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Pursuing agricultural intensification to raise productivity has brought challenges 
such as involvement of high capitals, often in the form of loans, environmental 
damage, and ecosystem disruption. These challenges increase risks in 
agricultural practice that require good management and control. This increases 
the need for real-time, non-destructive monitoring technologies that can 
improve crop productivity, enhance land use, and facilitate environmentally 
friendly agriculture. Due to its unique capacity to non-destructively examine 
plants’ internal biological and structural properties, ultrasound has emerged as a 
promising non-invasive technique providing insights often unattainable with 
traditional optical, spectral, or chemical sensors. This review aims to provide an 
up-to-date state of the art in ultrasound-based monitoring applications within 
major agricultural areas: soil characterization, seed quality control, plant health, 
stress monitoring, pests and diseases detection, and fruit ripening assessment. 
This review explores how contact and non-contact ultrasound measurements 
are scalable and versatile, bridging the gaps between laboratory and field-
deployed systems. Integrating ultrasound monitoring with artificial intelligence 
and Internet of Things (IOT) frameworks further enhances modality accuracy and 
can detect stress, diseases, and other physiological changes in crops sooner. 
Overcoming challenges such as environmental acoustic noise will require further 
work. Still, recent advances such as improved signal filtering algorithms, new 
transducer designs, better field sensitivity, and broader collaboration to 
standardize ultrasound measurement protocols indicate a growing trend 
toward increased on-field use of ultrasound. Finally, the review also discusses 
the current limitations and future research directions of how ultrasound-based 
monitoring can catalyse a new paradigm of sustainable data-driven agriculture 
that meets food security needs. 
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1 Introduction 

Agriculture is the backbone of the global economy because it 
provides food, raw materials for industries, supports trade, 
generates employment, ensures food security, and drives 
economic development. In developing nations, agriculture is the 
largest source of livelihood (Ba, 2016). According to the estimates, 
agriculture employs around 1.3 billion people annually (Pandi and 
Shridar, 2017; Dedieu and Schiavi, 2019). Many research studies 
show that agriculture is vital in alleviating poverty and providing 
jobs (Singh et al., 2024; Chandrarekha et al., 2024). In recent years, 
climate change and an ever-growing demand for food production, 
among other factors, are increasing pressure on agriculture and 
threatening global food security and the sustainability of 
agricultural  systems  (Yu  et  al. ,  2025).  The  increasing  
temperatures, changes in precipitation patterns, droughts, floods, 
invasion of plant pests and diseases only add to the challenges for 
agricultural resilience. Simultaneously, the ever-increasing global 
population contributes to higher food demand, requiring the world 
to adopt sustainable agriculture practices (Hossain et al., 2024; 
Goswami et al., 2024; Rashmi et al., 2024). 

To ensure global food security and economic growth, there is a 
constant need to improve the agricultural sector. Recent applications 
of advanced and digital sensing and control technology create what so 
called precision agriculture, aiming to enhance productivity and 
sustainability within the agricultural industry (Ambaru et al., 2025). 
Precision agriculture uses numerous cutting-edge technologies such 
as UAVs, machine learning techniques, and remote sensing to 
analyze the conditions of soil, livestock, and crops. The information 
obtained from these data-driven techniques can then be used to target 
interventions and decision-making at the farm level (Logeshwaran 
et al., 2024; Wang et al., 2024a; Xing and Wang, 2024; Agrawal and 
Arafat, 2024). Traditional methods for assessing plant health, such as 
chemical testing and manual inspection, have serious limitations, 
especially for farmers who need timely and accurate information to 
manage their crops. These approaches are labor-intensive, slow, 
destructive, and often produce inaccurate information, leading to 
delayed actions and potential yield losses (Ding et al., 2024; Fuentes-
Peñailillo et al., 2024). Non-destructive testing (NDT) approaches 
present a promising alternative by providing real-time insights into 
plant health without causing harm. 

In recent years, as NDT technologies continue to evolve rapidly, 
integrating them into existing agricultural practices could empower 
farmers to make data-driven decisions and increase their crop yields. 
These methods enable the early detection of disease and stress before a 
visible symptom appears. Additionally, they are low-cost solutions, 
making them more accessible to farmers for efficient crop management 
(El-Mesery et al., 2019; Mahanti et al., 2022; Egbokhaebho et al., 2023; 
Agarwal et al., 2024). Various NDT technologies have become highly 
useful in evaluating plant health, disease diagnosis, and monitoring 
while maintaining plant integrity. These technologies encompass 
diverse methods, from optical sensing, thermal cameras, and 
hyperspectral and multispectral analysis to acoustic and ultrasound 
approaches and fluorescence-based detection. Optical and spectral 
sensors help researchers monitor chlorophyll fluorescence, leaf 
Frontiers in Plant Science 02 
reflectance, and changes in leaf pigmentation to detect early signs of 
physiological stress. Thermal imaging captures heat variations 
indicative of plant stress, and ultrasonic and acoustics techniques 
analyze internal structural conditions to aid in diagnosing structural 
weaknesses or early  disease symptoms  (Sinha et al., 2023; Joshi et al., 
2024; Patel et al., 2022; Xu et al., 2024; Piriyadharshini and Ezhilarasi, 
2023; Duveiller et al., 2024; Falcioni et al., 2024; Zhang et al., 2023; Wu, 
2024). Among these NDT technologies, ultrasound has drawn 
increasing interest from researchers due to its ability to access 
internal plant structures, offer fast, non-destructive diagnostics, and 
detect early disease symptoms. 

Ultrasound, a branch of acoustic wave technology, has emerged 
as a valuable imaging and sensing modality in medical and 
industrial fields primarily due to its non-destructive nature and 
ability to analyze biological tissues and materials. It enables real-
time imaging without ionizing radiations in medical applications, a 
significant advantage over CT and X-ray imaging (Abdulsalam 
et al., 2023; Vrdoljak and Dravinac, 2025). Ultrasound is also 
being utilized for guided biopsies and other minimally invasive 
procedures. In recent advances, ultrasound molecular imaging is 
used for early cancer detection (Hashemi et al., 2024). Ultrasound is 
also widely used in structural health monitoring, food processing, 
crystallizations, multiphase flows, and mineral processing (Zhang 
et al., 2024; Liang et al., 2023; Baser et al., 2023; Wei et al., 2024; 
Nasir et al., 2024). Ultrasound has also proven to be a highly 
effective NDT tool in agriculture, offering unique advantages for 
plant health assessment and food quality assessment. Optical and 
thermal sensing methods only assess surface-level characteristics. 
Still, by utilizing high-frequency sound waves, ultrasound can 
penetrate the plant tissues and provide insights into their internal 
structure. It is particularly useful for detecting internal decay and 
changes in plant cell compositions. Advances in machine learning 
and signal processing have further enhanced the accuracy and 
usability of the modality in agriculture (Yan et al., 2024). 

This review aims to provide a structured analysis of ultrasound 
monitoring in agriculture in the past decade. It discusses its core 
principles, such as acoustic properties, wave propagation, and 
diagnostic parameters like reflection, attenuation, and impedance 
changes. It further investigates ultrasound instrumentation and 
sensing techniques and explores the difference between contact 
and non-contact methods. It also explores imaging approaches like 
pulse-echo, through-transmission, and tomographic imaging. It 
further explores the role of ultrasound monitoring in major 
agriculture applications, such as soil analysis, seed quality 
assessment, plant health monitoring, pest and disease detection, 
and fruit ripeness evaluation. This review will discuss recent 
advancements in ultrasound monitoring, such as AI integration, 
IoT-enabled ultrasound sensors, and multi-modal diagnostic 
ultrasound systems deployed in agriculture. 
2 Principles of ultrasound monitoring 

Ultrasound systems send high-frequency acoustic waves to the 
material and analyze their interaction with it. Ultrasounds are 
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mechanical pressure waves above 20 kHz, often in the MHz range 
for ultrasound imaging (Oates, 2023). The speed c of ultrasound 
waves in a medium can be determined by its inertial and elastic 
properties. The wavelength l can be estimated by Equation 1: 

c
l = , (1)

f 

where f is the frequency. As the equation shows, higher 
frequencies result in shorter wavelengths, leading to higher 
potential resolution. An ultrasound system consists of several 
components that generate data and images. It includes a pulser or 
transmitter that activates the transducer to emit ultrasound waves. 
A transmit/receive switch manages the signal flow between 
transmission and reception. The analog front end processes the 
received signal before converting it into digital form using an 
analog-to-digital converter. Finally, a processing unit further 
enhances the data, visualizing the ultrasound data/image on the 
user display (Kidav et al., 2022; Chen and Pertijs, 2021). A typical 
schematic of an ultrasound system is shown in Figure 1. 
2.1 Wave propagation, acoustic impedance, 
and attenuation 

Ultrasound waves travel through mediums, reflecting and 
transmitting at the boundaries where the material properties of 
the medium change. This behavior is determined by the acoustic 
impedance, which is defined by Equation 2: 

Z = rc : (2) 

The density r and speed of sound c determine the proportion of 
an ultrasound wave that is reflected vs. transmitted at a boundary 
(Pusppanathan, 2017). A significant impedance mismatch causes 
strong reflections. For example, when an ultrasound wave traveling 
in a tissue encounters air, the impedance difference causes nearly 
total reflection, resulting in minimal transmitted energy (Grager 
et al., 2018). Medical ultrasound imaging maps the reflection from 
the tissue interfaces of differing impedance. For normal incidence, 
Frontiers in Plant Science 03 
the reflection coefficient R, is defined as the ratio of reflected 
incident pressure amplitude defined as Equation 3: 

Z2 − Z1R = : (3)
Z2 + Z1 

As (3) shows, a greater contrast in acoustic impedance Z results 
in a stronger echo (Yared, 2011). This is essential in both medical 
and industrial applications. In medical applications, echoes form an 
image and in industrial applications, echoes help detect flaws 
(Martynenko and Ermachenko, 2021; Zhong et al., 2022). The 
intensity of ultrasound waves is attenuated as they travel through 
a medium. This attenuation or loss occurs due to absorption, 
scattering, and reflection, and is defined exponentially as 
Equation 4 (Zheng et al., 2024): 

I(x) =  I0e 
−2ax : (4) 

It means that the intensity decreases with distance. In soft 
tissues, attenuation typically increases linearly with the frequency 
(often 0.5 dBcm−1 MHz−1) as a rule of thumb. Thus, higher-
frequency waves penetrate a shorter distance while offering higher 
resolution. By contrast, a lossless medium like water has negligible 
attenuation, and many solids (metals) have low intrinsic absorption. 
However, scattering from the microstructure can attenuate the 
wave. Gases cause very high attenuation of ultrasound, especially 
at high frequencies (Gudra, 2008; Su et al., 2017; Wells and 
Liang, 2011). 
2.2 Ultrasound transducers and signal 
generation 

The transducer is the most critical component in an ultrasound 
system. It converts electrical energy into acoustic waves and vice 
versa. Most ultrasound transducers are piezoelectric. A driving 
voltage pulse causes the piezoelectric crystal to vibrate 
mechanically, launching an acoustic wave (He et al., 2023). Upon 
receiving an echo, the pressure wave deforms the crystal, generating 
an electrical signal. Transducers are engineered with several key 
FIGURE 1 

Schematic of a typical ultrasound system adapted from (Kidav et al., 2022; Chen and Pertijs, 2021). 
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components: a piezoelectric element, a backing material, and one or 
more matching layers on the emitting face. The backing dampens 
the vibration duration (producing a broadband pulse) and reduces 
ringing. The acoustic matching layer is a critical design feature to 
efficiently transfer energy into the load medium, typically a quarter-
wavelength thick layer with acoustic impedance intermediate 
between the high-impedance crystal and the lower-impedance 
medium (Toffessi Siewe et al., 2023; Barakat, 2023; Lu et al., 
2023). A schematic illustration of an ultrasound transducer is 
shown in Figure 2. 

Transducer frequency is selected based on the application. 
Medical probes for abdominal imaging operate around 1–5 MHz, 
whereas intravascular ultrasound or ophthalmic probes may use 
20–60 MHz for fine resolution (Li et al., 2010; Luca et al., 2021). In 
industrial testing, lower frequencies (0.1–5 MHz) are standard for 
thicker or more attenuating materials, whereas higher frequencies 
(10–20 MHz) are used for fine-grained materials or thin parts 
(Krautkrämer and Krautkrämer, 1990). Because ultrasound does 
not travel efficiently through air, a coupling medium is typically 
required for contact transducers. In medical imaging, a gel is 
applied between the probe and the skin to displace air. In 
industrial inspections, liquid couplants (e.g., glycerin, oils) or 
water-immersion  setups  are  used  (Cheng  et  al. ,  2022; 
Koulountzios et al., 2019). On the other hand, non-contact 
methods (discussed below) avoid liquid couplant by generating or 
detecting ultrasound through air or electromagnetic waves. 
2.3 Contact vs. non-contact ultrasound 
techniques 

Contact ultrasound is the default approach in medical 
diagnostics and many NDT applications since it allows efficient 
acoustic coupling. A couplant (gel or liquid) is applied to minimize 
the air gap and reduce reflection losses at the interface. This yields a 
strong signal and high signal-to-noise ratio. Non-contact 
ultrasound is required where the direct coupling is infeasible or 
undesirable (e.g., hot surfaces, moving parts, large-scale scanning). 
The most common approach is air-coupled ultrasound. However, 
Frontiers in Plant Science 04
due to the severe impedance mismatch between typical transducer 
materials and air, only a tiny fraction of energy couples into air. 
Specialized air-coupled transducers are designed with lower 
frequencies to mitigate attenuation, high driving voltages and 
sensitive detection (Liu and Abdulla, 2023; Bente et al., 2023). 

Other, non-piezoelectric, transducers such as capacitive 
micromachined ultrasonic transducers and optical/laser-based 
approaches have also advanced, permitting non-contact 
measurement with broader bandwidth or higher sensitivity (Yuan 
et al., 2023; Song et al., 2015). Electromagnetic acoustic transducers 
provide a non-contact option on conductive materials. They induce 
ultrasonic waves by electromagnetic forces in the test object (Jiang 
et al., 2023). However, EMATs efficiency can be lower than 
piezoelectric transducers, requiring powerful pulsed excitation. 
Another non-contact technique is laser ultrasound, where a 
pulsed laser generates ultrasonic waves via thermal expansion or 
ablation, and a separate interferometric laser detects surface 
displacements (Narumanchi et al., 2023). This is couplant-free 
and can operate at a standoff distance, but requires expensive, 
sensitive optical equipment. A comparison between contact and 
non-contact ultrasound is shown in Table 1. 
2.4 Ultrasound imaging and measurement 
technique 

Depending on the application, various ultrasound modes, such 
as pulse-echo, through-transmission, and tomography, are utilized 
to gain in-depth information on the material under observation 
(Zhang and Cegla, 2022; Singh et al., 2022). Each technique differs 
in its operational concept, transducer arrangement, and data 
collection mechanism, providing distinct application advantages. 
In pulse-echo mode, a transducer sends short ultrasonic pulses 
(Figure 3) into the material and receives the echoes that return. The 
system measures time-of-flight and echo amplitude to measure 
internal features (Yanez et al., 2022). This is fundamental to both 
medical B-mode imaging and nondestructive flaw detection. 
Modern array-based systems can perform beamforming by 
introducing electronic delays, improving lateral resolution, and 
FIGURE 2 

Schematic of a medical ultrasound transducer (Ricci et al., 2024). 
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enabling scanning without physically moving the probe (Foiret 
et al., 2022). 

The through transmission mode places a transmitter on one 
side of the object and a receiver on the opposite. Instead of echoes, it 
measures how much ultrasound wave passes through, indicating 
attenuation or disruptions (like flaws) in the material, as shown in 
Figure 4. This method requires access to both sides but can yield 
direct measurements of transmitted intensity (Lluveras Núñez et al., 
2017). It is often used to detect large internal voids or regions of 
high attenuation. Depth information is not directly obtained unless 
combined with scanning or tomography. 

Tomographic methods reconstruct 2D or 3D maps of acoustic 
properties by combining multiple measurements from different 
angles. In transmission tomography, one measures the time-of

flight and attenuation along numerous paths around the target, then 
uses inverse algorithms to compute spatial distributions of sound 
speed and attenuation (Wiskin et al., 2019). Reflective tomography 
collects echo data from multiple vantage points, similar to seismic 
imaging, to build a reflectivity map (Zhang et al., 2018). Hybrid 
methods capture both transmitted and reflected signals. A classic 
medical example is breast ultrasound computed tomography, where 
an array encircles the breast in a water tank, sequentially emitting 
pulses and recording transmitted/reflected waves in all directions. 
Industrially, ultrasonic tomography can be used for pipeline or 
structural inspections by placing multiple transducers around a test 
Frontiers in Plant Science 05 
object and reconstructing internal features from the measured 
signals (Lyu et al., 2024). 
3 Ultrasound in agriculture 

This section presents applications of ultrasound monitoring in 
agriculture. It is organized into the following subsections: Subsection 
3.1 discusses applications in soil monitoring; Subsection 3.2 focuses 
on seed quality monitoring; Subsection 3.3 explores plant health 
monitoring; Subsection 3.4 examines pest and disease monitoring; 
and Subsection 3.5 covers fruit ripeness monitoring. 
3.1 Soil monitoring 

Ultrasound waves are utilized in soil monitoring applications to 
assess soil properties such as moisture content, texture, porosity, 
and structural integrity. To determine the metal concentration in 
soil samples, (da Silva Medeiros et al., 2020) utilized ultrasound-
assisted extractions. Cavitations induced by the ultrasound 
accelerated the disintegration of soil particles, promoting the 
release of trace metals like Aluminum, Cadmium, Copper, Nickel, 
and Zinc. This method is efficient, straightforward, and 
environmentally friendly compared to the traditional acid 
digestion in monitoring. In another study, (Wang et al., 2024b) 
studied the propagation mechanism of ultrasound waves at the 
transducer-soil interface. By examining excitation frequency and 
amplitude, this study revealed the mechanism of energy transport 
inside the soil. The result provided a foundation for creating 
ultrasonic soil sensors and enhancing in-situ soil evaluation. 
(Woo et al., 2022) used a noncontact ultrasound system to 
measure the moisture in the soil. Ultrasound obtained the 
variation in soil strength and moisture accurately across sand, silt, 
and clay. It also employed a machine learning approach to predict 
moisture levels. In another work, (Orhan et al., 2022) developed a 
digital ultrasound-based soil texture analyzer that estimates silt, 
sand, and clay content in a soil-water mixture. The system 
eliminates the need for soil analysis in labs and offers low-cost 
and portable solutions for texture analysis in agricultural 
applications. This was further improved by incorporating pH, 
electrical conductivity data, and machine learning (Kilinc and 
Orhan, 2025). Bradley and Ghimire (2024) designed a noncontact 
FIGURE 3 

Illustration of the pulse-echo mode in ultrasound (Sennoga, 2020). 
TABLE 1 Comparison between contact and non-contact 
ultrasound techniques. 

Feature Contact ultrasound Non-contact 
ultrasound 

Resolution High resolution due to 
direct contact 

Lower resolution due to 
impedance mismatch 

Penetration Good penetration depth Limited penetration depth 

Coupling 
Medium 

Requires a coupling medium 
(e.g., gel) 

No coupling 
medium required 

Applications Widely used in medical imaging Used in industrial and 
specialized medical cases 

Advantages High image quality, 
widely applicable 

Non-invasive, suitable for 
sensitive areas 

Limitations Requires skin contact, may not be 
suitable for open wounds 

Lower resolution, 
limited penetration 
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ultrasound system to measure the soil porosity. This approach 
determined the porosity with high precision, and the technique was 
validated for dry agricultural soils. (Xu et al., 2023) used ultrasound 
wave velocity measurements to access the efficacy of microbially 
induced carbonate precipitation in stabilizing shale soils. The wave 
velocity showed a correlation with unconfined compressive strength 
and CaCO3 content. This technique facilitated rapid and non
destructive assessment of soil enhancement. (Choi et al., 2021) 
focused on using ultrasound-assisted soil washing to treat heavy 
metals such as Cu, Pb, and Zn. Desorption with ultrasound and 
mixing yielded much higher efficiency than the traditional 
Frontiers in Plant Science 06
techniques. The technique worked best on smaller particles and 
under milder chemical conditions. However, significant 
degradation of PFAS was not observed, likely due to cavitation 
interference from soil particles. The summary is presented 
in Table 2. 
3.2 Seed quality monitoring 

In the past, numerous studies have been conducted to assess the 
seed quality using ultrasound. To identify slight cracks that 
TABLE 2 Summary of ultrasound-based soil monitoring techniques. 

Authors (Year) Technique used How it works Effectiveness 

da Silva Medeiros et al. (2020) Ultrasound-assisted extraction Cavitation-enhanced metal extraction 
from soil. 

Fast, efficient, and lowcost. 

Choi et al. (2021) Soil washing w/ultrasound Ultrasound + mixing improves 
metal removal. 

High efficiency, less chemical use. 

Woo et al. (2022) Contactless leaky Rayleigh waves Surface waves track moisture. R2 0.98, non-invasive. 

Orhan et al. (2022) Ultrasound-based texture analyzer Intensity analysis of soilwater mix. Portable, rapid soil texture analysis. 

Kewalramani et al. (2022) Dual-frequency PFAS removal Desorption of PFAS from soil. Limited degradation due to 
cavitation loss. 

Xu et al. (2023) Ultrasound for MICP Velocity linked to CaCO3 in soil. Strong UCS correlation. 

Wang et al. (2024a, b) Ultrasonic signal propagation in soil Studies wave behavior at transducer-
soil interface. 

Foundational for soil instruments. 

Bradley and Ghimire (2024) Non-contact reflection Reflected ultrasound 
estimates porosity. 

Accurate within ±0.04. 

Kilinc and Orhan (2025) Ultrasound + EC/pH sensing Combined input for ML-based 
texture prediction. 

Better performance infield. 
 

FIGURE 4 

Illustration of the through transmission mode in ultrasound (Huang et al., 2023). 
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compromise the germination in cottonseed, (Zhang et al., 2022) 
utilized an air-coupled ultrasound system. The technique captured 
ultrasound echo signals from the cottonseeds, transformed them 
into color-encoded images, and classified them through deep 
learning models. This technique detected undetectable subtle 
damages via optical or thermal approaches with an average 
identification accuracy of 90.7%, (Jin et al., 2016) utilized an air-
coupled ultrasound system coupled with principal component 
analysis (PCA) and K-nearest neighbor (KNN) classification to 
identify the worm or manually induced damage in corn seed. To 
collect the most helpful information, the ultrasound signals from 
both sides of the corn seed were collected and then reduced and 
deionized via PCA to extract the essential features. These features 
were then classified by using multiple pattern recognition 
algorithms. Among all the algorithms, KNN achieves the highest 
accuracy of 100% for the intact seeds and 97% for the damaged 
ones. In another study, (Guo et al., 2019) used an acoustic signal 
processing method based on Gaussian modeling and an improved 
extreme learning machine to estimate the damage in wheat kernels. 
The signals from sprout damaged, insect damaged and undamaged 
kernels were processed using a short-term Fourier transform and 
the Gaussian parameters were extracted. The technique showed a 
detection accuracy of 92% for undamaged, 96% for insect damage 
and 95% for sprout damaged kernels. The summary is presented 
in Table 3. 
3.3 Plant health monitoring 

Numerous studies have been done in recent years on plant 
health monitoring. Yang et al. (2022) utilized a non-contact 
ultrasound method called bulk modulus elastography to 
determine a cactus plant’s drying behavior and health status. The 
study utilized novel air-coupled transducers to capture the changes 
in the elastic modulus of prickly pear cactus (Opuntia) pad (nopal) 
over 11 days. This method can capture deep tissue changes and is 
also efficient in the early detection of stress conditions in 
agricultural contexts. (Gómez Á lvarez Arenas et al., 2016) also 
used non-contact ultrasound to monitor changes in the leaf’s 
mechanical properties and determine the hydration condition of 
plants. The technique measured the change in the frequency of the 
Frontiers in Plant Science 07 
leaf’s ultrasonic thickness, which is closely related to the relative 
water content and water potential. In the field experiments on the 
common grapevine (Vitis vinifera) and Arabica coffee (Coffea 
arabica) leaves, the system showed high sensitivity and 
repeatability in determining the draught and stress conditions in 
the plants. Similarly, to detect northern leaf blight in maize, 
(Maginga et al., 2024) utilized a non-contact ultrasound-based 
anomaly detection system integrated with IoT sound sensors. The 
method used the ultrasound emissions from maize stems, taking 
advantage of the fact that disease-induced stress alters the plant’s 
physiological acoustic signature. By training Long Short-Term 
Memory (LSTM) models on ultrasound data from healthy plants, 
the system was able to detect small deviations signaling early 
disease. The approach effectively detected disease 4–5 days before 
the visual symptoms with 99.98% accuracy. 

Khait et al. (2023) used ultrasonic acoustic monitoring 
combined with machine learning to monitor the physiological 
conditions of tomato and tobacco plants. The experiments were 
conducted in the acoustic chamber and a greenhouse under drought 
and mechanical stress. The study revealed that the stressed plants 
emit species-specific and condition-specific airborne ultrasound 
sounds in the range of 20–100 Khz, which could be detected from 
3–5 meter distance. Using a convolutional neural network (CNN) 
and support vector machine (SVM), the study successfully 
distinguished drought-stressed from the control plant with 84% 
accuracy and identified the dehydration levels with 81% accuracy. 
Khait et al. (2023) monitored changes in the thickness resonances of 
plant leaves using non-contact, air-coupled ultrasonic spectroscopy 
to determine the physiological responses of plants to environmental 
stimuli. In response to sudden watering after a drought, diurnal 
cycles, and rapid changes in light intensity, the system detected 
shifts in the resonant frequency (150–900 kHz). Leaf turgor 
pressure, relative water content (RWC), and tissue elasticity 
correlated with these frequency shifts. Wang et al. (2011) detected 
xylem cavitation events in tomato plants using an ultrasonic 
acoustic emission (UAE) monitoring system to determine the 
degree of plant water stress and support precision irrigation. 
Piezoelectric transducers incorporated into a multi-parameter 
system that measured temperature, humidity, CO2 concentration, 
light intensity, and transpiration rate were used to capture UAE 
signals in the 100 kHz to 1 MHz range. According to the study, the 
TABLE 3 Summary of ultrasound-based seed quality assessment techniques. 

Authors (Year) Technique used How it works Effectiveness 

Jin et al. (2016) Air-coupled ultrasound Captures ultrasonic echo signals from corn 
seeds; features extracted and classified using 
pattern recognition algorithms (PCA 
+ KNN). 

High accuracy in classifying intact and 
damaged corn seeds; up to 100% for intact, 
97% for damaged. 

Zhang et al. (2022) Air-coupled ultrasound with sound-to
image encoding 

Encodes ultrasonic reflections from 
cottonseeds into RGB images; uses 
MobileViT-based deep learning model. 

Accurate slight crack detection with 90.7% 
average accuracy; fast and non-destructive. 

Guo et al. (2019) Impact acoustic signal with Gaussian 
modeling and ELM 

Uses impact-generated signals on wheat 
kernels; extracts features via time-frequency 
analysis and classifies with COAS
ELM model. 

Non-contact detection with 95–96% 
classification accuracy for damaged kernels. 
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cumulative UAE signals showed clear diurnal patterns and a strong 
correlation with plant transpiration activity. Cavitation caused by 
water stress was reflected in the UAE peak’s slight  lag  the
transpiration rate peak. Vergeynst et al. (2015) used broadband 
point-contact ultrasonic emission (UAE) sensing to investigate 
drought-induced cavitation and signal propagation in plant stems. 
The study looked at how ultrasonic signals travel from the source, 
such as xylem cavitation events, to the sensor by combining 
experimental detection of UAE signals in dehydrating branches 
with finite element modeling. This framework enables the 
differentiation of near- and far-field signals in woody species like 
Vitis vinifera and Fraxinus excelsior due to the AE source dynamics 
associated with abrupt xylem tension release. This method provides 
a high-resolution tool for monitoring xylem embolism under 
drought stress. 

Charrier et al. (2015) used infrared thermography and UAE to 
study the ice nucleation and propagation in woody plants to 
investigate the response to freezing. The study found that the 
signals were strongest close to the nucleation point and decreased 
significantly with distance. This indicates a strong correlation with 
ice formation’s temporal and spatial dynamics. This work also 
concludes that the AEs were caused by cavitation events triggered 
by the tension at the ice–liquid interface, with the UAE source 
effectively following the moving ice front. This method is helpful for 
cold stress research and monitoring plant freezing resistance. To 
detect the internal and near-surface defect in trees, (Qiu et al., 2019) 
proposed a novel technique by integrating stress wave sensing with 
acoustics laser methods. Due to the limited propagation of surface 
waves, conventional sonic tomography has trouble identifying 
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defects close to the bark. The authors solved this problem by 
combining data on stress wave transmission with measurements 
of surface vibration made with laser vibrometry, which measures 
variations in vibration amplitude caused by defects in the 
subsurface. The method was tested on Cinnamomum camphora 
trunks with 5–50 mm-deep artificial air holes and gaps. Internal 
(core) defects were clearly visible with conventional sonic 
tomography, but shallow defects (less than 25 mm deep) were 
not. Down to 5 mm from the surface, the integrated method 
successfully detected both internal holes and shallow defects, 
demonstrating significantly higher sensitivity and resolution. 
Bonisoli et al. (2025) used non-contact ultrasound to monitor 
plant drought stress in indoor and outdoor conditions. Tomato 
plants and pinto beans were subjected to water stress, and it was 
noticed that the stressed plants emit more ultrasound signals than 
hydrated controls. This study also considered the external noise 
factors, including wind, rain and insect chirping. The summary is 
presented in Table 4. 
3.4 Pest and disease monitoring 

Ultrasound is conventionally defined as sound waves with 
frequencies above 20 kHz. However, in practical agricultural 
monitoring applications, systems operating just below this 
threshold, particularly in the 15–20 kHz range, are often included 
under ultrasound-based monitoring. This is because they utilize 
similar high-frequency sensor technologies, signal processing 
methods, and non-invasive approaches designed for detecting 
TABLE 4 Summary of ultrasound-based plant health monitoring techniques. 

Authors (Year) Technique used How it works Effectiveness 

Wang et al. (2011) Piezoelectric AE sensors + multi-
parameter system 

AE signal correlation with transpiration 
and cavitation 

Drought stress monitoring 

Fariñas et al. (2014) Air-coupled ultrasound Resonant frequency changes under light, 
drought, and 
diurnal cycles 

Real-time water stress tracking 

Charrier et al. (2015) Acoustic emission sensors + IR 
thermography 

AE tracking of ice propagation in xylem Freeze stress monitoring 

Vergeynst et al. (2015) AE + waveform clustering + µCT AE waveform classification to 
distinguish cavitation sources 

Hydraulic analysis under drought 

Gómez Á lvarez Arenas et al. (2016) NC-RUS with broadband ultrasound Non-contact resonant ultrasound to 
monitor leaf water status (RWC, Y) 

Precision irrigation 
control 

Qiu et al. (2019) AE tomography + surface 
laser vibrometry 

Integration of stress wave and acoustic-
laser tomography 

Structural tree health assessment 

Yang et al. (2022) Air-coupled ultrasound with 
raster scanning 

Ultrasound elastography to monitor 
dehydration-induced modulus changes 
in cactus pads 

Non-contact detection of tissue 
water loss 

Khait et al. (2023) Air microphones + ML classifiers Airborne ultrasonic emissions from 
stressed plants 

Plant stress class using AI classification 

Maginga et al. (2024) CNN-LSTM on ultrasound and 
VOC data 

AI classification of plant stress from 
ultrasonic emissions and VOC data 

IoT-based monitoring disease 

Bonisoli et al. (2025) Ultrasonic microphone + signal filtering UE detection in outdoor 
conditions using microphones 

Non-invasive detection in 
settings stress natural 
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internal biological activity. Many insect species, especially larvae of 
soil- and wood-dwelling pests, produce informative signals such as 
stridulations and feeding sounds within this upper-audible to near-
ultrasonic band. As a result, broadband acoustic systems spanning 
both audible and ultrasonic frequencies are commonly deployed. 
These systems are functionally aligned with ultrasound monitoring 
and are therefore considered relevant to the scope of this review 
(Mankin et al., 2011; Pinhas et al., 2008). In the past decade, many 
researchers have focused on the early detection of Rhynchophorus 
ferrugineus, also known as red palm weevil (RPW), a highly 
destructive pest of palm species. To analyze the ultrasound signals 
from RPW, (Martin et al., 2015) used an ultrasound-based acoustic 
technique to investigate the intensity and frequency of sounds 
emitted by RPW in coconut palms. The measurements were 
collected in both laboratory and field settings and further 
analyzed for distinctive spectral features. The system presented in 
this research did not give any real-time information, but the work 
laid the groundwork for the identification of pest-specific 
ultrasound patterns. 

Hetzroni et al. (2016) used piezoelectric ultrasound sensors to 
detect larval chewing activity in date and canary palms. This study 
compared human and machine-assisted monitoring and 
demonstrated that both are feasible for detecting RPW in natural 
field conditions. The study also reported a human-assisted accuracy 
of 85% and a machine-assisted accuracy of 95%. Mankin et al. (2016) 
utilized advanced ultrasound signal processing to detect the RPW 
larval activity in commercial palm orchards. The study analyzed 
temporal and spectral ultrasound patterns to differentiate the 
environmental noise from the pest activity. The method was tested 
in the field and has shown capabilities in detecting multispecies of 
pests. To implement a scalable ultrasound-based monitoring system, 
(Ashry et al., 2022) introduced a distributed acoustic sensing (DAS) 
system that uses optical fiber to detect the ultrasound signals 
produced by RRW larvae. The system used phase-sensitive optical 
time domain reflectometry to detect the larval chewing activity in the 
200–800 Hz frequency range. The system could capture RPW larval 
ultrasound emissions as early as 12 days post-infestation. The study 
also used a custom signal processing algorithm based on signal-to
noise ratio (SNR) to distinguish between infested vs healthy palm 
trees. The algorithm could detect 97 infestations in the infested trees, 
whereas only 9 in healthy trees. This system was further enhanced by 
deploying convolutional neural networks (CNN) in both controlled 
and outdoor farm environments. CNN was used to process the 
signals and classify them as infested’ or healthy. In the outdoor 
field trials the system showed an RPW larvae classification accuracy 
of 97%. Wang et al. (2021) also employed a fiber optic distributed 
acoustic sensing system integrated with machine learning to enhance 
early ultrasound-based detection of RPW in noisy farm 
environments. The system was used to record signals under various 
noisy conditions, and artificial neural networks (ANN) and CNN 
were trained to classify healthy vs infested trees. The study reported a 
classification accuracy of greater than 99% in combined 
noisy scenarios. 

In addition to detecting RPW monitoring, researchers have also 
explored other agricultural pests. In coffee plantations, (Escola et al., 
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2020) developed a real-time acoustic detection system that utilized 
wavelet packet transform, bark scale filtering, and SVM 
classifications to detect and distinguish Quesada gigas cicadas 
signals from background noise. The study reported an accuracy of 
96.41%. This work was further expanded by (de Souza et al., 2022) 
they integrated Paraconsistent Feature Engineering (PFE) and 
Empirical Mode Decomposition (EMD) for feature extraction, 
and the study reported classification accuracies of above 98% and 
reported the suitability of the system for smart farm deployment. In 
soil and root crop systems, (Görres and Chesmore, 2019) used 
acoustic monitoring system to detect the stridulation patterns of 
Melolontha and M. hippocastani larvae in soil. The study deployed a 
fractal dimension-based algorithm to distinguish stridulation events 
from the background noise. The automated analysis effectively 
detected the stridulation rates, which strongly correlated with the 
larval abundance. Nanda et al. (2023) used both acoustic and 
temperature signals to detect Coptotermes curvignathus in pine 
boards, which is considered one of the most damaging termites in 
Indonesia. The dual-sensing system used in the study was used to 
monitor real-time feeding, excavation, and alarm behavior. The 
study successfully detected the termite activity from the background 
noise over a 24-hour monitoring period. Additionally, the study 
also reported a rising temperature averaging 0.101 °C between 
healthy and infested samples. A regression model also confirms 
strong correlations between termite population and both 
temperature and acoustics signal duration. Table 5 summarizes 
the work reviewed in this section. 
3.5 Fruit ripeness monitoring 

Several studies in the literature highlight the usage of ultrasound 
in monitoring fruit ripeness. This section will explore studies done 
in the last decade. Miraei Ashtiani et al. (2016) used ultrasonic 
spectroscopy to determine postharvest changes in the chemical and 
mechanical properties of the persimmons fruits. The study used 
Teflon-coated ultrasonic transducers to monitor ultrasonic velocity 
and attenuation as the fruit ripened over 21 days. These parameters 
were further statistically modeled with the coefficient of 
determination (R2) value greater than 0.82 to predict the modulus 
of elasticity, rupture force, and soluble solid content (SSC) that 
indicates the ripeness and quality of the fruit. Vasighi-Shojae et al. 
(2018) used a portable ultrasonic system to determine apples’ 
firmness, rupture energy, and elastic modulus. This study 
measured the velocity and attenuation through the entire fruit 
and developed multiple linear regression models to predict the 
properties of the fruit. The model demonstrated a promising 
predictive capability with R2 values up to 0.73, indicating 
moderate to high correlation. This technique was further 
enhanced by combining ultrasonic measurements with artificial 
neural networks (ANN) by (Vasighi-Shojae et al., 2020). Using the 
measured acoustic properties of apples, ANN models were 
developed to predict firmness, elastic modulus, and stiffness. The 
models developed in this work demonstrated a high predictive 
accuracy with R2 = 0.99 for all three properties. 
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TABLE 5 Summary of ultrasound-based plant disease and pest monitoring techniques. 

Authors (Year) Technique used How it works Effectiveness 

Wang et al. (2011) Ultrasonic xylem cavitation monitoring Diagnosed xylem cavitation via acoustic 
emissions to assess drought-induced 
water transport failure. 

Critical for drought stress physiology; 
early warning system for cavitation. 

Fariñas et al. (2014) Ultrasonic sensing of leaf response Used ultrasound to monitor leaf 
reactions to environmental stimuli like 
drought or cold. 

Effective for studying stress-response 
pathways in real time. 

Charrier et al. (2015) Ultrasound during ice propagation 
in xylem 

Detected ultrasonic signals from ice 
formation in xylem during freezing. 

Advanced understanding of frost 
damage mechanisms. 

Vergeynst et al. (2015) Acoustic emissions in drought-
stressed branches 

Linked acoustic emission signals to 
branch hydration status, distinguishing 
between sources. 

Improved interpretation of drought-
induced acoustic emissions. 

Martin et al. (2015) Acoustic RPW activity recording Studied acoustic signatures of red palm 
weevil in coconut trees. 

Useful for characterizing 
infestation patterns. 

Gómez Á lvarez Arenas et al. (2016) Ultrasonic leaf sensing Ultrasound sensors monitored plant 
water needs by detecting changes in 
leaf acoustics. 

Highly sensitive to water stress; useful 
for irrigation scheduling. 

Hetzroni et al. (2016) Piezoelectric Acoustic RPW detection Used piezoelectric sensors to detect 
RPW larvae in palms; machine vs 
human evaluation. 

Machine accuracy 95%, human 85%; 
viable for field use. 

Mankin et al. (2016) Spectral-temporal acoustic analysis Analyzed time-frequency patterns to 
detect RPW and Oryctes elegans in 
palm orchards. 

Effective for multispecies detection in 
noisy conditions. 

Qiu et al. (2019) Acoustic-laser tomography Used hybrid acoustic and laser method 
for defect detection in tree trunks. 

Non-invasive, effective for structural 
assessment in forestry. 

Görres and Chesmore (2019) Fractal-based Acoustic larval detection Detected stridulations of Melolontha 
larvae in soil via fractal 
dimension analysis. 

Enabled species-specific, non-invasive 
larval monitoring. 

Escola et al. (2020) Acoustic + WPT + SVM Used Bark scale filtering and wavelet 
transform to detect Quesada gigas in 
coffee crops. 

Achieved 96.41% accuracy; low-cost, 
real-time solution. 

Wang et al. (2021) DAS + machine learning Fiber optic DAS with CNN and ANN to 
detect RPW larvae in noise-
rich environments. 

Reported >99% accuracy in controlled 
noisy scenarios. 

Yang et al. (2022) Non-contact ultrasound in ambient air Used ultrasound to monitor plant 
health responses without direct contact, 
detecting physiological 
changes remotely. 

Promising for real-time monitoring in 
open-field conditions; non-invasive. 

Ashry et al. (2022) CNN-aided DAS via fiber optics Used optical fiber DAS with CNN to 
detect early RPW infestation from 
chewing sounds. 

Achieved ∼97% classification accuracy 
in field tests. 

(de Souza et al., 2022) EMD + PFE for cicada detection Applied empirical mode decomposition 
and paraconsistent logic for robust 
signal classification. 

Reached >98% accuracy; low 
computational load for field use. 

Khait et al. (2023) Airborne stress-induced 
sound recording 

Captured airborne ultrasound-like 
sounds emitted by stressed plants, 
confirming they are informative. 

Revealed plants emit detectable sounds 
under stress, usable for remote 
stress sensing. 

Nanda et al. (2023) Acoustic + thermal termite monitoring Monitored termite activity in wood 
using acoustic (22 kHz) and 
temperature sensors. 

Successfully correlated temperature 
and activity; avg. temp rise 0.101C. 

Maginga et al. (2024) Ultrasound IoT + CNN-LSTM Combined wavelet transform and deep 
learning on ultrasound & VOC data for 
maize disease detection. 

High accuracy in nonvisual early 
disease identification. 

Bonisoli et al. (2025) Contactless plant ultrasonic monitoring Outdoor detection of plant ultrasound 
emissions using microphones 
without contact. 

Suitable for field applications; validates 
airborne acoustic sensing. 
F
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Soltani Firouz et al. (2021) used a custom ultrasound system 
together with a support vector machine (SVM) classifier to 
determine the mechanical effects of freeze in oranges. Ultrasonic 
velocity and attenuation were measured through the fruit, and the 
impact of freezing was analyzed. The study found that the freezing 
altered the fruit’s internal properties, affecting ultrasound 
propagation, which can be detected immediately after freezing 
and before the visual symptoms appear. Using SVM classifiers, 
the system achieved an accuracy of 100% in distinguishing healthy, 
mildly damaged, and severely freeze-damaged oranges. Budiastra 
and Jannah (2022) utilized ultrasonic methods to determine the 
firmness and sweetness of soursop fruit. Velocity and attenuation 
were measured using the ultrasound system, which showed a strong 
correlation, with physicochemical parameters firmness having R2 = 
0.884 and total soluble solids (TSS) having R2 = 0.81. In the study, 
two regression models were also developed to classify firmness and 
sweetness levels, with a classification accuracy of 100% and 95%, 
respectively, when validated against manual measurement on 20 
randomly selected samples. Table 6 summarizes the work reviewed 
in this section. 
3.6 Commercially available ultrasound 
systems for agricultural use 

Several specialized ultrasound-based systems are commercially 
available for in-field crop and tree monitoring. For the structural 
health of trees, sonic tomograph devices are used to detect internal 
decay or cavities non-invasively. Notably, the PiCUS Sonic 
Tomograph (Argus Electronic GmbH, Germany) (IML Electronic 
GmbH, 2021) and ArborSonic 3D (Fakopp Enterprise, Hungary) 
employ multiple contact piezoelectric sensors around a trunk to 
measure sound wave transit times and construct cross-sectional 
images of wood integrity (Fakopp Enterprise Bt, 2023). Similarly, 
the Arbotom system (Rinntech, Germany) (Rinntech GmbH, 2022) 
uses impulse sonic tomography to map tree trunk and limb quality 
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for risk assessment. These systems are field-portable and designed 
for outdoor use by arborists or growers to evaluate trunk and 
canopy structural health (e.g., detecting hollows, rot, or cracks) 
without harming the tree. 

Ultrasound sensing has also been applied to pest and stress 
monitoring. For example, IoTree sensors (Agrint, Israel) are 
wireless in-tree seismic/ultrasonic devices that detect vibrations 
from wood-boring insect larvae (such as red palm weevil) inside 
live palm (Agrint Ltd, 2024). This contact sensor network is 
deployed in orchards and plantations, enabling early pest 
infestation detection under real field conditions. In the domain of 
plant physiological stress, emerging solutions like Plense 
Technologies’ system (Netherlands) use high-frequency acoustic 
sensors to “listen” to plants. Plense’s ultrasound sensor employs 
small ultrasonic microphones and speakers near the plant to detect 
xylem cavitation sounds and measure water content, providing real-
time monitoring of drought stress in greenhouse or field (Plense 
Technologies, 2024). These examples illustrate the range of 
commercial ultrasonic technologies now available for in-field 
agricultural monitoring, from tree health diagnostics to pest 
detection and crop stress sensing. Table 7 summarizes the 
commercially available devices. 
4 Discussion 

Ultrasound-based sensing distinguishes itself from other 
precision agriculture tools by its depth of insight into agricultural 
applications. Unlike other commonly used modalities that can only 
capture surface characteristics, ultrasound waves can penetrate 
leaves, seeds, and soil layers, revealing internal states that would 
otherwise remain hidden. This ability to probe beneath the surface 
gives ultrasound a unique monitoring and diagnostic power. Studies 
showed that the ultrasonic measurements could reveal shifts in 
plant hydration and tissue elasticity that visual inspection alone 
could not detect. In practical terms, an ultrasonic sensor can act as a 
TABLE 6 Summary of ultrasound-based fruit quality assessment techniques. 

Authors (Year) Technique used How it works Effectiveness 

Miraei Ashtiani et al. (2016) Ultrasonic spectroscopy Measures ultrasonic velocity and attenuation 
through persimmons during ripening; uses 
regression models to predict mechanical and 
chemical attributes. 

R2 > 0.82 for firmness, elasticity, and SSC; 
effective and accurate for non-destructive 
ripeness assessment. 

Vasighi-Shojae et al. (2018) Ultrasonic Velocity 
and attenuation 

Uses 40 kHz ultrasound through apples; 
features fed into regression to predict internal 
quality traits. 

Moderate to high prediction accuracy (R2 = 
0.73); feasible for real-time monitoring. 

Vasighi-Shojae et al. (2020) Ultrasound with Artificial 
Neural Network 

Measures ultrasonic parameters from apples 
and uses ANN models to predict firmness, 
modulus, and stiffness. 

Very high accuracy (R2 = 0.999); ANN models 
outperform regression for mechanical 
property prediction. 

Soltani Firouz et al. (2021) Low-intensity ultrasound 
+ SVM 

Measures changes in ultrasonic propagation in 
oranges before and after freezing; uses 
SVM classifier. 

Achieves 100% accuracy in classifying freeze 
damage severity; enables early detection before 
symptoms appear. 

Budiastra and Jannah (2022) Throughtransmission 
ultrasound 

Applies 50 kHz ultrasound to soursop fruits; 
velocity data used in regression models for 
firmness and sweetness. 

Classification accuracy of 100% for firmness and 
95% for sweetness; non-invasive and robust. 
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“stethoscope” for crops, listening for signs of stress within plant 
organs or soil profiles in real time. This non-destructive view of 
internal conditions avoids the cost and complexity of destructive 
sampling and positions ultrasound as an inexpensive, in-field 
enhancement to current precision agriculture technologies. 

In soil applications, ultrasound provides real-time and non
destructive assessments of physical and chemical properties that are 
pivotal to the management of crops. For example, in situ soil 
moisture and texture measurements using ultrasonic waves 
provide rapid feedback on soil conditions, which would otherwise 
require lab analyses taking days or weeks. By measuring how 
quickly ultrasound travels through soil and how much it loses 
energy while doing so, these methods can estimate how much water 
there is in the soil or how tightly packed it is, information that 
guides irrigation and tillage choices. Ultrasound can even effectively 
assist in soil remediation efforts. It has been shown that ultrasound-
assisted processes disintegrate soil aggregates and mobilize 
contaminants, enhancing the efficiency of heavy metal pollutant 
extraction from soil compared to conventional methods. 
Altogether, such soil-centric applications show ultrasound’s 
ability to facilitate soil health monitoring and remediation. 

For seeds and fruit, the air-coupled ultrasonic imaging has been 
used on grains to search for microscopic internal cracks or insect 
damage that cuts the seed off from germination. When subjected to 
machine learning algorithms, such ultrasonic echoes allow the 
scanner to consistently separate healthy seeds from damaged 
ones, with over 90% (Jin et al., 2016; Guo et al., 2019; Zhang and 
Cegla, 2022) accuracy in crops such as cotton, corn, and wheat. 
Similar principles have been applied to fruit ripeness monitoring. 
The propagation speed and attenuation of ultrasonic waves through 
fruit tissue correlate with firmness and soluble solid content, 
essential indices for fruit ripeness, enabling growers to predict a 
proper harvest time non-invasively. Having ultrasound techniques 
like these helps maintain the valuable seed stock and the produce 
while still providing the vital quality information needed in the 
marketplace, instead of destructive testing. 
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Ultrasound can also keep a watch on the health of plants as they 
grow and alert scientists and farmers to the first sign of stress or 
sickness. Long before visible signs, studies tracked a cactus pad’s 
elastic modulus via ultrasound over several days of dehydration, 
revealing that the plant tissues react to water stress by changing 
their mechanical properties, and ultrasonic measurements can 
detect these changes. Similarly, the ultrasound of leaves may 
provide information about the state of the water. Changes in the 
frequency of ultrasonic vibrations passing through a leaf have been 
associated with loss of turgor and early drought stress in grapevine 
and coffee plants, respectively. Acoustic emissions in the ultrasonic 
range beyond drought can act as a warning indicating pathogenic 
attacks. In maize, IOT-connected ultrasonic sensors were placed on 
the stem of a plant and trained to use a deep learning model to 
recognize the acoustic signature of a fungal infection. This system 
detected a disease 4–5 days (Maginga et al., 2024) before it appeared 
on the leaves. Recent documentation of tomato and tobacco plants 
under stress conditions shows that plants emit species-specific 
ultrasonic distress waves or signals into the air when they 
experience physical damage. Ultrasound turned out to have this 
extra sensitivity. 

Farmers could hear, or sense, the quiet sounds of dysfunction, 
in real time, identifying problems before they spread, when they are 
still reversible. However, while classification tasks such as pest 
detection often yield high accuracy, the reliability of ultrasound 
systems in estimating continuous physiological or biochemical 
variables is more variable. In domains such as animal science and 
clinical diagnostics, reported R² values for ultrasound-based 
continuous estimates typically range from 0.33 to 0.52 or lower, 
reflecting moderate predictive performance under field conditions 
(Pirmoazen et al., 2020; Bahelka et al., 2009). In agricultural 
settings, this limitation becomes particularly critical when the 
goal is to continuously monitor changes in plant hydration, tissue 
elasticity, or biochemical composition metrics that can vary subtly 
over time and under different conditions. The performance of such 
estimations is often affected by system parameters (e.g., frequency, 
TABLE 7 Commercially available ultrasound-based monitoring systems for field agricultural applications. 

System 
(Manufacturer) 

Application Ultrasound sensing type and function Reference 

PiCUS Sonic Tomograph (IML 
Electronic, Germany) 

Tree trunk decay detection Uses contact piezoelectric sensors arranged around the trunk to 
measure sonic transit times and construct tomograms of internal 
wood structure. 

(IML Electronic GmbH, 2021) 

ArborSonic 3D (Fakopp 
Enterprise, Hungary) 

Tree structural health Employs multiple nail-mounted sensors for stress wave timing 
and 2D/3D acoustic tomographic imaging; detects hollows 
and decay. 

(Fakopp Enterprise Bt, 2023) 

Arbotom (Rinntech, Germany) Tree integrity assessment Uses impulse sonic tomography with a tapping hammer and 
contact sensors to map internal trunk condition. 

(Rinntech GmbH, 2022) 

IoTree (Agrint Ltd., Israel) Insect pest detection in palms In-tree seismic/ultrasonic sensor that detects larval vibrations 
(e.g., red palm weevil) and sends alerts wirelessly. 

(Agrint Ltd, 2024) 

Plense Ultrasound Sensor 
(Plense Technologies, 
Netherlands) 

Plant physiological stress 
(e.g., drought) 

Uses non-contact ultrasonic microphones and speakers to detect 
xylem cavitation signals and assess plant water status. 

(Plense Technologies, 2024) 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1620868
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sattar and Laila 10.3389/fpls.2025.1620868 

 

intensity), ambient noise, and the heterogeneity of biological 
materials, especially in outdoor environments. These findings 
suggest that although ultrasound is capable of capturing rich 
internal signatures, its quantitative outputs may fluctuate 
depending on external and internal factors. Thus, achieving high 
reliability in continuous-variable estimation requires validated 
calibration protocols, adaptive signal processing, and possibly 
multimodal integration with complementary sensing methods. 

Ultrasound-based acoustics effectively listen in on insect pests 
and other hidden threats. Many plant destructive insects, including 
weevils, borers, and beetle larvae, spend much of their life cycle 
encased within plant or soil tissues. Still, they generate low audible 
or ultrasonic sounds (feeding, chewing or movement) that are 
detectable with ultrasound equipment. Researchers have created 
listening systems that employ broadband ultrasonic sensors to pick 
up these sounds and filter them out from ambient noise. For 
instance, an acoustic ultrasound method was effectively used to 
record the signature sounds made from the red palm weevil feeding 
within palm trunks, which enabled the early detection of infestation 
before there were outward signs on the plant. Other work has 
employed piezoelectric ultrasound sensors with automated pattern 
recognition to detect insects chewing within trees, obtaining 
detection rates around 95% (Hetzroni et al., 2016) for  the
presence of pests while filtering away other environmental 
ambient sounds. Wavelet packet transform and machine learning 
(support vector machines) were used for monitoring cicada pest 
activity in coffee plantations by a field-deployed acoustic 
monitoring system, detecting pest activity with over 96% (Escola 
et al., 2020) accuracy and showing that ultrasound pest surveillance 
is feasible under high noise outdoor conditions. By detecting 
infestations early, such ultrasonic pest-detection tools facilitate 
more targeted interventions (such as localized treatment or 
quarantine), thereby reducing crop losses. 

These novel ultrasound applications hold significant 
implications in terms of sustainable agriculture. Early detection of 
problems, whether water stress, disease, or pests, means that 
farmers can respond precisely, applying water or treatments 
exactly when and where needed and potentially preventing crop 
loss or quality degradation. Such precision not only increases yields 
but also decreases the need for chemical pesticides and fertilizers, 
bringing agricultural practice closer to environmental sustainability 
goals by reducing the excess of inputs. Rather than waiting until a 
field of crops appears physically sick, farmers can get a continuous 
read on crop health and address potential problems immediately as 
they arise. Furthermore, ultrasonic devices can be relatively low-
cost and portable, making this technology widely available even in 
resource-limited environments. 

The growing integration of artificial intelligence into ultrasound-
based monitoring systems is enabling more precise, efficient, and 
scalable solutions in agriculture. Machine learning algorithms can 
extract meaningful patterns from complex ultrasound signals and 
images, facilitating the detection of subtle indicators of plant stress, 
seed viability, soil conditions, or pest activity. Among the commonly 
used methods, convolutional neural networks (CNNs) are particularly 
effective for pattern and image recognition, support vector machines 
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(SVMs) offer reliable classification in smaller datasets, and Long Short-
Term Memory (LSTM) networks are well-suited for analyzing 
temporal changes in acoustic emissions. These AI techniques 
enhance system responsiveness and reduce the dependence on 
manual interpretation, allowing real-time insights to be generated 
even in noisy or dynamic field environments. By combining AI with 
ultrasound sensing, farmers and researchers can better monitor crop 
and soil health, optimize resource use, and move closer to data-driven 
decision-making for sustainable agricultural management. 

There are hurdles to be crossed before ultrasound techniques 
reach their complete potential in precision farming. One primary 
concern is the interference of ambient noise in real-world field 
settings. Wind, rain, farm machinery and even animal calls can emit 
acoustic signals that obscure or simulate the ultrasonic signatures of 
plant or pest activity. Although sophisticated signal processing (e.g., 
custom filtering algorithms and machine learning classifiers) has 
made it possible to suppress some of that noise, detecting 
biologically relevant signals under all conditions remains 
challenging, especially when ultrasound is applied in the field. 
Another obstacle is the lack of standardized protocols and 
calibration, as varying ultrasonic frequencies, transducer types, 
and analysis techniques are often used between studies and sensor 
systems, so direct comparison of results can be difficult. Such 
fragmentation exposes a critical gap in community-wide 
standards and shared reference datasets. Adopting consistent 
methodologies and data formats would enable rapid, robust 
training of AI models on large, pooled datasets and increase 
reproducibility of results across labs and crop types. From an 
engineering perspective, existing ultrasonic devices must be 
repurposed to meet more challenging field conditions. Sensors 
must be made more energy efficient, smaller, rugged, and 
sensitive. There is progression in this regard. More recent designs 
(micromachined ultrasonic transducer and low-power Internet of 
Things–connected acoustic sensors) are emerging. However, work 
remains to ensure that ultrasound systems can run unattended in 
remote farms with minimal maintenance. 
5 Open problems and future research 
directions 

In the future, integrating ultrasound with other advanced 
sensing and analytics capabilities will continue to enhance its 
potential in precision agriculture. Multi-modal approaches show 
considerable promise, as ultrasound combined with optical, 
thermal, or laser-based imaging can provide complementary 
insights into crop health by capturing internal and external 
physiological changes. For instance, hybrid acoustic–laser 
tomography has demonstrated enhanced sensitivity for detecting 
subsurface structural defects in tree trunks. Integrating ultrasound 
data with other modalities, supported by AI-driven analysis and IoT 
frameworks, may ultimately lead to real-time, automated 
agricultural decision-making systems. The development of 
standardized measurement protocols and open-access acoustic 
databases will be critical to enable robust machine learning 
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models capable of generalizing across diverse crops and 
environmental conditions. 

The development direction of the current research indicates 
that ultrasound will be an increasingly important, sustainable, 
quantitative agriculture tool and a noninvasive, measuring-based 
integrated platform. However, several significant challenges and 
open research issues must be addressed to completely realize 
ultrasound’s transformative power for agriculture. The challenges 
are outlined below. 
Fron
a.	 Environmental Acoustic Noise and Signal Quality: One of 
the foremost challenges in field applications is the high level 
of environmental acoustic noise. Influences from wind, 
rain, and machines bring heavy interference and make 
weak ultrasound signals reflecting from biological targets 
difficult to detect. Although the ML-based denoising 
approaches showed potential, there is a need for real-
time, lightweight, and robust noise suppression methods 
optimized for low SNR conditions, which are typical of 
outdoor settings. 

b.	 Standardization of Ultrasound Measurement Protocols: 
Standardization of measurement procedures, including 
calibration, acquisition parameters, and reporting 
conventions, is essential to ensure the comparability of 
results across different systems and applications. The 
current diversity in transducer designs, operating 
frequencies, and signal processing techniques introduces 
significant variability, making it challenging to assess key 
reliability metrics such as accuracy and precision. 
Furthermore, the lack of uniform benchmarks and the 
limited reporting of uncertainty margins hinder 
confidence in quantitative outcomes, particularly for 
continuous-variable estimations. Developing standardized 
protocols and open reference datasets would not only 
enhance reproducibility but also enable more consistent 
evaluation of model performance, ultimately supporting 
more trustworthy and actionable decision-making in 
precision agriculture. 

c.	 Sensor Design for Field Deployment: A significant 
technological gap is the lack of energy-efficient ultrasound 
sensors that can be left in place for an extended period in 
agricultural environments. Today, the available systems are 
developed for laboratory environments but not for field 
settings. Further work is required to develop field-worthy, 
low-power ultrasound sensors, potentially drawing upon 
advances in wireless IoT architectures to form scalable, low-
cost monitoring networks. 

d.	 Characterization of Plant Materials for Ultrasound 
Applications: Plant tissues are more heterogeneous and 
anisotropic compared to soft biological tissues typically 
analyzed in medical ultrasound. This makes quantitative 
interpretation of ultrasound signals more challenging, 
especially under environmental variability. The lack of 
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standardized acoustic property datasets for different crop 
species adds to the uncertainty in predicting plant water 
status, elasticity, or stress markers. Additionally, some 
ultrasound applications require extrapolating signal 
features into physical or chemical indices (e.g., soluble 
solids, firmness), which can introduce model uncertainty. 
Future research should aim at developing calibrated 
phantoms, reference samples, and in vivo datasets that 
link ultrasound response with precisely measured 
biological variables to enhance both model training 
and interpretability. 
In addition to these ultrasound-specific challenges, broader 
enablers such as integration with multimodal sensing systems and 
the availability of open-access datasets are important for scaling up 
any smart agricultural technology. While not unique to ultrasound, 
combining it with other sensing modalities (e.g., hyperspectral or 
thermal imaging) can improve diagnostic accuracy, especially under 
noisy or variable field conditions. Similarly, the lack of annotated 
ultrasound datasets for agriculture limits the development and 
benchmarking of robust machine learning models. Addressing 
these systemic needs will benefit the wider agri-tech ecosystem 
and further support ultrasound adoption. 

Beyond technical constraints, the limited adoption of 
ultrasound systems in agriculture may also stem from economic 
and behavioral factors. Although several commercial systems (e.g., 
PiCUS, IoTree) have demonstrated field viability, their penetration 
into mainstream farming practices remains low compared to optical 
or infrared-based remote sensing. Factors such as user familiarity, 
perceived complexity, and cost benefit uncertainty often hinder 
uptake. Additionally, the lack of service infrastructure, training 
programs, and agronomic decision support tools integrated with 
ultrasound data can limit trust and usability among farmers. Unlike 
visual sensors that provide immediately interpretable images, 
ultrasound often requires specialized post-processing, which may 
not appeal to low-resource users. To foster broader adoption, future 
systems must prioritize user-centered design, affordability, and 
integration into existing farm management platforms. 

Addressing these open challenges will be crucial to fully 
unlocking ultrasound’s potential as a transformative tool in 
agriculture. Continued interdisciplinary research combining 
sensing technologies, machine learning, and plant science will 
pave the way toward more sustainable, resilient, and data-driven 
farming systems. 
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Lluveras Núñez, D., Molero-Armenta, M., Garcıá Izquierdo, M., González 
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