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Dendrobium shixingense Z. L. Chen, S. J. Zeng & J. Duan, a National Class II

Protected wild plant species in China, is renowned for its rich polysaccharide

content and remarkable medicinal value. Delineating priority conservation areas

for this species is critically important for its sustainable conservation and

management. In this study, the MaxEnt model was applied to predict its

potential distribution patterns under multiple climate scenarios, while the

Marxan and InVEST models were utilized to identify priority conservation

zones. Results demonstrate that the primary distribution of D. shixingense is

concentrated in southeastern China, particularly within Guangdong, Fujian,

Guangxi, and Jiangxi provinces, with a total suitable habitat area of 79.41 ×

104km2. Future projections indicate an expansion of suitable habitats, with key

environmental drivers identified as precipitation of the coldest quarter (Bio19),

mean diurnal temperature range (Bio2), among others. Priority conservation

areas are predominantly located in Shixing County and Ruyuan Yao

Autonomous County of Shaoguan City; Xing’an County of Guilin City and

other specified regions. These findings indicate that climate change will

substantially impact the distribution of D. shixingense, potentially altering both

the extent and quality of suitable habitats. priority conservation areas are

concentrated in ecologically stable regions, necessitating enhanced protection

efforts in these zones. Collectively, this research provides a robust scientific

foundation for formulating effective conservation strategies and advancing the

sustainable development of D. shixingense.
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1 Introduction

Global biodiversity continues to decline at an unprecedented

rate (Pereira et al., 2012), with climate change emerging as one of

the most formidable challenges for conservation in the 21st century

(Ceccarelli and Grando, 2020). Species distributions themselves

arise from intricate interactions among evolutionary processes,

anthropogenic activities, and environmental drivers (including

climatic, topographic, edaphic, and biotic factors), collectively

reflecting population dynamics and ecological adaptations

(Soberon and Peterson, 2005). Understanding the dynamic

interplay between species distribution shifts and climate change is

therefore pivotal for biodiversity conservation and sustainable

ecosystem management (Li et al., 2024). This urgency is

underscored by the observed increase in global mean surface

temperature (1.1°C for 2011–2020 relative to 1850-1900) and

projected future warming, which exhibits significant divergence

across emission scenarios—stabilizing at 1.5°C under stringent

mitigation but potentially reaching 4.4°C if high emissions

continue (Pirani et al., 2024). Critically, a 1.5°C warming

threshold alone may place 3-14% of terrestrial species at critically

high extinction risk (Ma et al., 2022). These climate-driven changes

profoundly impact community composition and alter species

distribution patterns (Bosso et al., 2017), though shifts vary across

taxonomic groups.

Species distribution models (SDMs) quantify ecological niches

through regression and classification algorithms that correlate

occurrence records with environmental variables (Phillips et al.,

2006). By projecting these relationships onto climate scenarios,

SDMs estimate habitat suitability through probabilistic surfaces.

Widely applied in ecology, invasion biology, and conservation

science, prevalent SDM approaches include Maximum Entropy

(MaxEnt), Genetic Algorithm for Rule-set Production (GARP),

Ecological-Niche Factor Analysis (ENFA), and BIOCLIM models

(Townsend Peterson et al., 2007; He et al., 2023). While GARP

tends to overestimate species distribution ranges (exhibiting high

false positive rates) (Townsend Peterson et al., 2007), ENFA is

excessively sensitive to extreme environmental values at niche

margins (Hirzel et al., 2006), and BIOCLIM fails to account for

variable interactions (Beaumont et al., 2005), the MaxEnt

framework demonstrates particular efficacy under data-limited

conditions (n≥5) – a critical advantage for modeling narrow-

range species – achieving robust predictions through entropy

maximization principles (Phillips and Dudıḱ, 2008). To translate

these suitability predictions into actionable conservation plans for

spatially restricted species, we integrate MaxEnt outputs with

systematic reserve design tools (Chen et al., 2025). The Marxan

model employs simulated annealing algorithms to design cost-

efficient reserve networks meeting user-defined conservation

targets (Smith et al., 2010), extending from its marine origins to

terrestrial conservation planning (Zhang and Li, 2022). However,

while Marxan optimally identifies minimal conservation units, it

neglects habitat quality assessment – a critical limitation given that

habitat quality directly determines species persistence, demographic
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rates, and long-term viability (Newbold et al., 2015). Degraded

habitats constrain dispersal corridors and reduce resilience to

climate stressors, particularly for range-restricted species

(Damschen et al., 2019). This gap is addressed by the InVEST

model’s habitat quality module, which enables spatially explicit

ecosystem evaluation with minimal data requirements (Kunwar

et al., 2020). This study integrates Marxan’s systematic planning

with InVEST’s habitat quality assessment to refine priority areas,

particularly when combined with MaxEnt-derived medicinal plant

suitability predictions.

Dendrobium shixingense Z. L. Chen, S. J. Zeng & J. Duan, a

newly described orchid species published in 2010 (Chen et al., 2010),

is a nationally protected wild plant (Category II under China’s Key

Protected Wild Plants List) and listed in CITES Appendix II.

Endemic to Shixing County, Shaoguan City, Guangdong Province,

this epiphytic orchid derives its name from its type locality. Within

the genus Dendrobium Sw., which encompasses numerous species

with complex taxonomic identities and medicinal applications, D.

shixingense is highly valued in traditional medicine for its rich

polysaccharide content and purported therapeutic properties,

including yin-nourishing, qi-tonifying, and anti-aging effects

(Wang et al., 2025). Although advances in tissue culture

techniques, seed germination protocols, and rapid propagation

systems have enabled successful establishment of its regeneration

framework (Meng et al., 2012; Wang et al., 2025), the species faces

severe conservation challenges. Escalating abiotic stressors (e.g.,

extreme heat and drought) driven by climate change increasingly

threaten its natural habitats, while unsustainable harvesting has

pushed wild populations to the brink of collapse. This study aims

to: (1) Predict climate-driven shifts in D. shixingense’s potential

suitable habitats using MaxEnt modeling; (2) Identify key

environmental determinants shaping its distribution patterns; (3)

Delineate priority conservation areas by integrating Marxan’s spatial

optimization with InVEST-based habitat quality assessments. The

findings will provide scientific support for developing targeted

conservation strategies and sustainable management of this

critically endangered medicinal resource.
2 Materials and methods

2.1 Species occurrence data

D.shixingense displays pink flowers with a labellum featuring

purple-tinged calli, a column bearing pale violet hues, and a

purplish anther cap, demonstrating morphological comparability

to Dendrobium officinale. To obtain accurate distribution records of

D.shixingense, we first compiled occurrence data from the Chinese

Plant Science Center and published literature, followed by field

surveys. A total of 53 georeferenced occurrence points were initially

collected. To mitigate potential biases caused by spatial

autocorrelation, we filtered the dataset using the ENMtools

package in R, retaining 26 spatially independent points for

subsequent analyses (Figure 1).
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2.2 Environmental variables

Climatic Data: Nineteen bioclimatic variables (Bio1–Bio19)

were obtained from the WorldClim database (https://

worldclim.org) at 30-arcsecond (~1 km) resolution, covering

historical (1970–2000) and future periods (2021–2040, 2041–

2060, 2061–2080). Future climate projections were derived from

the BCC-CSM2-MR model under three Shared Socioeconomic

Pathways (SSPs): low-emission (SSP126), moderate-emission

(SSP245), and high-emission (SSP585) scenarios, selected for their

demonstrated reliability in simulating East Asian climate dynamics

(Tan et al., 2022). Topographic and Edaphic Data: Altitude data (90

m spatial resolution) were acquired from the Geospatial Data Cloud

(http://www.gscloud.cn/). Soil properties were extracted from the

Harmonized World Soil Database (HWSD; https://gaez.fao.org/

pages/hwsd). Land use data of China (2022) at 30-m resolution

were sourced from the national-level Resource and Environmental

Science Data Center (RESDC) (https://www.resdc.cn/).

Environmental variables may exhibit significant multicollinearity

(Gong et al., 2022). To mitigate the impact of spatial correlation

among predictors on MaxEnt model accuracy, we employed a

sequential approach combining Jackknife tests and Spearman

correlation analyses. First, bioclimatic and soil variables were

separately imported into MaxEnt with the Jackknife test enabled to

quantify their percentage contributions to model performance

(Phillips et al., 2006). Subsequently, Spearman correlation analyses

were conducted for both variable categories (Figures 2-3), with |R| ≥

0.8 defined as indicative of high collinearity (Yang et al., 2023b; Jia

et al., 2024). Finally, variables contributing <2% in Jackknife

evaluations were discarded. For variable pairs showing high

correlation (|R| ≥ 0.8), only the predictor with the greater

explanatory contribution was retained (Song et al., 2023). This
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procedure yielded 4 bioclimatic, 5 edaphic and 2 topographic

variables for final modeling (Table 1).
2.3 MaxEnt model parameter tuning

The use of default parameters in Maxent models may lead to

overcomplexity, whereas the ENMeval package in R software

effectively optimizes model parameters (Kass et al., 2021). We

established regularization multiplier (RM) groups ranging from

0.1 to 4 with increments of 0.5, along with six feature combination

(FC) parameters: H, L, LQ, LQH, LQHP, and LQHPT, where L

(Linear), Q (Quadratic), H (Hinge), P (Product) and T (Threshold)

represent distinct feature types (Tian et al., 2023). The Akaike

Information Criterion corrected for small sample sizes (AICc) was

utilized to evaluate model complexity and transferability. The

optimal model was identified when the AICc increment

minimized (delta.AICc = 0), while models with AICc < 2 were

considered statistically credible (Phillips et al., 2017; Li et al., 2023).

Based on optimized parameters, model prediction employed the

Bootstrap method for data partitioning. For each iteration, 25% of the

data were randomly selected as the test set, with the remaining 75%

used for model training. This process was replicated 10 times to

mitigate stochastic errors caused by data partitioning, thereby

enhancing the accuracy and stability of model evaluation

(Sreekumar and Nameer, 2022). To systematically assess model

performance, a Jackknife test was conducted to quantify the relative

importance of environmental variables. Model accuracy was validated

using the area under the receiver operating characteristic curve

(AUC), where higher values (range: 0–1) indicate superior

predictive performance, with AUC > 0.9 considered indicative of

robust model simulations (Swets, 1988; Jiménez-Valverde, 2012). The
FIGURE 1

Geographical distribution point of D.shixingense (A), Illustration of D.shixingense (B).
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Kappa statistic, which integrates species distribution rates, predictive

sensitivity, and specificity, was adopted to evaluate model

performance. Models are generally deemed reliable when Kappa

values exceed 0.4 (West et al., 2016). However, this metric is

susceptible to biases caused by species distribution frequency. In

contrast, the True Skill Statistic (TSS), an improved evaluation index

with a simpler computational framework, is widely recommended. A

TSS value > 0.6 typically serves as the threshold for qualifying model

performance (Zhao et al., 2021).
2.4 Suitability classification

The Maxent model prediction results were visualized using

ArcGIS 10.8. The potential suitable habitats for D. shixingense were

classified into four grades using the natural breaks method (Jenks)

(Zhao et al., 2025): non-suitable (0–0.098), low suitable (0.098–

00.329), moderately suitable (0329–0.612), and highly suitable

(0.612–1). Additionally, the SDM toolbox extension in ArcGIS was

employed to analyze dynamic changes and centroid shifts in suitable

habitats under different climate change scenarios (Wang et al., 2023).
2.5 Marxan model

Biodiversity conservation prioritizes optimal resource allocation

strategies that maximize threatened species coverage while ensuring
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population viability (Zhao et al., 2016). Priority conservation area

delineation, essential for maintaining biodiversity and

sustainability, requires systematic approaches (Margules and

Pressey, 2000). The Marxan model, designed and developed by

Ian Ball and Hugh Possingham (Ball and Possingham, 2000), was

utilized to identify priority conservation areas for D. shixingense

under current climatic conditions. The study area was divided into 2

km × 2 km planning units. Using the Zonal Statistics as Table tool

in GIS, the distribution area of suitable habitats within each

planning unit was quantified to construct a species distribution

matrix (Kim and Choe, 2024). Approximately 20% of the total

suitable area was set as the conservation target. The boundary

length of planning units was generated using the ArcMarxan2.pyt

plugin. Model parameters included 1,000,000 iterations (Yu et al.,

2023), a boundary length modifier (BLM) of 10,000 to optimize

spatial compactness, a species penalty factor (SPF) of 100 and 100

independent runs.
2.6 Habitat quality assessment using the
InVEST model

The InVEST (Integrated Valuation of Ecosystem Services and

Tradeoffs) model, developed by the Stanford Natural Capital

Project and the World Wildlife Fund (Daily et al., 2009), was
FIGURE 2

Spearman correlation analysis of bioclimatic factors.
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applied to assess habitat quality by integrating land-use types, threat

sensitivity, external threat intensity, and spatial effects (distance and

weight decay) (Deng et al., 2021). Building on Marxan-derived

priority conservation areas, the InVEST model refined habitat

quality evaluations. Threat factors, including paddy fields,

drylands, urban areas, rural settlements, other construction lands,

and unused lands, were selected based on the InVEST user manual

(Sharp et al., 2020) and relevant studies (Shang et al., 2021; Feng

et al., 2022). Threat factor weights, maximum influence distances

and decay types were configured (Tables 2 and 3).
3 Results and analysis

3.1 Model accuracy and D. shixingense
distribution

Using default parameters in the Maxent model for predicting

suitable habitats of D. shixingense yielded a delta.AICc value of

130.47. After parameter optimization via the ENMeval package, the

optimal parameter configuration (feature combination [FC] = LQ,
FIGURE 3

Spearman correlation analysis of soil factors.
TABLE 1 Variables used in modeling.

Type Variable Description Unit

Climatic

bio2 Mean Diurnal Range °C

bio3 Isothermality –

bio9
Mean Temperature of

Driest Quarter
°C

bio19
Precipitation of
Coldest Quarter

mm

Topographic
Al Altitude m

Sl Slope °

Soil

T_CEC_CLAY
Cation Exchange Capacity

of the Clay Fraction
cmol

(+);/kg

T_CLAY Clay Content %

T_OC Organic Carbon Content %

T_GRAVE Gravel Content %

Soil pH Soil pH –
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regularization multiplier [RM] = 1) achieved the minimal AICc

increment (delta.AICc = 0). Under these settings, the model

exhibited excellent predictive performance (Figure 4), with an

AUC value of 0.990, expressing excellent (Swets, 1988), a TSS

value of 0.932 expressing outstanding (Zhao et al., 2021), and a

Kappa statistic of 0.477 expressing acceptable (West et al., 2016).

Visualization of the current climatically suitable habitats for D.

shixingense in GIS revealed a concentrated distribution in

southeastern China, covering a total area of 79.41×104 km²

(Figure 5). These habitats predominantly align with two climatic

zones: the marginal tropical humid region and the northern
Frontiers in Plant Science 06
subtropical humid region. Notably, moderately to highly suitable

areas were primarily located in the northern subtropical humid

zone. Specifically, the highly suitable areas (18.27×104 km²)

encompassed Guangdong, Fujian, Guangxi, and Jiangxi provinces.

Moderately suitable areas (22.65×104 km²) included Zhejiang and

Guangxi provinces, while low-suitability zones (38.49×104 km²)

extended to Hunan Hainan and Jiangsu provinces in China.
3.2 Key environmental variables

This study investigated the interactions between the occurrence

probability of D. shixingense and environmental factors, along with

their response relationships, based on the contribution rates of these

variables. Using the MaxEnt model, we prioritized the importance

of environmental variables to define suitable habitats and identify

key factors driving the species’ distribution. First, among the 11

variables analyzed, the most critical factors influencing habitat

suitability were bio19 (precipitation of the coldest quarter, 32.5%),

bio2 (mean diurnal temperature range, 19.9%), altitude (16.5%),

Soil pH (14.6%), and bio9 (mean temperature of the driest quarter,

5.1%), with a cumulative contribution rate of 88.6%.

Secondly, for the five key variables, the model provides the

response curve of each factor to the possible outcome when only

one factor is input at a time (Figure 6). The survival probability of
TABLE 2 Threat factor weight of study area.

Threat
Maximum impact
distance (km)

Weight
Decay
type

Paddyfield 4 0.7 linear

Dryland 3 0.5 linear

Urban 8 1 exponential

Village 5 0.6 exponential

other
construction

land
8 0.4 exponential

Unusedland 6 0.5 linear
TABLE 3 Sensitivity of land scape types to threat factors.

Land type Habitat Paddyfield Dryland Urban Village Other Unusedland

Paddyfield 0.3 0 0.3 0.6 0.5 0.4 0.4

Dryland 0.3 1 0 0.6 0.5 0.5 0.4

Woodland 0.9 0.6 0.5 0.75 0.6 0.7 0.2

Shrub 1 0.6 0.6 0.8 0.7 0.7 0.2

Sparsewood 0.85 0.9 0.7 0.9 0.8 0.8 0.2

Other forest land 0.9 0.7 0.7 1 0.9 0.8 0.2

High coverage grassland 0.85 0.8 0.7 0.6 0.55 0.6 0.6

Medium coverage grassland 0.7 0.7 0.7 0.7 0.6 0.7 0.7

Low coverage grassland 0.7 0.6 0.7 0.8 0.7 0.8 0.8

Graff 1 0.8 0.65 0.85 0.7 0.5 0.3

Lake 0.9 0.3 0.3 0.7 0.6 0.6 0.3

Reservoir 0.7 0.7 0.7 0.85 0.7 0.5 0.3

Shoal 0.8 0.5 0.7 0.7 0.2 0.5 0.3

Urban 0 0 0.1 0 0 0 0

Village 0 0 0.1 0 0.5 0 0.1

Other 0 0 0 0.2 0.1 0 0

Swamp land 0.5 0.5 0.5 0.6 0.3 0.3 0.2

Unusedland 0 0 0 0 0 0 0
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D. shixingense shows a parabolic trend in bio19, altitude, bio2, and

bio9, while it shows a decreasing trend in Soil pH. When bio19 is at

234.43 mm, the survival probability reaches 0.85, indicating the

most suitable conditions for bio19; When the altitude is 530.12 m,

the survival probability reaches 0.85, indicating the most suitable

altitude conditions; When bio2 is at 6.95 °C, the survival probability

reaches 0.75, indicating the most suitable daily average temperature

conditions; When bio9 is at 11.99 °C, the survival probability

reaches 0.82, indicating the most suitable isothermal conditions;

The survival probability of D. shixingense decreases with the

increase of Soil pH. Generally speaking, when the survival

probability is greater than 0.5, it indicates that the area is highly

suitable for species survival. It can be seen that under current

climate conditions, the suitable range for these 5 environmental

factors is bio19 between 159.35-319.97mm, Soil pH<7.24, altitude is

between 278.64-843.96m, with bio2 at 5.35-8.67 °C and bio9 at 7.08-

16.95 °C.

Finally, Jackknife tests (Figure 7) demonstrated that bio19 had

the highest normalized training gain when used in isolation

(indicating its unique explanatory power), followed by bio9 and

bio2. Conversely, excluding bio19 resulted in the lowest training

gain, underscoring its irreplaceable role in explaining distribution

patterns. Combined with its dominant contribution rate (32.5%),

bio19 emerged as the most critical factor shaping the distribution of

D. shixingense.
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3.3 Future distribution of suitable habitats
for D. shixingense

In GIS software, visualization was performed to obtain the

distribution map of suitable habitats for D. shixingense under

future climate scenarios (Figure 8). Compared to current climatic

baselines, the total suitable habitat area exhibits an expansion

trend across all future climate scenarios (Table 4). For example,

during the 2041–2060 period under the SSP126 scenario, the

suitable area increased from the current 79.41 × 104 km² to

98.89 × 104 km², with an increase of 19.48 × 104 km²,

representing a growth rate of 24.53%. Under the SSP245

scenario, the suitable area increased to 93.06 × 104 km², with an

increase of 13.65 × 104 km² and a growth rate of 17.19%. Under

the SSP585 scenario, the suitable area increased to 92.02 × 104

km², with an increase of 12.61 × 104 km² and a growth rate

of 15.88%.

Under future climate conditions, the total area of low-suitability

zones exhibited an overall decreasing trend. The most pronounced

change occurred under the SSP585 scenario during 2061-2080, with

an area reduction of 8.35 × 104 km². Notably, the area increased by

5.91 × 104 km² and 0.83 × 104 km² under the SSP126 and SSP585

scenarios, respectively, during 2041-2060. The total area of

medium-suitability zones showed an increasing trend. The most

significant change was observed under the SSP585 scenario during
FIGURE 4

ROC curve for current climate prediction of D. shixingense.
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2021–2040, with an area increase of 10.05 × 104 km². Similarly, the

total area of high-suitability zones also exhibited an increasing

trend, with a substantial magnitude of growth. The most

pronounced change occurred under the SSP585 scenario during

2061-2080, where the area increased by 25.61 × 104 km²,

representing a 140% growth.

As shown in the table, the contraction rate of suitable habitats

for D. shixingense under future climate scenarios is relatively

small, while the expansion rate is relatively high. During the

SSP126 scenario for 2021–2040, the maximum contraction area

reached 10.03 × 104 km², with a contraction rate of 12.63%. In

contrast, during the SSP126 scenario for 2021–2040, the

maximum expansion area reached 28.45 × 104 km², with an

expansion rate of 35.83%. As illustrated in Figure 9, the

expansion regions under future climate scenarios are mainly

concentrated in provinces such as Guangdong, Guangxi,

Zhejiang, and Anhui, while the contraction regions are

primarily located in scattered areas of Taiwan and Guangxi

provinces. Overall, the suitable distribution area of D.shixingense

has not become fragmented due to global warming and has instead

undergone a certain degree of expansion.
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3.4 Centroid shift of D.shixingense suitable
areas in future periods

As shown in Figure 10, the centroid shifts of suitable habitats for

D. shixingense under future climate conditions exhibit spatial

variations, but the overall migration direction is westward.

Currently, the centroid of the species’ suitable habitat is located in

Suichuan County, Ji’an City, Jiangxi Province (114°28’12.92”E, 26°

15’50.60”N). Taking the 2061–2080 period under different climate

scenarios as an example. In the SSP126 scenario (low emissions).

the centroid shifts northwest by 106.66 km to Anren County,

Chenzhou City, Hunan Province (113°27’4.70”E, 26°33’21.95”N).

In the SSP245 scenario (medium emissions), the centroid shifts

northwest by 34.37 km to Guidong County, Chenzhou City, Hunan

Province (114°7’59.06”E, 26°12’6.65”N). In the SSP585 scenario

(high emissions), the centroid shifts southwest by 144.08 km to

Leiyang City, Hengyang City, Hunan Province (113°3’13.88”E, 26°

31’11.91”N). These results indicate that under future climate

conditions, the combined effects of precipitation and temperature

under global warming will drive the centroid of D.shixingense’s

suitable habitats to shift toward inland regions.
FIGURE 5

Suitable area for D. shixingense under current climate.
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3.5 Priority conservation areas for
D.shixingense

We employed the Marxan model to preliminarily identify

priority conservation areas for D.shixingense and conducted

spatial smoothing and visualization in a GIS platform (Figure 11).

The results reveal that priority conservation areas are distributed

across five provinces including western Fujian, northern

Guangdong, the southeastern edge of Guangxi, the southwestern

edge of Jiangxi and southeastern Hunan, with western Fujian and

northern Guangdong being the core regions. These areas

predominantly overlap with medium-to-high suitability zones

under current climatic conditions, further validating the reliability

of the model predictions.

Subsequently, the InVEST model was applied to evaluate

habitat quality within the Marxan-identified priority areas, and

the results were integrated into GIS. Habitat quality was classified

into four tiers using the natural breaks method: Low (P < 0.106),
Frontiers in Plant Science 09
Relatively low (0.106 ≤ P < 0.314), Relatively high (0.314 ≤ P <

0.639) and High (P ≥ 0.639). Higher habitat quality tiers indicate

greater biodiversity richness and ecological suitability. To optimize

conservation efficiency, limited resources should prioritize regions

with higher habitat quality. Consequently, this study refined the

preliminary conservation areas by excluding low-quality habitats

and retaining zones with moderate-to-high quality. The results

show that high and relatively high habitat quality areas are

primarily distributed in northwestern Guilin City, western

Shaoguan City, and northern and northwestern Regions of

Qingyuan City. These regions are dominated by stable forest

ecosystems with minimal human disturbance, contributing to

their superior habitat quality. Notably, although other areas also

contain extensive forest-grassland mosaics, their habitat quality is

compromised by urbanization and human activities, leading to

higher habitat fragmentation. In summary, the final priority

conservation areas focus on regions with intact habitat patches

and stable ecosystems (e.g., Shixing County and Ruyuan Yao
FIGURE 6

Single factor response curve of the current climate. (A) bio19, (B) bio12, (C) Altitude, (D) Soil pH, (E) bio9.
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Autonomous County of Shaoguan City, Yangshan County and

Lianzhou City of Qingyuan City, Xing’an County of Guilin City,

Lianping County of Heyuan City). These areas are prioritized due to

their lower conservation costs and enhanced potential for

supporting the natural reproduction and growth of D.shixingense

wild populations.
4 Discussion

4.1 Evaluation of the Maxent model

The Maxent model, grounded in the principle of maximum

entropy (Phillips et al., 2006), predicts species distributions using

occurrence data alongside relevant environmental factors. Previous
Frontiers in Plant Science 10
studies have demonstrated that the spatial clustering of occurrence

records can significantly influence the model’s predictive accuracy

(Yao et al., 2023). To address this, the present study utilized the

ENMtools package in R to filter and process the occurrence points.

This package eliminates redundant records by randomly removing

duplicate occurrences within the same pixel, based on the resolution

of the climatic and environmental variables, ensuring that only a

single record is retained per pixel and thus minimizing data

redundancy. Similar approaches have been adopted by other

researchers, who employed the ‘thin’ function in the spThin R

package (Aiello-Lammens et al., 2015) and spatial analysis tools in

GIS (Yang et al., 2022) to retain only one occurrence per grid cell,

yielding favorable results.

The default parameter settings of the Maxent model, established

through comprehensive diversity tests on 266 plant and animal
FIGURE 7

Regularized training gain of the MaxEnt model based on the jackknife test.
TABLE 4 Changes in the distribution area of D. shixingense under different periods and scenarios (104 km²).

Period Mode
Low

suitability
Moderate
suitability

High
suitability

Overall
suitable

contract
contract

rate
expansion

Expansion
rate

current 38.49 22.65 18.27 79.41

2021-2040

SSP126 34.72 26.06 29.98 90.76 1.78 2.24 13.1 16.50

SSP245 33.51 26.57 25.84 85.92 10.03 12.63 16.53 20.82

SSP585 40.50 32.70 32.45 105.62 2.24 2.82 28.45 35.83

2041-2060

SSP126 44.40 31.50 25.99 98.89 0.52 0.65 20.04 25.24

SSP245 36.24 30.33 26.49 93.06 1.35 1.7 15.02 18.91

SSP585 39.32 29.79 22.91 92.02 3.3 4.15 15.95 20.08

2061-2080

SSP126 36.53 28.62 32.88 98.03 0.49 0.62 20.1 25.31

SSP245 36.38 28.71 30.2 95.29 1.44 1.81 17.13 21.57

SSP585 30.14 32.09 43.88 106.11 0.49 0.62 27.2 34.25
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species across six major global geographic regions, serve as standard

values provided by the developers (Phillips and Dudıḱ, 2008).

However, applying these default parameters to other species can

sometimes result in overfitting and reduced prediction accuracy (Li

et al., 2020). To mitigate this, the ENMeval package in R was used to

optimize the Maxent model within this study. Additionally, the

‘kuenm’ package in R enables similar functionality by integrating

with MaxEnt, automating the modeling process. This package
Frontiers in Plant Science 11
systematically evaluates various combinations of feature classes

(FC) and regularization multipliers (RM) to identify the optimal

parameter configuration.

In recent years, bioclimatic, topographic, and soil variables have

become standard environmental factors in modeling, but these

variables often exhibit high inter-correlation. Such high

correlations can introduce redundant information and negatively

impact the predictive outcomes (Sun et al., 2021). Accordingly,
FIGURE 8

Suitable distribution areas of D. shixingense in SSP126 (A-C), SSP245 (D-F), SSP 585 (G-I) scenarios in the 2021-2040 (A, D, G), 2041-2060 (B, E, H)
and 2061-2080 (C, F, I).
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jackknife testing and Spearman correlation analysis were employed

to exclude highly correlated variables, thereby enhancing

model accuracy.

Despite Maxent’s many advantages, certain limitations remain.

First, as a machine learning-based algorithm, it may occasionally

converge on a local optimum rather than a global one, potentially

affecting model performance (Elith et al., 2011). Second, the model

typically predicts the maximum potential suitable distribution,

which may not perfectly coincide with the observed range of the

species (Ta et al., 2021). Lastly, while current modeling efforts focus

primarily on bioclimatic, topographic, soil, and anthropogenic

variables, biotic factors—such as interspecies competition and

plant-animal interactions—also play a significant role in shaping
Frontiers in Plant Science 12
species distribution patterns but are often overlooked in related

studies (Yang et al., 2025a).
4.2 Influence of key environmental
variables on the distribution of D.
shixingense

Understanding the relationship between species’ geographic

distributions and environmental factors forms the foundation and

a critical step for effective conservation initiatives (Harapan et al.,

2022). Climate has long been recognized as a principal determinant

of species distribution patterns (Wiens and Zelinka, 2024). As
FIGURE 9

Spatial changes of geographical distribution of D. shixingense in SSP126 (A-C), SSP245 (D-F), SSP 585 (G-I) scenarios in the 2021-2040 (A, D, G),
2041-2060 (B, E, H) and 2061-2080 (C, F, I).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1620580
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2025.1620580
global climate change persists, variables such as temperature,

atmospheric CO2 concentration, and precipitation exert

significant influences on plant growth by affecting key

physiological processes like photosynthesis and respiration (Xue

et al., 2023). In this study, variables including bio19, bio2, altitude,

Soil pH, and bio9 emerged as the most influential in shaping the

distribution of D.shixingense. The species is most suited to regions

characterized by abundant rainfall, warm and humid climates,

minimal temperature variation, and relatively low altitudes.

Members of the genus Dendrobium have stringent habitat

requirements; their distribution is closely linked to climatic

conditions, soil type, and vegetation structure. Most species are

epiphytic or lithophytic, growing attached to tree branches or

within rock crevices (Pan et al., 2022). Because their roots are

exposed to the air rather than embedded in soil, their capacity for

water uptake is constrained, making them particularly susceptible to

water stress (Lü et al., 2023b).

Research has shown that species such as D.nobile and D.

officinale adopt drought avoidance strategies (Lü et al., 2023a).

Given that D. shixingense belongs to the same genus, it is reasonable

to infer that it may employ a similar strategy. The pseudobulb—a

specialized structure in these plants—plays a crucial role in storing

water, carbohydrates, and minerals, which are essential for survival

and growth (Lüttge, 2012). Among the variables considered, bio19

was identified as the most critical, as precipitation during the dry
Frontiers in Plant Science 13
season is vital for replenishing pseudobulb water reserves, thereby

supporting subsequent flowering and vegetative growth. Consistent

with this, Li (2024) also identified bio19 as the key determinant of

ecological suitability for D. officinale, suggesting that congeneric

species exhibit comparable sensitivities to bioclimatic factors.

Temperature also plays a pivotal role in the growth and

development of Dendrobium species within Orchidaceae (Hao

et al., 2012). These orchids typically inhabit regions with minimal

temperature fluctuation and warm, humid climates—a preference

likely linked to the pronounced effects of temperature cycles on

growth and endogenous hormone-mediated flowering processes

(Campos and Kerbauy, 2004; Tang et al., 2020). For D. shixingense,

optimal bio2 values ranged from 5 to 9°C, while bio9 (isothermality)

was optimal between 7 and 17°C.

Topographic factors can indirectly influence the abundance and

spatial distribution of plant populations by affecting solar radiation,

precipitation, and the redistribution of soil nutrients. D. shixingense

is primarily found at altitudes between 400 and 600 meters (Chen

et al., 2010). According to our model predictions, the most suitable

altitude range for this species is 300–850 meters, which further

supports the reliability of the model outputs. Moreover, altitude has

been identified as a critical factor influencing both the alkaloid

content and other secondary metabolites in D. nobile (Lu, 2020),

highlighting the need for future cultivation practices of D.

shixingense to pay close attention to the effects of altitude.
FIGURE 10

Geographical changes of the central particle in D. shixingense under different climatic scenarios and periods.
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The physicochemical properties of soil are known to exert

significant influence on both the growth and secondary

metabolite production of medicinal plants (Lu et al., 2006).

Among these, soil pH is regarded as a key indicator of soil

fertility. In this study, when a survival probability threshold of 0.3

was used to define suitable habitat for Dendrobium shixingense, the

corresponding value for Soil pH was below 6.0. Generally, species in

the genus Dendrobium thrive best in acidic soils. For example,

Meng et al. (2012) achieved successful aseptic cultivation of D.

shixingense using solid media with a pH of 5.6–5.8, while in their

protocorm weight gain experiments, the pH was typically

maintained around 4.5 (Meng, 2012). Collectively, these findings

underscore the pronounced impact of environmental variables on

plant distribution patterns, accentuating the importance of species-

specific research to identify which environmental factors are most

critical for the survival and reproduction of each species.

The distribution and persistence of species are governed not

only by climatic variables, but also by the combined effects of biotic

interactions (such as interspecific relationships) and abiotic factors

(including anthropogenic activities). These complex ecological
Frontiers in Plant Science 14
processes are often tightly linked to the spatial and temporal

heterogeneity of environmental factors (Warren et al., 2001).

Although the present study identified climate and topography as

the principal determinants of D. shixingense distribution, this does

not diminish the importance of other variables. This is particularly

relevant for epiphytic species, whose establishment and growth are

influenced by the characteristics of their host plants (Lin et al.,

2017). In our projections, we assumed that soil and topography

would remain constant over the next 80 years, which may introduce

some degree of bias into the results (Yang et al., 2025a).
4.3 Dynamic changes in the distribution of
D. shixingense

In response to the challenges posed by climate change, plants

may persist and grow by adjusting their physiological processes or

by shifting their geographic ranges to habitats with more favorable

climatic conditions (Kong et al., 2021). As global temperatures rise,

the suitable habitats of most species are predicted to shift toward
FIGURE 11

D. shixingense Priority Protection Area [(A) is the priority protected area for identifying Marxan, (B-D) stands for habitat quality in protected areas)].
frontiersin.org

https://doi.org/10.3389/fpls.2025.1620580
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2025.1620580
higher latitudes and elecations (Bertrand et al., 2011). Dendrobium

shixingense is currently restricted in its distribution to Guangdong

province and a few adjacent areas bordering Jiangxi (Chen et al.,

2010). According to our model projections, the potential suitable

range for this species is concentrated in southeastern China—

including Guangdong, Fujian, Guangxi, and Jiangxi—primarily

within the northern subtropical humid climatic zone, with an

estimated area of 79.41 × 104 km². Notably, the model also

predicts small patches of suitable habitat along the lower reaches

of the Yarlung Tsangpo River.

Previous research has shown that the Yarlung Tsangpo valley

harbors a rich and distinctive diversity of orchids (Lin et al., 2013),

including numerousDendrobium species such asD. moniliforme,D.

chrysotoxum, and D. densiflorum (Yang et al., 2023a). This suggests

that the regional climate is highly conducive to the growth of

Dendrobium species, and we infer that D. shixingense could also

thrive in this area. Orchidaceae possess highly specialized

reproductive traits: their seeds, being minute and lacking

endosperm, rely on symbiotic fungi for nutrient acquisition

during germination and seedling development (Bidartondo and

Read, 2008; Dearnaley et al., 2012). In natural habitats, orchids form

mycorrhizal associations with specific fungal taxa, allowing them to

obtain the carbohydrates and minerals necessary to complete

crucial life stages (Arditti and Ghani, 2000). For instance, D.

huoshanense exhibits low fruit set due to pollinator limitation,

poor seed germination rates in the wild, weak reproductive

capability, and slow growth. We therefore hypothesize that

similar reproductive constraints may explain the current limited

distribution of D. shixingense to the Guangdong–Jiangxi border.

Our projections of the future distribution of D. shixingense

indicate substantial shifts in its potential range under global

warming, with the centroid of suitable habitat moving westward.

All future scenarios predict an overall increase in suitable area, with

the most notable changes occurring in high- and medium-

suitability zones, while low-suitability zones show less variation.

This pattern underscores the pronounced sensitivity of D.

shixingense to global temperature changes. Spatially, the species’

suitable range is expected to expand as the climate warms. We

speculate that the primary driver of this change is climate warming

alleviating D.shixingense’s dual constraints of low-temperature

stress and drought stress by regulating key bioclimatic factors—

precipitation of the coldest quarter (Bio19) and mean diurnal

temperature range (Bio2). On one hand, winter warming coupled

with altered cold-season precipitation patterns (Bio19) effectively

improves hydrothermal conditions in higher-latitude and higher-

altitude regions, relieving cold-season drought stress. Scholar study

confirms a significant positive correlation between Orchidaceae

richness and Bio19 across China (Zhang et al., 2015). On the

other hand, appropriate diurnal temperature variation (Bio2)

enhances carbon accumulation efficiency by reducing nocturnal

respiratory consumption while mitigating water limitations during

developmental stages through dew replenishment mechanisms

(De & Biswas, 2022). This synergistic hydrothermal optimization

process promotes the expansion of suitable habitats toward higher

latitudes/altitudes.
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Over the past 100 years, the rate of climate warming in China

has been slightly higher than the global average (You et al., 2022).

Against the backdrop of global warming, extreme high-temperature

and cold wave events have become increasingly frequent (Wu et al.,

2025). As a crucial component of terrestrial ecosystems, vegetation

systems exhibit high sensitivity to such environmental changes

(Yang et al., 2025b). Plant growth is often constrained by specific

climatic thresholds, and once environmental conditions surpass

these tolerance limits, growth rates decline significantly, and in

extreme cases, population decline may occur (Hoffman et al., 2018;

Luo, 2011). Notably, epiphytic plants are particularly vulnerable to

the impacts of climate change compared to other terrestrial plants

(Gentry and Dodson, 1987). Studies have shown that at

temperatures of 0°C and below, the cells of Dendrobium officinale

suffer severe damage, impairing seedling growth and development

and even causing death (Wang et al., 2022). While model results

suggest that D. shixingensemay benefit to some extent from climate

warming overall, the potential harm caused by frequent extreme

weather events, especially to such highly climate-sensitive protected

species, warrants significant attention and must not be overlooked.

In this study, the natural breaks method in GIS was used to

classify suitability zones, as this method maximizes within-group

similarity and between-group differences (Arabameri et al., 2019).

However, different classification methods may yield different

results. For example, the IPCC’s likelihood classification method

(0–0.05–0.33–0.66–1) (Manning, 2006) or using two groups of

sample points to define thresholds (sorting each group of sample

points in ascending order by output value and selecting points

between the top 80% of one group and the bottom 20% of the other

group as classification thresholds) (Zhu et al., 2023) are alternative

approaches. Therefore, it is necessary to set classification standards

appropriate for the species in question and compare these with its

actual geographical distribution.
4.4 Priority conservation areas for D.
shixingense

The endangerment mechanisms of rare plants typically include

intrinsic factors, such as reproductive barriers and low seed

germination rates, as well as extrinsic factors, such as geological

natural disasters, pests and diseases, climate change, and human

activities leading to habitat degradation and fragmentation (Volis

and Deng, 2020). Habitat loss is a primary driver of biodiversity

decline, making habitat conservation critically important (Françoso

et al., 2015). For species like D. shixingense, which have stringent

habitat requirements, habitat quality is particularly crucial. The

Marxan model is commonly used to identify priority conservation

areas. However, when applied at larger scales, it often fails to

account for habitat quality and may include areas that are not

essential for conservation. In this study, we coupled the Marxan

model with the InVEST model to evaluate habitat quality, thereby

refining the identification of priority conservation areas.

Our results indicate that priority conservation areas are mainly

concentrated in northwestern Guilin City, western Shaoguan City,
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and northern and northwestern regions of Qingyuan City. These

areas overlap significantly with the species’ original habitat, further

supporting the validity of the results. Although other regions were

not included in the final priority conservation areas, they could still

be considered for developing D. shixingense cultivation, processing,

and related industries. Therefore, our research provides practical

insights for the conservation and sustainable development of

D. shixingense.
5 Conclusion

This study utilized an optimized MaxEnt model to predict the

suitable habitat of D. shixingense under current and future climate

conditions. Additionally, the coupling of the Marxan and InVEST

models enabled the identification of priority conservation areas.

The results showed that the key environmental variables influencing

the distribution of D. shixingense are bio19, bio2, altitude, Soil pH

and bio9. Its primary suitable areas are located in southeastern

China, including Fujian, Guangdong, Jiangxi, and Guangxi

provinces. Under future climate conditions, the suitable area for

D. shixingense is expected to expand to some extent, with the

distribution centroid shifting inland. Priority conservation areas

were predominantly located in Shixing County and Ruyuan Yao

Autonomous County of Shaoguan City; Yangshan County and

Lianzhou City of Qingyuan City; Xing’an County of Guilin City;

and Lianping County of Heyuan City. These findings provide a

strong reference for the conservation and sustainable development

of D. shixingense.
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