Local Bbinary Pattern; SVM,

Support Vector Machines; BP, Backpropagation neural networks.
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growth environment, which mainly involves three improvements:

(1) Dilated convolutions are used instead of ordinary convolutions

in YOLOv3’s backbone network, (2) in the detection head, the IOU

threshold and linear attenuation confidence are employed to

improve the accurate recognition of occluded pests, (3) the

convolution decomposition and optimized loss function are used

to make the model lightweight and fast. This method is suitable for

rapid diagnosis of pests and diseases in a large number of

video images.

Deep learning networks have been extensively applied to pest

detection across various plant species using datasets collected under

controlled laboratory conditions, achieving high detection accuracy

(Rançon et al., 2019; Jiang et al., 2019; Xie et al., 2020). However, the

complexity of natural environments, where plants grow, introduces

significant challenges (Zhang et al., 2022). Pests have evolved to

camouflage with their surroundings, often displaying body colors

similar to the background, which complicates the deep learning

model’s ability to extract low-level features from pest images

accurately (Xu et al., 2022). Furthermore, external factors, such as

camera shake, can lead to image blurring and ghosting, ultimately

degrading the quality of the collected data. Additionally, obstacles

like plant leaves and branches can obscure pests, and the wide

variety of pest species further complicates detection (Javidan et al.,

2024). These factors collectively impair the detection performance

of deep learning architectures under naturalistic plant growth

conditions. Despite deep learning techniques being widely applied

for pest detection in crops like grains, tomatoes, and corn, and

substantial work in the classification and detection of rice diseases

(Hu et al., 2023; Guo et al., 2024; Uddin et al., 2024), research

focusing specifically on rice pest detection remains scarce. This

paper has made contributions in the following aspects:
1. A domain-specific dataset, RicePest15, has been developed

to support multi-scale detection of rice pests, which

annotated imagery with rectangular bounding boxes.

First, the dataset comprises 1,712 images of rice plants

both healthy and infected with 15 pests that were initially

collected, encompassing diverse environmental variables

such as illumination differences, shadow interference, and

occlusion. Secondly, to generate instance-level annotations,

the Segment Anything Model (SAM) was employed to

extract segmentation masks corresponding to pest targets.

Then, these masks were converted into rectangular

bounding boxes, providing standardized annotation

formats suitable for object detection models. Finally, to

enhance dataset variability and model generalization, a

suite of augmentation techniques encompassing

geometric transformations (rotation, translation, scaling,

and shearing), color space modifications (HSV

adjustment), and compositional strategies (Mosaic

augmentation) were applied. The RicePest15 dataset

offers a comprehensive and field-realistic valid

benchmark for the development and evaluation of

au tomated pes t de t ec t ion a lgor i thms in r i ce

cultivation systems.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1620339
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1620339

Fron
2. A lightweight model, GhostConv+CA-Yolov8n, was

developed by incorporating several key innovations.

Initially, GhostConv replaced conventional convolution

operations in Yolov8n’s backbone to reduce the model’s

parameter size. Then, after the neck network outputs large

and medium-sized feature maps, a Context Aggregation

(CA) module is introduced to enhance feature

representation. This module aggregates the location

information of low-level features with deeper semantic

details, and it improves the model’s efficiency when the

rice detection images contain fewer and larger pests.

Finally, the model integrates Shape-IoU to emphasize the

scale and shape of the rice pest bounding box, thereby

enhancing pest boundary detection accuracy. To further

address the issue of low classification accuracy due to

category imbalance among samples, Slide loss is

employed to improve the model’s overall performance.

3. An ablation experiment and comparison were conducted

on the GhostConv+CA-YOLOv8n model using the

Ricepest15 dataset and compared with YOLOv3 –

YOLOv10, SSD, and FasterRCNN models. The results

indicated that GhostConv+CA-YOLOv8n reduced the

number of parameters and gradients by 40,458 to the

YOLOv8n. GhostConv+CA-YOLOv8n achieved

precision, recall, F1, mAP0.5, and mAP0.5−0.9 of 89.959%,

82.258%, 85.9363%, 94.527%, and 55.579%, respectively,

outperforming all other models. Further experimental
tiers in Plant Science 03
verification on the public dataset IP102 demonstrated

improvements in precision, recall, F1 score, mAP0.5, and

mAP0.5−0.9 by 5.452%, 3.407%, 4.4912%, 0.352%, and

0.003%, respectively, compared to the traditional

YOLOv8n model. The GhostConv+CA-YOLOv8n model

proved capable of lighter, quickly, and effectively

identifying common rice pests in natural field

environments, offering significant assistance in crop

protection for farmers.
2 Related work

The discussion begins with the various categories of rice pests

based on their preferred feeding environments. Following this, the

improved YOLOv8n architecture is examined in detail.
2.1 Categories of rice pests

Rice plants were classified into three categories according to the

preferred feeding sites of pest species (Figure 1).

The first type is common pests that mostly like to feed on leaves,

such as Cnaphalocrocis Medinalis Guenee and Rice skipper

(Parnara Guttata Bremeret Grey). They usually destroy rice

throughout the year by infusing rice leaves into bracts by larvae
FIGURE 1

Categories of rice pests.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1620339
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1620339
spinning and feeding on the upper epidermis or young leaf sheath

in the bracts. It causes the leaves to be incomplete, and in severe

cases, only the midrib remains, causing the crops to grow slowly or

even wither. In addition, other pests that like to eat rice leaves

include the Rice Green Semilooper (Naranga Aenesc), Spodoptera

Litura, Rice green horned caterpillar, Oxya chinensis, etc. Most of

the rice caterpillars appear in the stems of rice; they are borers, such

as Chilo Suppressalis (Walker), Scirpophaga incertulas (Walker),

and Sesamia inferens (Walker). They cause dead heart seedlings,

dry ears, and insect injuries during tillering. Most are in the third,

fourth, and adult stages, with increased food intake and eating

leaves, and have specific aggregation behaviors (shengguang, 2021).

The second is sap-sucking pests, including Rice planthopper

(white-backed and black planthopper), Nephotettix Cincticeps, and

Inazuma dorsal. They suck sap on rice leaves and leaf sheaths with

adults and nymphs, causing the growth of the injured plants to be

inhibited, causing the whole plant to turn yellow or wither, affecting

crop yield and being difficult to control (shengguang, 2021).

The last one is root-eating pests, generally vulnerable in dry

farming and sandy fields with good aeration and low water content.

Pests such as Echinocnemus squamous Billberg, Rice water weevil,

Donacia provost Fairmaire, etc., mainly harm the rice fibrous root

with larvae, causing the injured rice to grow poorly, the leaves to be

yellow, the plants to be short, and the profound rice roots to be

bitten off or even die in pieces (Fu Qiang, 2019).
2.2 Improved YOLOv8n

YOLOv8 is a single-stage model that improves and innovates on

the previous YOLOv5 and has a wide range of applications in the

agricultural field. YOLOv8 is engineered for speed, accuracy, and

simplicity. It has multiple variants, including YOLOv8n, YOLOv8s,

YOLOv8m, YOLOv8l, and YOLOv8x architectures, each designed

for different performance and computational efficiency trade-offs.

YOLOv8n and YOLOv8s are more suitable for resource-

constrained environments, YOLOv8n utilizes fewer parameters

and less complex layers. YOLOv8m serves as a balanced option,

offering a compromise between speed and accuracy, making it

appropriate for moderately resource-limited settings. In contrast,

YOLOv8l and YOLOv8x provide higher accuracy for more

demanding detection tasks, albeit at the expense of increased

computational resources (Sohan et al., 2024).

This paper analyzes the nonlinear characteristics of the original

collected pest images and the actual bounding box distribution of

the target and enhances the original image to obtain Ricepest15.

Building upon the YOLOv8n architecture as the foundational

model, this study introduces several architectural modifications:

the standard convolutional operations in YOLOv8n’s backbone are

substituted with GhostConv modules to reduce computational

complexity. Meanwhile, a Context Aggregation attention

mechanism is integrated into the neck to improve feature

representation. Furthermore, a composite loss function combining

Shape-IoU and Slide loss is employed to optimize localization

performance. The resulting model denoted GhostConv+CA-
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YOLOv8n, demonstrates improved efficiency and detection

accuracy in pest recognition tasks. The GhostConv+CA-

YOLOv8n’s architecture is shown in Figure 2. Among them, ①②③

are the specific parts to be improved. The 1 is input data, and the

2,3,4 network structure together constitutes YOLOv8n, and the

details of the improvements are in Section 3.3.

In YOLOv8n, the input part mainly performs data augmentation

(Mosaic) and preprocessing (Letterbox) on the graphics. By default,

data Mosaic enhancement has not been performed in the last ten

training rounds. The backbone network of YOLOv8n is composed of

Conv, C2f, and SPPF(Spatial Pyramid Pooling–Fast) structures (He

et al., 2015), which mainly refer to the ELAN structure of YOLOv7

(Wang et al., 2023b). The neck network adopts a path aggregation

network (PAN) structure (Yin et al., 2025), which can enhance the

network’s feature fusion capabilities for objects of different scales. The

prediction head adopts a decoupled structure and divides the tasks into

category score prediction (Binary Cross Entropy, BCE) (Ruby et al.,

2020), bounding box regression, and object probability, where the

distribution focus loss (DFL) (Xie et al., 2024) and the complete

intersection-over-union (CIOU) loss (Wang and Song, 2021) are

used in the regression task. The aligned assigner allocation strategy

used in the YOLOv8n network selected positive samples according to

the score weighting results of classification and regression. The purpose

of C2f is to reduce parameters while retaining rich gradient flows.

Bottleneck is inspired by the residual module of Darknet. It consists of

two convolution modules and shortcuts. The convolution is processed

by Conv2d, BatchNorm, and the activation function (LeakyReLU) (Xu

et al., 2020), and the convolution kernel size is 3 × 3. The first

convolution of Bottleneck reduces the number of input channels to

0.5 times the number of intermediate channels, and then the second

convolution restores the channels to the number of output channels.

When the number of input and output channels is the same and

shortcut=True, the original input features are added with the extracted

features to maintain the feature dimension unchanged. This design

structure can retain and fully utilize the input features and alleviate the

gradient disappearance problem (Zhang et al., 2023).
2.3 Pest detection methods

Plant pest detection methods are divided into two-stage and

single-stage networks, representative models including

FasterRCNN Ren et al. (2017) and YOLO, SSD Redmon et al.

(2016); Redmon and Farhadi (2017, 2018). For example, Uygun and

Ozguven (2024) are committed to advancing the segmentation of

multiple pests, specifically targeting Tuta Absoluta pests on tomato

plant leaves, using the YOLOv8l-Seg model and achieving mAP0.5,

mAP0.5−0.95, precision and recall rates of 93.5%, 80.%6, 95.6% and

85.9% respectively when the input image size is 640x640. Fuentes

et al. (2017) focused on detecting pests and diseases in tomatoes

using camera images. Their study compared several models

(FasterRCNN, R-FCN, and SSD) on this task. The results showed

that R-FCN using ResNet-50 surpassed all other models with an

mAP of 85.98%. Single-stage deep learning models, such as YOLO

Islam et al. (2023) and SSD Adem et al. (2023), have faster inference
frontiersin.org
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capabilities Hu et al. (2024); Meng et al. (2023); Sampurno et al.

(2024); Wang et al. (2023a), and can be applied to real-time tasks in

the agricultural field.

In addition to the studies mentioned, recent advancements in

rice disease and pest detection utilizing two-stage and single-stage

deep learning models are summarized in Table 1.

Moreover, the study by (Liu et al., 2025) focuses on identifying

small rice pests using datasets such as IP102 (2316 images),

PaddlePaddleAIStudio (2465 images), and mobile phone camera

captures (2393 images). Their proposed RP-DETRmodel achieves a

mAP0.5 of 92.2%, precision of 91.9%, and recall of 85.8%. On the

self-constructed RicePest18 dataset, it attains an 80.4% F1-score,

87.4% mAP0.5, and 28.7% mAPs for small targets, showing

improvements of 5.3% and 5.1% over the baseline. In contrast,

(Chen et al., 2020) addresses rice disease detection using a dataset of

500 rice plant disease images, employing a DenseNet model pre-

trained on ImageNet with an Inception module, achieving an

average accuracy of 98.63%.

In summary, numerous advanced models have been utilized for

crop pest and disease detection, classification, and segmentation.

Typically, models that prioritize detection accuracy are designed

with a two-stage architecture, while those focused on detection

speed are often based on a single-stage structure. Furthermore,

these models have been applied to cotton (Tetila et al., 2020), grapes

(Sanath Rao et al., 2021), sugar beets (Ozguven and Adem, 2019),
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and tomatoes (Uygun and Ozguven, 2024), with detection mAP0.5
and accuracy achieving high values across these crops. Moreover,

the detection and classification of rice leaf diseases and pests have

progressed, with accuracy exceeding 70%. Above studies (Table 1)

demonstrate advancements in rice pest and disease detection using

deep learning approaches. However, rice pest detection methods

based on deep learning networks typically require extensive image

datasets for training to ensure model generalizability. Furthermore,

deep learning models rely on millions of built-in parameters for

classification and pest localization. During the implementation and

deployment phases, a trade-off between computational complexity

and accuracy is often necessary.
3 Materials and methods

3.1 Experimental materials

Images were captured from pest occurrences on various rice

cultivars grown in the experimental fields of Heilongjiang Bayi

Agricultural University, China. The field coordinates are as follows:

125°10′49.730′′E,46°35′25.383′′N to 125°10′51.412′′E,46°35′23.421′′

N, covering an area of approximately (31 × 112)m2+(88 × 14)m2 =

4704m2. Rice pest images were captured between June 13, 2023, and

September 30, 2023, as well as July 13, 2024, and August 31, 2024.
FIGURE 2

Architecture of GhostConv+CA-YOLOv8n.
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Furthermore, image acquisition was performed using a mobile

phone device (Redmi Note 11T Pro, Xiaomi, China) with three rear

cameras: Rear camera 1 is the main camera with 64 million pixels.

Rear camera 2 (8 million pixels) is an ultra-wide-angle lens for

capturing macro and large-scene images. The rear camera 3 (2

million pixels) is a macro lens that captures micro and detailed

photos. Among them, the wide-angle shooting angle is 120°,

supporting rear video shooting (4K@30 frames/second, 1080p@

30/60 frames/second 720p/30 frames/second), video recording

(1080p/120fps 720p@120/240/960fps) and slow-motion video

recording. The images of rice leaves and stems taken by the

mobile phone camera come from a rice field with an area of

about 4704 square meters.

3.1.1 Data collection and data labeling methods
This study utilizes color images of both healthy and insect-

infested rice plants as research subjects. Field photography and

online collection methods were employed for image acquisition.

During field photography, the camera was positioned at a distance

of 10cm to 18cm from the target to ensure that the rice plants were

centrally aligned within the frame.

The camera’s focal length and aperture were automatically set,

along with automatic white balance. Image collection was conducted

daily between 15:00 and 16:00, with the resolution set to 2,000 × 1,325

pixels. A total of 1712 original rice pest images were captured,
Frontiers in Plant Science 06
showcasing both healthy plants and those with pest damage, under

various lighting conditions and complex backgrounds.

In addition, based on the primary color map from ‘Diagnosis and

Control of Rice Diseases, Pests, and Weeds’, the image data were

labeled and proofread to construct the original rice pest dataset. Due to

the labor-intensive and challenging process of regional box labeling

required for object detection, the interactive data semantic annotation

tool, SAM, was employed to facilitate automatic semantic recognition

and annotation, thereby reducing the difficulty of manual data

annotation, and it is a large segmentation model with strong zero-

sample generalization ability, leverages a ViT image encoder to extract

features from images. This architecture enables SAM to effectively

handle segmentation tasks without task-specific training data. In SAM,

the point or text is input processed to the prompt encoder, which is

built into an embedding vector in real time. Then the mask decoder

predicts the segmentation result and confidence score Kirillov et al.

(2023). The interactive automatic annotation process for rice pests is

illustrated in Figure 3a.
3.2 Data augmentation

The raw rice pest dataset was divided into training and validation

subsets in an 80: 20 ratio. To address class imbalance and improve the

model’s generalization capability, data augmentation methods were
TABLE 1 Summary of two-stage and single-stage based rice diseases and pests detection.

Method Paper Crop Objective Dataset Models Performance

two-stage (Liu et al., 2023) Rice canopy Pests detection
and segmentation

Multisource data
sets(8018)

GA-Mask
R-CNN

mAP–92.71%,recall–89.28%,
F1–90.96%.

(Zhou et al., 2019) Rice Diseases
detection

3010 images FCM-
KM, FasterRCNN

Accuracy and time of rice blast–
96.71%/0.65s, bacterial blight–
97.53%/0.82s, blight–98.26%/0.53s.

(Bari et al., 2021) Rice leaf Diseases
detection

RLDD
(2400)

Faster R-
CNN

Accuracy of rice blast–
98.09%,
brown spot– 98.85%, and
hispa–99.17%,healthy–
99.25%.

Single-stage (Chen et al., 2022) Rice granary Pest detection Take photos YOLOv4 mAP–97.55%

(Yin et al., 2024) Rice Pest detection The camera captured
images(2500)

Improved YOLOv8 Average precision– 95.8%,
F1-score–
94.6%.

(Jain et al., 2022) Rice Disease detection
and
classification

Images(762) YOLOv3 tiny and
YOLOv4 tiny

mAP of
YOLOv4
tiny–97.36%, YOLOv3 tiny–
79.77%.

(Kumar et al., 2023) Rice leaf Disease detection The Kaggle rice leaf
disease
(RLD)(850)

YOLOv5 mAP0.5–
70.8%,precision–
82.8%,recall–
75.1%.

(Chen et al., 2025) Rice Rice diseases and
pests
detection

Images
From the
AR glasses
(3856)

Improved
YOLOv5X
model with AF-FPN

mAP–
87.4%,precision– 82.3%,recall–
86.5%.
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categorized into simple augmentation andMosaic (Figure 3b). Simple

augmentation techniques included rotating, shearing, shifting,

scaling, and adjusting the HSV of images (Waheed et al., 2020).

Mosaic (Bochkovskiy et al., 2020), a more advanced method,

combines multiple images: Four training images are randomly

selected, and simple augmentation operations are applied to each.

These augmented images are then placed on a board of specified size,

where the images are resized using LetterBox (Wang et al., 2023b)

and arranged in a specific pattern, one on the left and one on the right

in the first and second rows, forming a new image containing the

target boxes. This method significantly enriches the background of

the detected objects. Additionally, during the standardized

calculation, data from all four images are processed simultaneously,

improving both processing efficiency and the model’s robustness.
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3.2.1 Image rotation
Image rotation (Jain et al., 2022) can be analogized to the

rotation of a point in the XOY coordinate plane. Specifically, a point

P is XOY rotated counterclockwise by an angle b about the origin O,

resulting in a new position at point Q.

Assuming point P has coordinates (x,y) and point Q has

coordinates (x0, y0) in the X,O,Y coordinate system, and point P

and the origin O distance is denoted as D, the rotation of point P by

an angle b around the origin can be described using the following

Equations 1, 2.

x0 = Dcos (a + b)

    = D(cos a  cos b − sin a  sin b)

    = x cos b − y sin b

(1)
FIGURE 3

Data annotation and augmentation architecture.
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y0 = D sin (a + b)

    = D(cos a  sin b + sin a  cos b)

    = x sin b + y cos b

(2)

In digital images, which are represented as two-dimensional

arrays, the above formula can be transformed into a matrix

operation as Equations 3, 4:

R =

cos b sin b 0

−sin b cos b 0

0 0 1

2
664

3
775 (3)

½ x0 y0 1 � = ½ x y 1 �*R (4)
3.2.2 Image shearing
Shearing (Xing et al., 2019) is a geometric transformation that

involves scaling the signed distance from each point of a figure to a

straight line, which is parallel to a specific direction, according to a

predetermined ratio. This operation is typically performed in the X

or Y -direction. Shearing along Y -axis transformation can be

achieved using the following Equations 5–7:

x + sin a ∗Y = x0 (5)

y ∗ cos a = y0 (6)

x0

y0

1

2
664

3
775 =

1 sin a 0

0 cos a 0

0 0 1

2
664

3
775 ∗

x

y

1

2
664

3
775 (7)
3.2.3 Image shifting
Image shifting (Xing et al., 2019) involves translating an image

by a xt along the X-axis and yt along the Y -axis. This operation can

be mathematically represented as Equations 8, 9:

x0 = x + xt (8)

y0 = y + yt (9)

Here, any point in the image is (x, y) (coordinates), which are

then translated by xt and yt on the x and y axes, respectively, to

obtain the new coordinates (x0, y0) where the point should be. The

conversion into an image matrix is as Equation 10:

x0

y0

1

2
664

3
775 =

1 0 xt

0 1 yt

0 0 1

2
664

3
775 ∗

x

y

1

2
664

3
775 (10)
3.2.4 Image scaling
Image scaling (Xing et al., 2019) is performed by applying

distinct scaling factors (xzoomand yzoom) for the x and y directions, to
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control the image’s shrinkage or enlargement in a specific

proportion. This can be achieved through the following

Equations 11–13:

x0 = x � xzoom (11)

y0 = y � yzoom (12)

x0

y0

1

2
664

3
775 =

xzoom 0 0

0 yzoom 0

0 0 1

2
664

3
775 ∗

x

y

1

2
664

3
775 (13)
3.2.5 HSV
HSV (Hue, Saturation, Value) (Liu et al., 2023) is based on the

Hexcone Model and is commonly used for generating 8-bit and 16-

bit images. In these images, the Red (R), Green (G), and Blue (B)

channels are first converted to floating-point format and then scaled

to fit within the range of 0 to 1. This transformation is performed

using the following Equations 14, 15:

V ←max (Red,Green,Blue) (14)

H←

60�(Green−Blue)
V−min(Red,Green,Blue)   if (V = Red)

120+60�(Blue−Red)
V−min(Red,Green,Blue)   if (V = Green)

240+60�(Red−Green)
V−min(Red,Green,Blue)   if (V = Blue)

0 if (Red = Green = Blue)

8>>>>>><
>>>>>>:

(15)

If H < 0, then the hue value is adjusted by adding 360 to it

Equation 16:

H←H + 360 (16)

After this adjustment, the output values are constrained as

Equation 17:

0 ≤ V ≤ 1, 0 ≤ S ≤ 1, 0 ≤ H ≤ 360 (17)

This ensures that the hue (H), saturation (S), and value (V) are

within the appropriate ranges for proper representation in the HSV

color model.

3.2.6 Letterbox
The Letterbox operation (Wang et al., 2023b) is an image

preprocessing technique designed to adjust the image size while

preserving the original aspect ratio. This approach utilizes adaptive

scaling technology to minimize information loss and geometric

distortion, and the calculation process is as follows:

• The scaling ratio is first calculated by dividing the required size

by the original image’s length (Lorig) and width (Worig), to get two

scaling ratios SL and SW. Then, the larger is selected as the scaling ratio;

• The scaled length Lscaled and scaled width Wscaled are given by

Equations 18, 19:

Lscaled = Lorig � SL (18)
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Wscaled = Worig � SW (19)

Thus, the new dimensions of the scaled image are determined

by multiplying the original dimensions by their corresponding

scaling ratios.

• In YOLOv8n, if the ‘auto’ is set to True, the image will use

padding to adjust the width and height by a multiple of the step size;

if the ‘scale_fill’ parameter is set to True (this article uses this

method), the image will be scaled according to the size of the target

and padding will not work.

A dataset for rice pest detection, named Ricepest15, was

constructed through data augmentation. The specific distribution

of rice pests is presented in Table 2.
3.3 GhostConv+CA-YOLOv8n

3.3.1 GhostConv
Due to constraints in memory and computing resources,

ordinary convolution in YOLOv8n was replaced with GhostConv.

The proposed GhostConv module implements parameter-efficient

feature extraction through a dual-branch architecture: (1) Primary

branch: Standard 3 × 3 convolutions capture spatial hierarchies; (2)

Ghost branch: Depthwise separable convolutions generate

complementary feature maps via cheap linear operations (f),
achieving 6.29% parameters reduction in ablation studies.

GhostConv enhances the extraction of inherent feature

information through multiple linear transformations and offers

flexibility for integration into other models.

In YOLOv8n, the input is X ∈ Rc×h×w, where c, h, and w are the

channels and image sizes of the input image, respectively.
Frontiers in Plant Science 09
The operation of generating n feature maps by a convolutional

layer can be expressed as (Equation 20):

Z = X ∗ f + bias (20)

where Z ∈ Rw0�h0�n is the feature map with n channels through

convolution (*), and f ∈ Rc�k�k�n denotes the filters in this layer.

w0, h0 and k� k are output feature size and convolution kernel,

respectively. In convolution, the number of parameters involved in

the operation is n · c · k · k. Generally, n and c are very large (for

example, 256 or 512), so the convolution parameters are often

thousands in f and b.

In addition, the output feature maps are considered ‘ghosts’ and

are derived from a few intrinsic feature maps through simple

transformations. These intrinsic maps, typically smaller, are

produced by standard convolution filters. Where Z0 ∈ Rw0�h0�m

(m ≤ n) is an intrinsic feature map generated by Equation 21.

Z0 = X ∗ f 0 (21)

where f 0 ∈ Rc�k�k�m represents the filter used, and the bias

term is omitted for simplicity. The hyperparameters, such as filter

size, stride, and padding, match those in the standard convolution

(Equation 20) to maintain the output feature map’s spatial size (w0

and h0).
Linear operations are applied to the obtained intrinsic features

(Z0) to derive s (ghost features) as described by Equation 22.

zi,j = fi,j(z
0
i),∀ i = 1,…,m, j = 1,…, s (22)

where z
0
i represents the i-th intrinsic feature, while fi,j

denotes the j-th linear operation (excluding the last one) that

generates the j-th ghost feature map zi,j.
TABLE 2 Distribution of labeled and enhanced data for each type of rice pest.

Classes ID Labeling objects Classes name Augmentation

0 714 Chilo_suppressalis_egg 4284

1 797 Chilo_suppressalis_Walker 4782

2 31 Chilo_suppressalis_pupa 186

3 23 Sesamia _inferens_adult 138

4 16 Erthesina_fullo_Thunberg_first_instar 96

5 321 Nezara_viridula_Nymph_three_instar 1926

6 51 Nezara_viridula_Nymph_fourth_instar 306

7 258 Nezara_viridula_Nymph_fifth_instar 1548

8 306 Nezara_viridula_adult 1836

9 280 Sesamia_inferens_Walker 1680

10 462 Naranga_aenescens_Moore_Walker 2772

11 145 Naranga_aenescens_Moore_adult 870

12 29 Cnaphalocrocis_medinalis_Guenee_Walker 174

13 3 Cnaphalocrocis_medinalis_Guenee_pupa 18

14 13 Sesamia_inferens_pupa 78
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Consequently, each intrinsic feature map z
0
i serves as the basis

for generating ghost feature maps, denoted as zi,j
� �s

j=1, through

inexpensive transformation operations. The final transformation

fi,s represents an identity mapping, preserving the original intrinsic

features, as illustrated in Figure 4. According to Equation 22, the

output of the Ghost module consists of n = m · s feature maps, Z =

½z1,1, z1,2,…, zm,s�. The linear operation f is applied to each channel,

requiring far less computation than standard convolution.

GhostConv modules typically use convolution kernels of 3� 3

and 5� 5 to implement linear convolution.

The Ghost module, designed to reduce computational costs,

operates similarly to an identity mapping and m · (s − 1) = n
s · (s −

1) lightweight linear operations (depth-wise convolution). Each

operation utilizes a convolutional kernel ofaverage size d � d

(e.g., 3� 3 or 5� 5). The speedup ratio between the Ghost

module and standard convolution was calculated, yielding the

following results (using Equation 23).

rs =
n·h0 ·w0 ·c·k·k

n
s ·h

0 ·w0 ·c·k·k+(s−1)·ns ·h
0 ·w0 ·d·d

= c·k·k
1
s ·c·k·k+

s−1
s ·d·d

≈ s·c
s+c−1 ≈ s

(23)

where the size of d � d, which is comparable to the size of k� k,

and s ≪ c. Furthermore, the compression ratio of the model

parameters is calculated using Equation 24.

rc =
n · c · k · k

n
s · c · k · k +

(s−1)·n
s · d · d

≈
s · c

s + c − 1
≈ s (24)

The compression and speed-up ratios of GhostConv and

ordinary convolution are comparable both s times, indicating that

GhostConv is lighter and runs faster.

The improved backbone structure can be divided into 10 parts (0-

9). Layer 0 uses 1 × 3 ordinary convolution to extract low-level

features. The standard convolutions in layers 1,3,5,and7 are replaced

with GhostConv to lighten YOLOv8n’s backbone network, and they

are responsible for capturing image lower characteristics, such as

edges and textures, which are essential for the network’s feature

extraction process. From Figure 4, all GhostConvs first use ordinary

convolutions with a convolution kernel of 1 × 1, stride=1, groups=1,

and the output feature map size remains unchanged. Then, the above

ordinary convolution features are subjected to cheap linear

convolution (Depth-wise convolutional) one by one. The

convolution parameters are 5 × 5, stride = 1, groups = 7, and the

activation is the SiLU function; Shuffle is used to generate

Output_channels//2 ‘ghost’ features. The last (10-th) layer is SPPF,

and this layer performs pooling operations with four kernel sizes:

1×1, 2×2, 3×3, and 6×6 on the input feature maps. The SPPF layer

can capture objects of different sizes while preserving high-level

semantic information within the feature maps. This multi-scale

pooling method provides a processing solution for accurately

understanding and identifying targets of various scales.
3.3.2 Context aggregation block
In field-acquired pest images captured under natural growth

conditions, scenarios involving fewer but larger-sized pests tend to
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benefit more from low-level visual cues. In such cases, features such

as distinct edges, color contrasts, and texture patterns provide

critical information that enhances the effectiveness of model

training. While high-level features carry more significant semantic

information, they suffer from low resolution and poor overall detail

perception. To address this, after extracting the large and medium-

sized feature maps from the neck, a Context Aggregation block

(CA-block, Figure 5c) is incorporated. This block enhances the

positional information of low-level features while simultaneously

fusing the semantic information from high-level features, thereby

improving the recognition accuracy of rice pests.

where GCNet Cao et al. (2023) (Figure 5a) is a simple but

effective approach that combines the NonLocal Neural Network

(NLNet) Wang et al. (2018) (Figure 5b) and the Squeeze and

Excitation Network (SENet) Hu et al. (2018) into a lightweight

module. Some of the architectures of these blocks are shown

in Figure 5.

A context aggregation (CA) block is incorporated into the neck

of the network, which captures pixel-level contextual information

by aggregating spatial cues, formulated as Equation 25:

Qj = Pj +o
N

j=1
½ exp   (wkp

j)

oN
m=1exp (wkpm)

· wvp
j� (25)

where P and Q denote the input and output feature map,

respectively, each comprising N pixels, and j,m ∈ 1,Nf g and N =

H �W . The linear projection matrices wk and wv typically

implemented via 1� 1 convolutions layers. The above formula

simplifies the self-attention mechanism and reduces the model

parameters by replacing the matrix multiplication between query

and key with linear transformation.

Moreover, a reweighting matrix, denoted as a, matching the

shape of P and Q, is employed to adjust the global spatial context

aggregation for each pixel as Equation 26.

aj =
exp (waP

j)

oN
n=1 exp   (waPn)

(26)

where j, n = 1,Nf g are the matrix indices.

3.3.3 Shape-IoU and Slide Loss
Bounding box regression loss considers three crucial geometric

factors: the area of overlap, distance, and aspect ratio. By unifying

the coordinates, IoU loss considers the overlap area, and GIoU loss

builds on IoU loss but introduces the concept of the minimum

enclosing box. DIoU loss proposed by Zheng et al. (2019) extends

the traditional IoU loss by incorporating not only the overlap area

between the predicted and ground truth (GT) bounding boxes but

also their central points’ distance. Further improving upon DIoU,

the CIoU loss was proposed to incorporate the geometric factor of

the aspect ratio of the bounding box. Moreover, the SIoU method

introduces a new loss term that considers the angular size of the line

connecting the center points of the predicted and GT

bounding boxes.

In summary, previous bounding box regression methods

improve accuracy by adding geometric constraints to IoU. The
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YOLOv8n framework employs the Complete IoU (CIoU) loss

function, which integrates supplementary components accounting

for the aspect ratio and spatial alignment of predicted boxes,

enhancing the stability of target box regression. This approach

helps prevent issues such as divergence during training, which can

occur with traditional IoU or GIoU losses.

However, existing studies, including those using CIoU, DIoU,

SIou, and GIoU overlook the impact of the bounding box’s shape

and scale on the regression process, leading to suboptimal

performance, particularly in scenarios where some scale or aspect

ratio of objects varies significantly across the dataset. Addressing

these factors could refine the bounding box prediction and improve

model accuracy in diverse and dynamic real-world applications.
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Then, the CIoU loss used by YOLOv8n was replaced with the

Shape-IoU loss function, which is shown in Figure 6a.

Where ch and cw are the height and width of the smallest

rectangle that includes the two bounding boxes, scale is the scale

factor. The terms ww and hh denote weighting coefficients along the

horizontal and vertical axes, respectively, and are defined based on

the geometry of the GT bounding box. These coefficients are

derived from the aspect ratio of the GT bounding box and are

used to modulate the loss function in accordance with the bounding

box shape. Equation 27 illustrates the bounding box regression loss

based on Shape-IoU.

LShape−IoU = 1 − IoU + distan ceshape + 0:5�Wshape (27)
FIGURE 4

GhostConv module structure.
FIGURE 5

The rearrangement of feature maps, denoted by their dimensions like C × H × W, indicates a matrix with C channels, height H, and width W. ⊗
denotes the multiple matrix multiplications simultaneously, ȯ refers to the element-wise multiplication between matrices, with broadcasting applied
to handle shape mismatches, ⊕ indicating that matrices of different shapes are added element by element through broadcasting. The figure’s blue,
red, and purple represent the attention map, feature mapping, and context-optimized convolutional layer operations, respectively.
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The variables involved above are calculated as Equations 28–34:

IoU =
Box ∩​ Boxgtj j
Box ∪​ Boxgtj j (28)

ww =
2� (wgt)scale

(wgt)scale + (hgt)scale
(29)

hh =
2� (hgt)scale

(wgt)scale + (hgt)scale
(30)

c2 = (cw2 + ch2 + eps)alpha, eps = 1e − 7, alpha = 1 (31)

distanceshape = hh� (xc − xgtc )2=c2 + ww�
(yc − ygtc )2=c2

(32)

Wshape =ot=w,h(1 − e−wt)q , q = 4 (33)

ww = hh� w−wgtj j
max   (w,wgt )

wh = ww � h−hgtj j
max   (h,hgt )

8<
: (34)

In classification evaluation, YOLOv8n utilizes binary cross

entropy (BCE) loss. Due to the rice pests’ automatic detection

stage, the original rice pest image dataset exhibits class imbalance,

with an unequal distribution of positive and negative samples.

Additionally, variations in pest target scales, image blurring due

to equipment shaking during capture, and occlusions from leaves

hinder effective detection. These challenges, coupled with the

limitations of BCE loss make it difficult to differentiate between

these samples. Therefore, Slide loss is employed as the classification

loss, as depicted in Figure 6b.

Slide loss adaptively learns the threshold parameters µ for

different samples. By assigning higher weights near µ, the loss of

difficult-to-classify examples is increased, focusing more on
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complex and misclassified samples, and a weighting function is

defined in Equation 35.

f (x) =

1 x ≤ u − 0:1

e1−u u < x < u − 0:1

e
1−x
u x ≥ u

8>><
>>:

(35)
3.4 Different object detection models and
datasets

YOLOv3 (Redmon and Farhadi, 2018) incorporates the

Darknet-53 backbone in conjunction with a Feature Pyramid

Network (FPN), enabling the model to detect objects at three

different scales: 13x13, 26x26, and 52x52. YOLOv5 (Kumar et al.,

2023) switched to the PyTorch architecture and used the SPPF layer

to improve detection efficiency. YOLOv6 (Li et al., 2022) combines

the RepVGG and CSPStackRep modules to better express features

based on a hybrid channel strategy. In addition, YOLOv8 (Sohan

et al., 2024) has expanded multiple versions (n, s, m, l, x), which it

used for various real-world tasks such as face detection and pose

estimation. Recent advancements in the YOLO architecture

demonstrate a clear trajectory toward optimized real-time object

detection. YOLOv9’s innovation centered on its Programmable

Gradient Information (PGI) mechanism, which effectively

mitigates information degradation in deep networks while

maintaining computational efficiency (Wang et al., 2024b). The

subsequent YOLOv10 iteration introduces a hardware-aware neural

architecture, significantly reducing latency without compromising

detection fidelity (Wang et al., 2024a).

The study utilizes a composite rice pest dataset comprising both

public and proprietary sources. Public datasets, including IP102 (Wu

et al., 2019), Kaggle (Dataset Kaggle.com, 2022), UCI ML (Dataset

archive.ics.uci.edu, 2019), and Mendeley (Dataset data.mendeley.com,

2022), are curated by governmental agencies, academic institutions,
FIGURE 6

Localization and classification loss functions.
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and research consortia. These repositories are characterized by

extensive taxonomic diversity (encompassing multiple crop species)

and large-scale annotated samples. Then, to rigorously assess model

generalizability, this study employed 19000 annotated images from the

IP102 (Wu et al., 2019) benchmark, a large-scale dataset designed for

pest identification. IP102 spans 102 pest categories, exhibiting a long-

tail distribution that reflects real-world ecological prevalence. It

encompasses both soil-dwelling pests and crop-specific infestations

(e.g., rice, maize, and soybean), providing a robust data based for

evaluating taxonomic and environmental variability.
3.5 Experimental settings

The experiment was conducted in a Python 3.8 environment on a

64-bit Ubuntu 20.04 operating system. The PyTorch framework

version 1.11.1.1 was utilized, with a 16-core Intel ® Xeon ®Platinum

8352V CPU and a 24GB RTX 4090 GPU for computation. CUDA11.3

was employed to accelerate operations. The relevant parameter settings

used during model training are provided in Table 3. In addition, the

model was trained for 100 epochs, with a learning rate of 0.01, a batch

size of 16, an image normalization size of 640 × 640, a random seed of

0, an SGD optimizer, and a pre-trained model was loaded.
3.6 Model evaluation

This paper mainly analyzes and evaluates the model’s

performance using precision (P), recall (R) rate, F1 value, and mAP.

Performance metrics (Padilla et al. (2020); Everingham et al.

(2010)) are crucial for evaluating object detection algorithms like

YOLOv8n, providing insights into how well the model detects and

localizes objects. Precision measures the percentage of correctly

detected objects (Equation 36), while Recall rate expresses the ratio

of correctly predicted targets to actual targets(Equation 37). An

ideal model would have both precision and recall near 100%. The F1

score considers precision and recall, maximizing both and achieving

a balance (Equation 38).
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P(Precision) =
TP

TP + FP
(36)

R(Recall) =
TP

TP + FN
(37)

F1 = 2� (Precision� Recall)=(Precision + Recall) (38)

True Positives (TP) represent the number of pest targets

correctly predicted, and False Positives (FP) represent the number

of non-pest targets predicted as pests. The recall rate quantifies the

model’s ability to correctly identify instances of the target class,

reflecting its sensitivity to true positive detections. Correspondingly,

the False Negative (FN) metric denotes the number of pest instances

that were present in the ground truth but were not detected by the

model, indicating missed detections.

Mean Average Precision (mAP) is computed as the average of

the individual Average Precision (AP) scores across all object

categories, and serves as a principal metric for quantifying overall

detection accuracy (Equation 39).

mAP = o
K
i=1APi
K

(39)

APi =
Z 1

0
pi(Ri)d(Ri) (40)

mAP0:5−0:95 =
mAP0:5 +mAP0:55 +⋯+mAP0:95

10
(41)

where K denotes categories, and APi indicates the average

accuracy of the i − th category. The AP (Equation 40) metric is

derived by computing the area under the precision-recall curve, and

mAP0.5 refers to the mAP calculated at an intersection over the

union (IoU) threshold of 0.5, indicating that detection is considered

correct if the IoU exceeds 0.5. mAP0.5−0.95 (Equation 41) metric

provides a more comprehensive evaluation of the model’s detection

performance by averaging the mAP across multiple IoU thresholds,

typically ranging from 0.5 to 0.95 in increments of 0.05.
TABLE 3 Model training parameter settings.

Configuration Parameter Configuration Parameter Configuration Parameter

epochs 100 lr0 1E-2 box_loss_gain 7.5

patience 50 Lrf 1E-2 close_mosaic 10

batch 16 momentum 0.937 cls_loss_gain 0.5

imagesize 640 weight_decay 0.0005 dfl_loss_gain 1.5

workers 8 warmup_epochs 3.0 amp True

pretrained True warmup_momentum 1.5 fraction 1.0

optimizer SGD warmup_bias_lr 0.1 max_det 300

device GPU keypoint_obj_loss_gain 1.0 dropout 0.0

seed 0 Mosaic 1.0 mask_ratio 4
frontiersin.org

https://doi.org/10.3389/fpls.2025.1620339
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1620339
4 Results

4.1 Model training results

YOLOv8n’s losses include Box loss, CLS loss, and DFL loss. Box

loss (bounding box loss) helps improve object localization accuracy

by minimizing the difference between predicted and ground-truth

bounding boxes. Cls loss (Classification loss) enhances YOLOv8n’s

ability to classify detected objects correctly. DFL Lin et al. (2017)

addresses class imbalance and hard-to-detect objects, and it

achieves this by placing greater emphasis on complex or difficult

examples, thereby enhancing the detection of rare or small objects.

In the article, the loss change results of 100 epochs of model training

are shown in Figure 7.

From Figure 7A, The YOLOv8n algorithm attains optimal

detection accuracy within 60 training epochs, and GhostConv

+CA-YOLOv8n model exhibited box and classification losses of

1.4511 and 1.123 on the training set at 60 epochs, with

corresponding validation losses of 1.4324 and 0.96125. Relative to

the baseline YOLOv8n model, these values reflect reductions of

0.0177 and 0.0024 on the training set, and 0.0468 and 0.02443 on

the validation set, respectively. These improvements suggest that

incorporating GhostConv and Context Aggregation enhances

convergence efficiency and accelerates regression during training.

Moreover, themAP0.5 and F1 score curve of the YOLOv8, YOLOv6,

YOLOv5, YOLOv3 and GhostConv+CA-YOLOv8n, as shown in

Figure 7B. The proposed algorithm’s mAP0.5 curve is higher than

the MAP curves of other YOLO algorithms.
4.2 Ablation experiment

Ablation studies were conducted on the RicePest15, Table 4

shows the incremental improvements in detection performance

achieved by each strategy.

Substituting the conventional convolutional with GhostConv in

YOLOv8n’s backbone architecture resulted in a reduction of model

complexity, decreasing the number of parameters and gradients by

189,840. Integrating Context Aggregation attention into the

prediction head improved feature extraction, refining the model’s

focus on crucial features and improving Precision, Recall, F1 score,

and mAP0.5−0.95, by 0.006%, 2.586%, 1.541%, and 1.752%,

respectively. Combining GhostConv and ContextAggregation led

to a 7% improvement in mAP0.5, and a reduction of 40,458

parameters and gradients. It highlights the effectiveness of the

YOLOv8n+GhostConv+ ContextAggregation (neck) in optimizing

model size and accuracy.

Furthermore, the captured pest images exhibit significant

variability due to multi-scale target distributions, lighting

inconsistencies, and motion blur, which collectively pose

challenges for the accurate detection of occluded pests. To

address these complexities, the integration of attention

mechanisms into the backbone or neck of the network enhances

the model’s capacity to capture salient structural and contextual
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features, thereby improving its ability to discriminate between

target pests and background noise. This paper uses precision,

recall, F1 value, mAP0.5, mAP0.5−0.95, parameter and gradient as

evaluation indicators and conducts comparative tests by adding

multiple attention mechanisms in different parts, the results as

shown in Table 5a.

As demonstrated in Table 5a, incorporating GhostConv into

YOLOv8n’s backbone, along with the integration of attention

mechanisms into both the backbone and neck components. It is

found that the above modifications not only reduced the number of

model parameters and computational gradients but also yielded

notable performance improvements, with improvements of 4.582%

(backbone) and 2.559% (neck) in mAP0.5, respectively.

Ablation studies were conducted with different attention

mechanisms applied to the neck, as presented in Table 5b. The

results show that adding the context aggregation mechanism to the

neck network can improve the mAP0.5 value of the YOLOv8n

model to 92.388%, which is 9.4% higher than GhostConv+ BoT3

(82.979%) and 17.50% higher than GhostConv+ Non-Local Block

(74.893%). Notably, it achieves the highest F1 score (83.911%),

surpassing GhostConv+ BoT3 (80.12%) by 3.80% and GhostConv+

ShuffleAttention(67.379%) by 16.532%. Its mAP0.5-0.95 is

54.462%, which is also better than all other models. Although its

accuracy (77.928%) is slightly lower than some alternatives, its recall

(90.889%) is the highest, exceeding GhostConv+ BoT3 (72.51%) by

18.38% and GhostConv+ ECAAttention (63.274%) by 27.615%. In

addition, CA-YOLOv8n contains only 2,973,315 parameters, which

is still much lighter than models such as GhostConv+ SKAttention

(12,148,413 parameters) and GhostConv+ BoT3 (5,468,413

parameters), while reducing computational complexity while

maintaining excellent accuracy.

A comprehensive attention mechanism is adopted by

incorporating an attention block into YOLOv8n’s neck and

backbone networks. The context-aggregation module is added to

the neck, while SEAttention and MHSA are the backbone network.

As presented in Table 5c, the results suggest that adding multiple

attention mechanisms does not necessarily improve performance.

This outcome may be attributed to the increased likelihood of

training deviations when multiple attention mechanisms are

simultaneously employed, causing a bias in the focused features

and ultimately leading to suboptimal model training.

According to Table 5c, the YOLOv8n+ GhostConv+

ContextAggregation model achieves a mAP0.5 of 92.388%,

outperforming the YOLOv8n+ ContextAggregation+ MHSA

model (77.163%) by 15.225% and exceeding the weakest-

performing variant (75.133%) by 17.255%. Additionally, it

demonstrates a 3.514% improvement over the SEAttention-

enhanced model (88.874%), highl ighting its superior

de tec t ion capabi l i t i e s . The YOLOv8n+ GhostConv+

ContextAggregation model maintains a lightweight architecture

with only 2.84M parameters, representing a 42.62% reduction

in mode l comp l ex i t y compared to th e YOLOv8n+

ContextAggregation+ SEAttention model (4.95M) while achieving

superior detection performance.
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This study utilized different loss functions to optimize the

model, which is represented as +MPDIoU+BCE, +GIoU+BCE,

+WIoU+BCE, and +ShapeIoU+Slide (Table 6).

The optimized loss function +ShapeIoU+Slide is the most

significant. Specifically, the GhostConv+CAYOLOv8n model

incorporates the ShapeIoU+Slide loss function to optimize the

original CIoU+BCE loss, attaining the highest mAP0.5 of 94.527%,

and achieve precision increase of 12%(77.928% to 89.959%) and a

2% improvement in the F1 score (83.911% to 85.936%) compared to
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the YOLOv8n+ GhostConv+ ContextAggregation(CIoU

+BCE) model.
4.3 Comparison of different object
detection methods

To validate the benefits of our approach, some classic models,

including the YOLO series (YOLOv3 through YOLOv10) (see
FIGURE 7

The loss and evaluation results of the model training process.
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Table 7a), SSD, and FasterRCNN, was compared on the Ricepest15

dataset (see Table 7b). SSD utilized VGG16, ResNet50, and

MobileNetV2 as backbone networks, while FasterRCNN

employed VGG16 and ResNet50 (101, 152).

According to the results in Tables 7a, b, the GhostConv+CA-

YOLOv8n model has significant advantages over other YOLO

variants, outperforming YOLOv3, YOLOv5, YOLOv7, YOLOv8n

in mAP0.5 (94.527%) and mAP0.5−0.95 (55.579%). Although

GhostConv+CA-YOLOv8n is 1.236% lower than the highest

YOLOv9 model in precision (89.959% vs. 91.195%), it is higher

than YOLOv9 in recall and F1 by 4.965% (82.258% vs. 77.293%)

and 2.2658% (85.9363% vs. 83.6705%). In addition, compared with

the better yolov7 model, our model is 0.09% (89.959% vs. 90.049%),

3.9% (82.258% vs. 86.18%), and 2.1357% (85.9363% vs. 88.072%)

lower than yolov7 in precision, recall, and F1 value, but mAP0.5
(94.527% vs. 92.082%) and mAP0.5−0.95 (55.579% vs. 54.989%) are

2.445% and 0.59% higher than yolov7. The model parameters and

gradient number are reduced by 14.88 times compared with yolov7.

Therefore, the GhostConv+CA-YOLOv8n model has the highest

average detection accuracy while maintaining a lightweight

structure with fewer parameters and gradients.

In addition, GhostConv+CA-YOLOv8n model performs well

compared to other mature models, including FasterRCNN and SSD,

achievingmAP0.5 of 94.53% andmAP0.5−0.95 of 55.58%, which is 3.93%

(94.53% vs. 90.60%) and 0.18% (55.58% vs. 55.40%) higher than the

best SSD+vgg16 among all the compared models. And the superior

FasterRCNN + resnet152 model is 5% higher in mAP0.5 (94.53% vs.

89.53%). It highlights its ability to detect pests consistently and

accurately, which is critical for agricultural applications.
4.4 Model comparison of public datasets

The public datasets for plant diseases and pests detection are

PlantVillage, Rice Leaf Diseases Data Set, Image Database for Plant

Disease Symptoms (PDDB) Garcia Arnal Barbedo et al. (2018),

New Plant Diseases Dataset (Augmented), DAGS Brahimi et al.

(2018), Northern Leaf Blight (NLB) dataset Stewart et al. (2019),

IP102 Wu et al. (2019), tomato pest images Huang and Chuang

(2020), apple leaf disease Thapa et al. (2020) and PlantDoc Singh

et al. (2020). However, these datasets were primarily constructed

under controlled or laboratory conditions, limiting the

generalizability of the trained models, which often exhibit

suboptimal performance when applied to real-world imagery.

IP102 dataset comprises 102 categories, including crops, fruits,

vegetables, and various pests relevant to agriculture. The training
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metrics of the YOLOv8n and GhostConv+CA-YOLOv8n

algorithms on the IP102 (containing 19,000 images) dataset are

presented in Table 7c.

Quantitative evaluations reveal statistically significant

improvements across all metrics: GhostConv+CA-YOLOv8n

attains 51.655% precision (D+ 5.452% vs. baseline), 53.471% recall

(D+3.407% vs. baseline), 52.5473% F1(D+ 4.4912% vs. baseline),

and 49.733% mAP0.5 (D+ 0.352% vs. baseline), outperforming

contemporary models in cross-dataset validation on IP102.
4.5 Visualization of detection effects

Under the natural growth conditions of rice, the background of

pests in the field is complex. For example, some pests appear not

only on rice but also on other crops with specific mobility. Secondly,

crop leaves will block the pests, making it challenging to extract

complete pest features, and the target detection performance is

subpar. The resolution of the captured images varies, making

detecting tiny target pests more difficult.

This study employs seven algorithms from the YOLO series to

detect randomly selected rice pest images from the Ricepest15 test

dataset. The visualization results are presented in Figure 8a. Among

them, the dark red numbers indicate the confidence corresponding

to the false detection objects of the seven models. Bright red (pink)

indicates that the confidence of the model prediction is less than or

equal to 50%. The visualization output provides an intuitive

comparison of the proposed algorithm with other compared

algorithms regarding categories and confidence.

The GhostConv-CA-YOLOv8n model demonstrates superior

accuracy in predicting bounding boxes, exhibiting precise

alignment with the target object (labeled data), as shown in the

second row of Figure 8a. In comparison, models such as YOLOv10,

YOLOv7x, YOLOv6, YOLOv5, and YOLOv3 exhibit false positives

and false negatives. The GhostConv-CA-YOLOv8n model

consistently achieves recognition accuracy ranging from 80% to

100% across various test cases. Notably, the visualization results

reveal that some models, including YOLOv9 and YOLOv10, achieve

high accuracy in certain instances but demonstrate inconsistent

performance in more complex scenarios, such as inter-target

occlusion (fifth column of the fourth row), varying cropped

backgrounds (first column of the third and fourth rows), and

lowcontrast environments (seventh column of the third and

fourth rows). In contrast, GhostConv-CA-YOLOv8n maintains

high detection confidence and an improved detection rate across

all test conditions.
TABLE 4 Ablation experiment.

Algorithm Precision Recall F1 mAP0.5 mAP0.5−0.95 Parameters Gradients

YOLOv8n 0.86302 0.70668 0.77706 0.84994 0.5331 3013773 3013757

+GhostConv 0.76668 0.65043 0.70378 0.72645 0.46859 2823933 2823917

+ContextAggregation 0.86308 0.73254 0.79247 0.80892 0.55062 3163155 3163139

+GhostConv+ContextAggregation(neck) 0.77928 0.90889 0.83911 0.92388 0.54462 2973315 2973299
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TABLE 5 The experimental results of yolov8n under different attention mechanism strategies.

(a) Comparison of adding attention mechanism to backbone and neck in YOLOv8n

Algorithm back-
bone

neck Precision Recall F1 mAP0.5 mAP0.5

−0.95

Parameters Gradients

+SEAttention ✓ 0.67949 0.66818 0.67378 0.7301 0.42054 3021965 3021949

+GhostConv+
SEAttention

✓ 0.79629 0.68519 0.736574 0.75569 0.43619 2832125 2832109

+GhostConv+
SEAttention

✓ 0.9015 0.55695 0.68852 0.77592 0.42831 2824701 2824685

(b) Compared adding different attention mechanisms to the neck using GhostConv in YOLOv8n’s backbone

Algorithm neck Precision Recall F1 mAP0.5 mAP0.5

−0.95

Parameters Gradients

+GhostConv+Global-
Context Block

✓ 0.80373 0.71382 0.75611 0.78932 0.42547 5241503 5241487

+GhostConv+Non-
Local Block

✓ 0.86385 0.64065 0.73569 0.74893 0.40661 5529469 5529453

+GhostConv+
SKAttention

✓ 0.67292 0.7945 0.72867 0.85887 0.45572 12148413 12148397

+GhostConv+BoT3 ✓ 0.89515 0.7251 0.8012 0.82979 0.54226 5468413 5468397

+GhostConv+
ShuffleAttention

✓ 0.67949 0.66818 0.67379 0.7301 0.42054 2824077 2824061

+GhostConv+
ECAAttention

✓ 0.86788 0.63274 0.73189 0.73277 0.43846 2823939 2823923

+GhostConv+
EffectiveSE

✓ 0.68048 0.7802 0.726936 0.80774 0.44522 2906237 2906221

+GhostConv+MHSA ✓ 0.8136 0.70579 0.75587 0.78298 0.42662 5789309 5789293

+GhostConv+Context-Aggregation ✓ 0.77928 .90889 0.83911 0.92388 0.54462 2973315 2973299

(c) Ablation results of adding multiple attention mechanisms to the backbone and neck in YOLOv8n.

Algorithm neck back-
bone

Precision Recall F1 mAP0.5 mAP0.5

−0.95

Parameters Gradients

+ContextAggregation+SEAttention ✓ ✓ 0.73317 0.88772 0.803077 0.88874 0.51551 5194387 5194371

+GhostConv
+ContextAggregation+SEAttention

✓ ✓ 0.77719 0.84778 0.810952 0.85862 0.49923 5004547 5004531

+ContextAggregation+ MHSA ✓ ✓ 0.7627 0.69166 0.725445 0.77163 0.39615 5391251 5391235

+GhostConv
+ContextAggregation+MHSA

✓ ✓ 0.7978 0.68061 0.73456 0.75133 0.50689 5201411 5201395

+GhostConv+ContextAggregation ✓ 0.77928 0.90889 0.83911 0.92388 0.54462 2973315 2973299
F
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TABLE 6 Comparison of model effects under different loss functions.

Algorithm Precision Recall F1 mAP0.5 mAP05-0.95 Parameters Gradients

YOLOv8n+GhostConv+ContextAggregation (CIoU+BCE) 0,77928 0.90889 0.83911 0.92388 0.54462 2973315 2973299

+MPDIoU+BCE 0.84973 0.78267 0.814823 0.83924 0.45046 2973315 2973299

+GIoU+BCE 0.71777 0.76397 0.74015 0.78277 0.45977 2973315 2973299

+WIoU+BCE 0.80973 0.71247 0.75799 0.77713 0.41711 2973315 2973299

+ShapeIoU+Slide (GhostConv+CA-YOLOv8n) 0.89959 0.82258 0.859363 0.94527 0.55579 2973315 2973299
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The study conducted a comparative experiment against the

YOLOv8n baseline model using the publicly available IP102 dataset.

A batch processing approach was employed, where sixteen images

were randomly selected for prediction. Both models processed the

images sequentially, and their respective predictions were

concatenated. Finally, the prediction results from both models

were compared against the ground truth labels in the test set,

yielding the results presented in Figures 8c, d.
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The circles and rectangles in Figures 8c, d highlight a

comparison of the original and improved models’ missed

detection and false detection results. In Figure 8b, the target in

row (1) is darker than the background, and the small target features

in row (3) are not prominent. GhostConv+CA-YOLOv8n model

has some missed detections and false detections. However, the

number of false detections (row (1) column (1)) and missed

detections (row (1) column (3) and row (3) column (3)) of the
TABLE 7 The comparison results of different target detection methods.

(a) Comparison results of YOLO series models

Algorithm Precision Recall F1 mAP0.5 mAP0.5−0.95 Parameters Gradients

YOLOv3 0.78012 0.66557 0.71831 0.78519 0.45815 103704029 103704013

YOLOv3+tiny 0.79975 0.78118 0.79036 0.81089 0.49266 12139838 12139822

YOLOv5 0.83948 0.66124 0.73978 0.74564 0.36464 2511389 2511373

YOLOv5s 0.85732 0.72964 0.78834 0.81336 0.46122 9127997 9127981

YOLOv5-fpn 0.79496 0.5785 0.66967 0.62204 0.27811 83809277 83809261

YOLOv5-p6 0.8592 0.64922 0.74000 0.79245 0.41758 4137516 4137500

YOLOv6 0.8593 0.65834 0.74551 0.70192 0.38311 4239629 4239613

YOLOv7 0.90049 0.8618 0.88072 0.92082 0.54989 44231325 44231309

YOLOv7x 0.82989 0.558 0.667313 0.78717 0.39219 44231325 44231309

YOLOv8n-p2 0.79094 0.71206 0.74943 0.75452 0.46748 2928540 2928524

YOLOv8n-p6 0.83912 0.88417 0.86106 0.91316 0.54868 4786972 4786956

YOLOv8n-
MobileNetv3

0.85575 0.75551 0.80252 0.82352 0.52937 5976985 5976969

Yolov9 0.91195 0.77293 0.836705 0.8686 0.49182 60829562 60829530

Yolov10 0.75808 0.78669 0.77212 0.82335 0.50957 20474154 20474138

GhostConv
+CAYOLOv8n ☆

0.89959 0.82258 0.859363 0.94527 0.55579 2973315 2973299

(b) Comparison results of SSD and FasterRCNN models.

Algorithm mAP0.5 mAP0.5−0.95

FasterRCNN + vgg16 76.83% –

FasterRCNN + resnet50 89.01% –

FasterRCNN + resnet101 86.16% –

FasterRCNN + resnet152 89.53% –

SSD+vgg16 90.60% 55.40%

SSD + mobilenetv2 67.10% 30.00%

SSD+ resnet50 72.80% 37.10%

GhostConv+CA-YOLOv8n ☆ 94.527% 55.579%

(c) Ablation experiment results on IP102 test set.

Algorithm Precision Recall F1 mAP0.5 mAP0.5−0.95 parameters gradients

YOLOv8n 0.46203 0.50064 0.480561 0.49381 0.31396 3013773 3013757

GhostConv+CAYOLOv8n 0.51655 0.53471 0.525473 0.49733 0.31399 2973315 2973299
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GhostConv+CA-YOLOv8n model are lower than YOLOv8n (row

(1) column (1), row (3) column (2), and row (4) column (4) are

three false detections; row (1) column (3), row (2) column (1) and

row (4) column (1) are three missed detections).

The comparative analysis of the YOLOv8n baseline model, the

GhostConv+CA-YOLOv8n model, and the ground truth labels, the

GhostConv+CA-YOLOv8n model showed a higher confidence

score and higher classification accuracy, effectively reducing the

misclassification in the baseline model. Notably, it accurately

identifies species such as Rice leaf caterpillar, Corn borer, and

Wireworm, demonstrating closer alignment with the ground

truth annotations. Furthermore, the GhostConv+CA-YOLOv8n

model exhibits enhanced object localization capabilities, with

more precise bounding boxes (e.g., beet armyworm) and better

discrimination of visually similar species (e.g., beet weevil and
Frontiers in Plant Science 19
wireworm in the fourth row and fourth column). These results

manifest the potential of GhostConv+CA-YOLOv8n to improve the

accuracy and reliability of pest detection, providing a valuable tool

for agricultural pest monitoring and management.

In summary, as demonstrated in Figure 8, the proposed model

exhibits the fewest false positives and missed positives, and

demonstrates higher confidence in category predictions,

highlighting the effectiveness and transferability of the GhostConv

+CA-YOLOv8n.
5 Discussion

This paper proposed that the GhostConv+CA-YOLOv8n model

has successfully diagnosed rice pests. The performance superiority
FIGURE 8

Visualization of model prediction results for Ricepest15 and IP102(test set).
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stems from three synergistic mechanisms: (a) The GhostConv’s

parameter redistribution strategy maximizes feature representational

capacity per computational unit (Figure 4); (b) The CA-block’s non-

local attention gates amplify discriminative features in occluded

scenarios (Figure 8); (c) Shape-IoU and Slide loss prove

advantageous in accurately defining the pest boundaries and

addressing the imbalance between easy (non-occluded) and complex

(occluded) samples(mAP0.5 ↑ 9.533%). The specific discussion is

as follows:
5.1 Comparison with traditional data
annotation tools

This paper uses the latest cutting-edge model–SAM (Kirillov

et al., 2023), which can effectively locate the boundaries of rice pests

and convert them into the format of YOLOv8n (Wang et al., 2024c)

model training, thereby improving the efficiency of manual

annotation of rice pests. Compared with the traditional Labelme

annotation method, SAM usually adopts interactive annotation as a

general large model obtained by training with massive data (Zhang

et al., 2024). People only need to click the pest area with the mouse

(click the prompt word) to mask similar pest areas and select pests

in batches, without selecting pests one by one like Labelme, saving a

lot of human resources.
5.2 Performance evaluation of the
GhostConv+CA-YOLOv8n model

A detailed comparison of the GhostConv+CA-YOLOv8n model

against other well-known algorithms, such as YOLOv3, YOLOv5,

YOLOv7, and YOLOv8n’s variants, highlights the strengths and

efficiency of the proposed model.

• Precision and Recall

GhostConv+CA-YOLOv8n achieved 89.959% precision,

demonstrates impressive performance in rice pest detection,

which is 11.947% higher than YOLOv3 (89.959% vs. 78.012%)

and 4.384% higher than YOLOv8n-MobileNetv3 (89.959% vs.

85.575%). This indicates that GhostConv+CAYOLOv8n is better

at reducing false positives in its predictions, making it a more

reliable model for rice pest detection. Furthermore, its Recall of

82.258% is 15.701% higher than YOLOv3 (82.258% vs. 66.557%)

and 6.71% higher than YOLOv8n-MobileNetv3 (82.258% vs.

75.551%). A higher recall implies that the model is more effective

at detecting true positive instances, even in challenging conditions.

• F1 Score and mAP Performance

The F1 Score, a critical metric for balanced performance, is

85.936% for GhostConv+CA-YOLOv8n, showing a substantial

improvement of 19.65% over YOLOv3 (71.831%) and 7.13%

over YOLOv8n-MobileNetv3 (80.252%). This improvement

reflects the model’s superior capability to balance both precision

and recall.

mAP0.5 metric for GhostConv+CA-YOLOv8n reaches 94.53%,

marking an exceptional increase of 20.37% over YOLOv3 (Redmon
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and Farhadi, 2018) (78.519%) and 3.51% over YOLOv8n-p6 (He et al.,

2025) (91.316%). This significant enhancement in mAP demonstrates

the model’s high accuracy in pest detection, especially when evaluating

the performance at a threshold of 0.5 IoU (Intersection over Union).

The model can detect pests of diverse conditions, and its mAP0.5−0.95
value of 55.579%, which is 6.33% higher than YOLOv3 (45.815%) and

1.28% higher than YOLOv8n-p6 (54.868%), highlighting the

GhostConv+CA-YOLOv8n model’s improved performance in

multiple evaluation scenarios.

• Parameter and Gradient Comparison GhostConv+CA-YOLOv8n

model is a lightweight architecture.With only 2,973,315 parameters and

2,973,299 gradients, it dramatically reduces the computational load

compared to other models, such as YOLOv3 (103,704,029 parameters

and 103,704,013 gradients) and YOLOv5-fpn (Zhang et al., 2017)

(83,809,277 parameters and 83,809,261 gradients). By replacing the

standard convolution in YOLOv8n’s backbone with GhostConv, more

than 180,000 parameters and gradients were reduced compared with

base YOLOv8n. This reduction in parameters and gradients makes

GhostConv+CA-YOLOv8n more efficient in memory usage and

computational resources. Moreover, compared to YOLOv7x (T.P.

et al., 2025) (44,231,325 parameters and 44,231,309), the GhostConv

+CA-YOLOv8n model is approximately 67.22% smaller in size while

still outperforming it in mAP and detection accuracy.

• Model Efficiency

Despite the substantial improvements in detection

performance, the GhostConv+CA-YOLOv8n model remains

highly efficient, requiring fewer resources than many other YOLO

variants, including YOLOv7 (44,231,325 parameters), YOLOv5-p6

(4,137,516 parameters), and YOLOv5s (Wang and He, 2021)

(9,127,997 parameters). The reduction in parameters, alongside

the higher detection accuracy, through visualization analysis of

the public IP102 dataset (Figures 8b–d) reveals that GhostConv

+CA-YOLOv8n rarely missed or false detections in the images of

pests and diseases. It indicates that the GhostConv+CA-YOLOv8n

model strikes a balance between performance and computational

efficiency, making it an attractive choice for deployment in practical

applications where computational resources may be constrained.
5.3 Comparison with non-YOLO
algorithms

GhostConv+CA-YOLOv8n achieves an impressive 94.53% in

mAP0.5, outperforming FasterRCNN with resnet152 (which

achieved 89.53%) by 5.00%. This demonstrates that the

GhostConv+CAYOLOv8n model provides significantly better

performance in detecting pests at a relatively lower threshold,

indicating a higher detection rate of true positives.

SSD with VGG16 (Liu et al., 2016) comes close with amAP0.5 of

90.60% but still lags behind GhostConv+CA-YOLOv8n by 3.93%.

SSD with mobilenetv2 (Chiu et al., 2020) and resnet50 (Liu et al.,

2019) show considerably lower performance, with mAP0.5 of

67.10% and 72.80%, respectively. These models demonstrate the

challenges of detecting small or occluded pests due to their lower

precision and recall compared to the proposed model.
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GhostConv+CA-YOLOv8n model shows a mAP0.5−0.95 score of

55.579%, which is higher than SSD with VGG16 (55.40%) and

considerably better than SSD with mobilenetv2 (30%) and resnet50

(37.10%). Notably, FasterRCNN (Ren et al., 2015) models, including

FasterRCNNwith resnet50 (Tahir et al., 2021) (null) and FasterRCNN

with resnet152 (Lee and Jo, 2020) (null), do not report a mAP0.5−0.95,

limiting their comparability for this more stringent evaluation.

However, the fact that GhostConv+CA-YOLOv8n maintains a

robust mAP0.5−0.95 score signifies its consistency and ability to

accurately detect pests over a range of IoU thresholds.
6 Conclusions

The occurrence of insect pests represents a substantial threat to

rice production, often necessitating extensive pesticide application,

which in turn contributes to ecological degradation. Therefore, the

ability to rapidly and accurately detect rice pests is essential for both

agricultural productivity and environmental sustainability.

GhostConv+CA-YOLOv8n enables efficient pest detection in

complex environments and facilitates deployment on edge devices

with limited computational resources. By incorporating Context

Aggregation, the model effectively captures key feature map

information, enhancing detection accuracy. Additionally, the

GhostConv module optimizes the YOLOv8n backbone, reducing

computational complexity while maintaining performance. Further

improvements are achieved through the integration of Shape-IoU

and Slide loss, which enhance global feature extraction and

mitigate overfitting.

The GhostConv+CA-YOLOv8n outperforms conventional

YOLO models (YOLOv3, YOLOv4, YOLOv5), as well as Faster

R-CNN and SSD, achieving recognition precision of 89.959%, recall

rate of 82.258%, mAP0.5 of 94.527%, with a lightweight architecture

of 2,973,315 parameters and 2,973,299 (2.84M) gradients. The

above results highlight the accurate and efficient pest detection

performance of the GhostConv+CA-YOLOv8n model, and the

proposed framework enables real-time precision entomology in

agronomic practice, providing: (1) Early detection of invasive

species through morphological fingerprinting; (2) Pesticide

reduction via threshold-based infestation alerts; (3) Ecological

modeling with spatiotemporal pest distribution heatmaps,

advancing sustainable rice cultivation paradigms.

Although the GhostConv+CA-YOLOv8n model has a high

recognition rate when the characteristics of rice pests (occluded or

less) are not prominent, it has broad application prospects. However,

there are still certain limitations for further research and improvement:

In large-scale rice cultivation under natural field conditions, real-time

monitoring of pest activity necessitates the deployment of lightweight

detection models on aerial platforms. By embedding the model within

unmanned aerial vehicles (UAVs), and leveraging multispectral data

acquired through onboard sensors, it becomes feasible to achieve

efficient and continuous surveillance of rice pests in situ. Moreover,

when rice leaves completely block the pests, or the pests are on the back

of the rice leaves, or the pests migrate to other crops or hide under the

land, this will reduce the effectiveness of GhostConv+CA-YOLOv8n.
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