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A simple and efficient system
for evaluating plant genome
editing efficiency and its
application in optimizing
the ISAam1 TnpB nuclease
Xingyu Cao †, Shasha Bai †, Jun Li* and Yongwei Sun*

Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia
University, Hohhot, Inner Mongolia, China
Genome editing technology has revolutionized plant genetic breeding. However,

Significant variability in editing activity has been observed across different genome

editing systems and target sites, highlighting the importance of developing efficient

evaluation systems for assessing genomeediting efficiency in plants. In this study, we

developed a simple, rapid, and efficient systembased on hairy root transformation to

evaluate somatic genome editing efficiency in plants. This system is easy to

implement, does not require sterile conditions, and enables visual identification of

transgenic hairy roots within two weeks. We first validated the system using the

CRISPR/Cas9 genome editing platform, confirming its effectiveness. Subsequently,

we applied this system to assess the somatic editing activity of the recently identified

ISAam1 TnpB nuclease, which show considerable promise for plant genome editing

applications. Furthermore, through protein engineering, we identified two variants,

ISAam1(N3Y) and ISAam1(T296R), which exhibited a 5.1-fold and 4.4-fold

enhancement in somatic editing efficiency, respectively. These findings

demonstrate that the developed method provides an effective tool for optimizing

genome editing system and screening potential target sites in plant genomes.
KEYWORDS
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Introduction

CRISPR/Cas technology has revolutionized the field of life sciences. However, in

contrast to the extensive research conducted in mammalian cells, the development and

application of novel CRISPR/Cas systems in plants have lagged behind their counterparts.

Most CRISPR systems have been initially developed for genome editing in human cells and

subsequently adapted for plant applications (Zhong et al., 2023). However, genome editing

in plants presents distinct challenges compared to mammalian systems. Many editing

systems that demonstrate high efficiency in mammalian cells either fail to work or exhibit

marked reductions in editing efficiency when applied in plants (Zhong et al., 2023). As a
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result, developing a system that allows for rapid evaluation of

genome editing efficiency in plants is critically important. In

many cases, the in vitro cleavage assay in protoplasts offers a

convenient method for assessing genome editing efficiency (Li

et al., 2013, 2017b; Molla et al., 2021; Pan et al., 2021; Panda

et al., 2024; Perroud et al., 2023; Syombua et al., 2021; Xiong et al.,

2023; Zhang et al., 2022). However, the routine use of protoplasts in

laboratory settings faces several limitations, including the

complexity of the isolation process, low viability of isolated

protoplasts, and suboptimal transfection efficiency. Moreover,

protoplast-based assays typically rely on transient expression

systems, which may not accurately reflect the true genome editing

efficiency observed in stably transformed plants.

Hairy root transformation mediated by Agrobacterium rhizogenes

offers a more efficient, rapid, and straightforward alternative to

Agrobacterium tumefaciens-mediated transformation. Following

infection, the characteristic “hairy root syndrome” is induced,

resulting in the formation of chimeric composite plants with

transgenic roots and non-transgenic shoots within just a few weeks

(Gutierrez-Valdes et al., 2020; Kereszt et al., 2007; Kong et al., 2023). It

has also been widely applied in the field of plant genome editing,

particularly in the efficient screening of genome editing sites (Bai et al.,

2024; Cao et al., 2023). However, for many studies, Agrobacterium-

mediated genome editing still requires operation under sterile

conditions to obtain transgenic hairy roots, which is time-consuming

and labor-intensive (Zhu et al., 2024). This poses significant challenges

for large-scale target screening or system optimization experiments of

genome editing nucleases. Recent studies have reported that soybean

transgenic hairy roots can be rapidly obtained through a one-step

method that does not require aseptic conditions (Fan et al., 2020).

However, the infection process and screening for transgenic positive

hairy roots still require significant effort.

In this study, we developed a simple and rapid system for

evaluating somatic genome editing activity in plants, capable of

producing transgenic hairy roots within two weeks. This system is

easy to operate, does not require sterile conditions, and enables clear

identification of transgenic hairy roots without the need for

specialized instruments or equipment. Furthermore, we applied

this method to assess the somatic genome editing efficiency of the

small nuclease ISAam1 TnpB in plants. Through protein

engineering, we identified two variants, ISAam1(N3Y) and

ISAam1(T296R), which exhibited significantly enhanced somatic

editing efficiency. Collectively, this system provides a practical and

efficient platform for evaluating and optimizing somatic genome

editing tools in plants.
Results

Development of a system for the rapid
generation of transgenic hairy roots

In this study, we first established a simple and efficient hairy

root transformation system using soybean as the model organism.

This system involved slant cut of the hypocotyl of soybeans
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germinated for 5–7 days and directly infecting them with

Agrobacterium rhizogenes harboring 35S:Ruby vectors capable of

expressing the Ruby gene (He et al., 2020), which is a synthetic

reporter gene system to track gene expression and successful plant

transformations without needing special equipment (Figure 1A),

followed by cultivation in moist vermiculite. After two weeks, we

were able to visually select transgenic soybean roots (Figure 1B).

For the infection protocol, the slant cut of the hypocotyl was

either scraped onto Luria-Bertani solid medium containing K599

Agrobacterium rhizogenes (LBS), directly planted into vermiculite

and watered with K599 liquid medium (LBL), or watered with

resuspended Agrobacterium rhizogenes in 1/4 Murashige and Skoog

liquid medium (1/4 MS), or watered with 1/4 MS supplemented

with 100 mmol of Acetosyringone (1/4 MS + AS), or subjected to a

combination of these methods (LBS+LBL; LBS+1/4MS; LBS+1/4MS

+AS). Our study demonstrated that all infection protocols resulted

in a high rate of successful transformation, with 80% of the infected

plants exhibiting transformed roots (Figure 1C). Moreover, within

each infected plant, 10% of the roots were successfully transformed

(Figure 1D). Given that different Agrobacterium rhizogenes strains

typically show significant variations in infection efficiency across

different plant species, we applied the LBS infection method to three

Agrobacterium rhizogenes strains: Ar1193, Arqual, and C58C1. The

results indicated that the infection efficiency of these three strains

was lower than that of K599 in soybean (Figure 1E).

Studies have shown that Agrobacterium rhizogenes can infect

most dicots, a small number of monocots, and gymnosperms. To

date, hairy roots have been developed and exploited in more than

400 plant species across 50 angiosperm families and 150 genera,

with the majority concentrated in the Apiaceae, Asteraceae,

Brassicaceae, Caryophyllaceae, Convolvulaceae, Fabaceae,

Polygonaceae, and Solanaceae families (Phuong et al., 2023;

Rogowska and Szakiel, 2021; Banerjee et al., 2012; Wan et al.,

2023; Zhu et al., 2024). To assess whether our established method is

applicable across a broader range of plant species, we selected

several plant species for verification, including peanut (Arachis

hypogaea L.), adzuki bean (Vigna angularis (Willd.) Ohwi &

Ohashi), mung bean (Vigna radiata (L.) Wilczek), and black

soybean (Glycine max (L.) Merr.). These species were subjected to

transformation using Agrobacterium rhizogenes strain K599 for

hairy root induction. The results demonstrated that the method

was similarly effective across all tested species, with transformation

efficiencies of 43.3% in black soybean, 28.3% in mung bean, 17.7%

in adzuki bean, and 43.3% in peanut (Figure 2).
Evaluation of CRISPR/Cas9-mediated
somatic genome editing efficiency using
Agrobacterium rhizogenes-induced hairy
root systems

Next, we sought to verify whether our method could rapidly

evaluate the efficiency of somatic genome editing. We constructed a

CRISPR/Cas9 system into the 35S:Ruby vectors targeting

endogenous loci within the GmWRKY28, GmCHR6, GmPDS1,
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FIGURE 1

Development of an efficient method for the generation of transgenic hairy roots. (A) Schematic representation of the 35S: ruby vector for the
expression of Ruby. (B) Workflow of soybean hairy root transformation protocol. (C) Impact of different infection methods on transformation
efficiency. Each point represents a biological replicate from an independent experiment, in which no fewer than 30 plants were inoculated.
(D) Number of positive roots per independent plant across various infection methods. (E) Effect of different Agrobacterium rhizogenes strains on the
transformation efficiency of transgenic hairy roots. Data were analyzed using one-way ANOVA, assuming Gaussian distribution of residuals and equal
standard deviations among groups; ns, P>0.05; Data are presented as mean values ± SD.
FIGURE 2

Hairy root transformation of black soybean, mung bean, adzuki bean, and peanut mediated by Agrobacterium rhizogenes. (A) Positive transgenic
hairy roots in black soybean, mung bean, adzuki bean and peanut, respectively. The white arrows indicate the transgenic hairy roots, which exhibit a
red coloration due to the stable expression of the Ruby gene. (B) Agrobacterium rhizogenes K599 mediated hairy root transformation efficiency in
black soybean, mung bean, adzuki bean and peanut. Each point represents a biological replicate from an independent experiment, in which no
fewer than 20 plants were inoculated.
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GmPDS2 and GmSCL1 gene (Figures 3A, B). The results from next-

generation sequencing (NGS) demonstrated that 5 out of 7 targets

showed high somatic editing efficiency (Figure 3C). Notably,

although the target sequences of GmWRKY28-T1 and

GmWRKY28-T2 are identical, the somatic genome editing

efficiency varied significantly between the homologous genes. No

somatic genome editing activity was detected at GmWRKY28-T1,

whereas at GmWRKY28-T2, the somatic editing efficiency reached

as high as 45.1%, with an average of 13.1% somatic genome editing

efficiency (Figure 3C). This highlights the importance of screening

for highly efficient genome editing sites before initiating stable

transformation. Analysis of the genome editing types in

individual transgenic hairy roots revealed that the genome editing

observed was predominantly chimeric (Figure 3D). This may be

attributed to the fact that these transgenic roots were developed

without undergoing traditional tissue culture, antibiotic selection,

and regeneration processes. Consequently, this method is

particularly well-suited for evaluating genome editing efficiency

because each root represents a complex assembly of numerous

transgenic cells, thus providing a more accurate reflection of

genome editing characteristics.

To further evaluate the feasibility and applicability of the

method established in this study, the CRISPR/Cas9 construct,
Frontiers in Plant Science 04
designed to target the GmPDS1 and GmPDS2 genes and in which

the RUBY gene was replaced by the bar gene as a selectable marker,

was subsequently introduced into soybean via Agrobacterium

tumefaciens-mediated transformation. Following tissue culture

and plant regeneration, ten independent stable transgenic lines

were successfully obtained. Next generation sequencing (NGS) of

the editing sites revealed that eight of these lines carried mutations

at the expected loci. Phenotypic characterization showed that

several edited plants exhibited mild chlorotic phenotypes, whereas

distinct albino phenotypes were observed in T1 generation plants

(Figure 3E). These results further demonstrate the feasibility and

potential applications of the method established in this study.
Characterization and engineering of
ISAam1 TnpB-mediated somatic genome
editing in soybean hairy roots

The widely used CRISPR/Cas system is thought to have evolved

from IS200/IS605 transposons. TnpB proteins, encoded by one type

of IS200/IS605 transposon, are considered to be the evolutionary

ancestors of Cas12 nucleases, which have been engineered to

function as RNA-guided DNA endonucleases for genome editing
FIGURE 3

Development of a system for the rapid evaluation of genome editing efficiency in plants. (A) Schematic representation of the RUBY-SpCas9 vector
for the co-expression of Ruby, SpCas9, and sgRNA. (B) Information of seven target sites. (C) Genome editing efficiency of the CRISPR/Cas9 system
targeting seven loci in transgenic hairy roots. Each point represents the genome editing efficiency of an independent transgenic hairy root (n> 8).
(D) Mutations type of CRISPR/Cas9-mediated genome editing in soybean hair roots. The PAM sequences and spacers are highlighted in red and
blue, respectively. Dashes represent deletions, while insertions are shaded in yellow. (E) Phenotypes of GmPDS gene edited mutants.
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in bacteria and human cells, and have recently been reported in

plants, including Arabidopsis, rice, and medicinal plants. However,

the efficiency remains relatively low, with significant variations

observed across different targets, indicating that there is still

considerable room for improvement (Karmakar et al., 2024; Lv

et al., 2024; Weiss et al., 2025; Zhang et al., 2024). ISAam1 TnpB is a

member of the TnpB protein family. To date, ISAam1-mediated

genome editing has been evaluated exclusively in rice and

Arabidopsis thaliana. Notably, the editing efficiency observed in

rice protoplasts ranged from 2.36% to 4.65%. In Arabidopsis

thaliana, among the 20 target sites tested, only 7 exhibited

detectable editing activity, with efficiencies ranging from 0% to

0.3% (Lv et al., 2024; Weiss et al., 2025; Zhang et al., 2024). To

evaluate the feasibility of the method developed in this study for
Frontiers in Plant Science 05
engineering novel nucleases, we cloned the rice codons optimized

ISAam1 gene into the 35S:Ruby vector and constructed nine target-

specific editing constructs for the GmBADH1, GmSweet15,

GmFAD2-1A, and GmCCD4 genes. These constructs were then

introduced into soybean hairy roots for further analysis (Figure 4A).

The results indicated that, among the nine selected targets, only one

target (ISAam1-T2) exhibited somatic genome editing, with an

average editing efficiency of just 0.29% (Figures 4B, C). These

findings suggest that there is still considerable room for

improvement before these nucleases can be effectively applied

in soybean.

Recent studies have demonstrated that engineered optimization

of ISDra2 TnpB can substantially enhance its genome editing

activity in both animal and plant systems. Moreover, the amino
FIGURE 4

Engineering ISAam1 for efficient genome editing in plants. (A) Schematic representation of the RUBY-ISAaml vector for the co-expression of Ruby,
ISAam 1, and ReRNA. (B) Genome editing efficiency of the ISAaml targeting ten loci in transgenic hairy roots. Each point represents a biological
replicate from an independent experiment (n > 3). (C) Mutations type of ISAam1-mediated genome editing in soybean hair roots. The TAM
sequences and spacers are highlighted in red and blue, respectively. Dashes represent deletions. (D) Domain organization of ISAam1. REC,
recognition domain; WED, wedge; RuvC, RuvC endonuclease domain; TNB, target nucleic acid-binding; CTD, C-terminal domain. (E) Identification
of sites that enhance genome editing efficiency of ISAam. The protein structures of ISDra2 (gray) and ISAaml (cyan) are shown, with red highlights
indicating the sites in ISDra2 that improve genome editing efficiency and their corresponding sites in ISAam1. (F) Editing efficiency of ISAam variants.
Each point represents the genome editing efficiency of an independent transgenic hairy root (n > 3). Data were analyzed using one-way ANOVA.
Statistical significance is denoted as follows: ns, P > 0.05; *, P < 0.05; Data are presented as mean values ± SD.
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acid residues associated with improved editing efficiency have been

found to be highly conserved across various TnpB homologs

(Thornton et al., 2025). Guided by protein sequence alignment

and structural predictions generated by AlphaFold2, we found that,

ISAam1 TnpB and ISDra2 TnpB exhibit a high degree of structural

similarity, with a root mean square deviation (RMSD) values of

1.68. Based on these findings, we identified four potentially critical

sites in ISAam1 that may influence genome editing efficiency

(Figures 4D, E). Based on these insights, we rationally engineered

ten variants (N3F, N3Y, L167C, L167G, L167S, M274I, M274V,

T296F, T296R, and a combined variant ISAam1-V1 [N3Y/L167G/

M274I/T296R]). Genome editing constructs targeting the ISAam1-

T2 locus were generated for each variant. Using the rapid hairy root

transformation system developed in this study, we screened

transgenic hairy roots and performed NGS of the target site. The

results revealed that variants N3Y and T296R significantly

enhanced somatic genome editing efficiency, achieving 1.47%

(5.1-fold increase) and 1.28% (4.4-fold increase), respectively.

However, the combination of these two mutations in ISAam1-V2

led to a reduction in somatic editing efficiency in ISAam1-T2, rather

than a further enhancement (Figure 4F).
Discussion

The assessment of genome editing efficiency, particularly in the

context of applying and engineering novel editing systems in plants,

often necessitates the construction of numerous expression vectors

for validation. Consequently, the development of a streamlined,

efficient, and robust method for such evaluations is critically

important. In comparison to the transient protoplast

transformation method, Agrobacterium rhizogenes-mediated

transformation presents clear advantages. This approach

eliminates the requirement for large-scale purification of high-

copy plasmid DNA and avoids the technically demanding process

of protoplast isolation. It is operationally streamlined and, more

importantly, achieves a high transformation efficiency. Notably, the

genome editing efficiency achieved with this system was comparable

to that observed in stable transgenic. For the constructs targeting

the GmPDS1 and GmPDS2 genes, all nine tested independent

transgenic hairy roots exhibited detectable genome editing

activity, while eight out of ten stable transgenic soybean lines

harboring the same construct also displayed editing activity.

Previously, Cao et al. (2023) developed a highly efficient and

simple cut-dip-budding (CDB) system, which involves the

inoculation of explants with Agrobacterium rhizogenes to induce

the formation of transgenic roots. Transgenic plants are

subsequently generated through adventitious rooting. This

method successfully facilitated genetic transformation and

genome editing in several plant species (Cao et al., 2023; Gu

et al., 2025; Lu et al., 2024; Sun et al., 2025). However, for these

plants, the process from infection to the generation of transgenic

hairy roots still requires a relatively long period. Additionally, their
Frontiers in Plant Science 06
genomic information remains relatively underexplored, making

them less suitable for rapid evaluation of genome editing systems.

In this study, we focused on soybean as a model organism with well-

defined genomic information and developed a rapid method for

generating stable transgenic roots. This method not only eliminates

the need for sterile procedures, but also allows for the direct visual

identification of transgenic hairy roots. More importantly, it enables

the generation of transgenic hairy roots within two weeks.

Undoubtedly, this approach will significantly accelerate the

development and application of plant genome editing systems.

ISAam1 is distinguished by its recognition of a specific target

adjacent motif (TAM), TTTAA, which sets it apart from other

TnpB orthologs, such as ISDra2, ISYmu1, and ISDge10. These

orthologs recognize the motifs TTGAT, TTGAT, and TTAT,

respectively. In addition to its unique TAM specificity,

ISAam1TnpB is characterized by a notably compact structure,

comprising only 369 amino acids. In contrast, ISDra2, ISYmu1,

and ISDge10-TnpB contain 408, 381, and 391 amino acids,

respectively (Xiang et al., 2024; Zhang et al., 2024). Due to its

compact size, ISAam1 holds great potential for broader

applications, particularly in virus-mediated genome editing (Hu

et al., 2025; Liu and Zhang, 2020; Tuncel et al., 2025). In this study,

we demonstrated that ISAam1 possesses somatic genome editing

activity in soybean. Furthermore, structural prediction using

AlphaFold2 enabled the identification of putative residues that

may enhance its somatic editing activity. By employing the

evaluation system established in this study, we efficiently

identified two ISAam1 variants with significantly improved

somatic genome editing efficiency, which not only demonstrates

the applicability of this system but also provides a solid foundation

for its further use in plant genome engineering. However, it is

important to transparently acknowledge the current limitations and

challenges associated with applying the ISAam1 TnpB system, even

with the optimized variants, particularly in the context of

generating heritably edited plants. To address the current

limitation of mutation frequency, rational protein engineering

guided by structural insights may be pursued to further enhance

the editing efficiency of ISAam1 TnpB. Future work will therefore

focus on systematic site-directed mutagenesis or directed evolution

targeting these predicted functional domains, such as the catalytic

RuvC-like nuclease domain, the TAM recognition interface, and

regions involved in guide RNA binding or conformational changes.

It is anticipated that such comprehensive engineering approaches

will significantly enhance the genome editing efficiency of ISAam1

TnpB in plants.
Methods

Vector construction

The vectors used in this study were constructed based on the

backbone of 35S:Ruby (Addgene#160908) from Yubing He’s lab.
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The DNA sequences for the ISAam1 TnpB gene were optimized for

rice codons and synthesized by Sangon Biotech (Shanghai, China).

Different variants of the ISAam1 gene were generated through

overlapping PCR to introduce specific mutations. For testing

editing activity in soybean hairy roots, target sites were selected

based on the reference sequence of the relevant gene and the

requirements of the TAM sequence. Once a target site was

selected, forward and reverse oligonucleotides were designed and

synthesized. These oligonucleotides were then used to generate the

reRNA scaffold via overlapping PCR. The reRNAs and ISAam1

gene were driven by AtU6 and CaMV35S promoter, respectively. All

DNA fragments were assembled into the linearized 35S:Ruby

backbone using Seamless Cloning (TransGen Biotech). The full-

length sequences and maps of RUBY-SpCas9 and RUBY-ISAam1

are provided in the Supporting Information.
Hairy roots transformation

The constructed plasmids were introduced into various

Agrobacterium rhizogenes competent cells using the calcium

chloride (CaCl2)-mediated transformation method. Single

colonies were selected, cultured in liquid medium with shaking,

and subsequently aliquoted into 2.0 mL centrifuge tubes for storage

and further use. Agrobacterium rhizogenes used for plant infection

were prepared using the following methods: (1) A tube of

Agrobacterium rhizogenes glycerol stock was spread onto LB solid

medium containing the appropriate antibiotics (LBS); (2) A 20mL
aliquot of glycerol stock was inoculated into 5mL of LB liquid

medium and incubated overnight at 28°C with shaking. The

resulting culture was either used directly for plant infection (LBL)

or centrifuged and resuspended in 1/4 MS liquid medium

supplemented with 100mM acetosyringone (1/4 MS + AS). All

preparations for infection were conducted one day prior to plant

inoculation to ensure optimal bacterial activity and infection

efficiency. Competent cells of Agrobacterium rhizogenes strains

K599, Ar1193, Arqual, and C58C1, along with associated

chemicals, were commercially procured from Coolaber Co., Ltd.

(Beijing, China).

Soybean transgenic hairy roots were generated using a modified

version of a previously reported protocol (Fan et al., 2020). Briefly,

healthy seedlings at 5–7 days post-germination, with fully expanded

true leaves, were selected for transformation. The primary root was

removed using sterile scissors, leaving a 0.7–1 cm segment of the

hypocotyl intact. The wounded surface was either scraped onto LB

solid medium containing K599 Agrobacterium rhizogenes (LBS),

directly planted into vermiculite and watered with K599 liquid

medium (LBL), or watered with resuspended Agrobacterium

rhizogenes in 1/4 Murashige and Skoog liquid medium (1/4 MS),

or watered with 1/4 MS supplemented with 100 mmol of

Acetosyringone (1/4 MS + AS), or subjected to a combination of
Frontiers in Plant Science 07
these methods (LBS+LBL; LBS+1/4MS; LBS+1/4MS+AS). The

inoculated plants were subsequently maintained under high-

humidity conditions to promote root induction. Emergence of

hairy roots was typical ly observed within two weeks

post-inoculation.

The generation of transgenic hairy roots in black soybean,

mung bean, adzuki bean, and peanut was conducted following

protocols established for soybean, with appropriate modifications

for each species. For black soybean, mung bean, and adzuki bean,

seeds were germinated for approximately 7–10 days until the

seedlings developed fully expanded true leaves. Seedlings with

well-developed leaves were selected for transformation. The

primary root was removed using sterile scissors, leaving a 0.5–0.8

cm segment of the hypocotyl intact. The wound site was thoroughly

coated with Agrobacterium rhizogenes strain K599 harboring the

35S:Ruby vector, and the seedlings were directly inserted into moist

vermiculite. Following cultivation under these conditions for two

weeks, transgenic hairy roots could be visually identified. For

peanut, seeds were sown and grown for approximately 20 days to

obtain robust seedlings. The aerial part of the seedling was excised

and the cut surface was coated with Agrobacterium rhizogenes K599

harboring 35S:Ruby vector. The treated shoots were then inserted

into moist vermiculite. Transgenic hairy roots typically emerged

after approximately one month. Throughout this period,

vermiculite moisture was consistently maintained to ensure

successful root induction.
Agrobacterium tumefaciens-mediated
stable transformation of soybean

To construct vectors targeting the GmPDS1 and GmPDS2

genes, the RUBY reporter gene in the RUBY-SpCas9 vector was

replaced with the bar gene to enable selection of transgenic positive

plants. The resulting constructs were introduced into

Agrobacterium tumefaciens strain EHA105 and subsequently

transformed into Williams 82, following previously established

protocols (Li et al., 2017a).
Mutagenesis analysis

Mutation frequencies in soybean hairy roots were determined

via amplicon-based deep sequencing, as described previously with

slight modifications (Sun et al., 2024). Genomic DNA was extracted

and used as a template for PCR amplification. The resulting

amplicons were submitted to the Hi-TOM platform at the State

Key Laboratory of Rice Biology and Breeding, China National Rice

Research Institute, Chinese Academy of Agricultural Sciences

(Hangzhou, China), for sequencing. A minimum of 5,000 reads

per sample were obtained for mutation efficiency determination.
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The mutation frequency was calculated as the percentage of reads

harboring insertions or deletions (indels) within the target site

sequence and its flanking 20-bp regions on both sides. Mutation

frequencies were calculated using data exported from the Hi-TOM

platform and analyzed in Microsoft Excel.

Statistical analyses were conducted using GraphPad Prism

version 8.0, and graphical outputs were refined and assembled

using Adobe Photoshop and Adobe Illustrator.
Protein structures alignments and
analyzing

The ISAam1 and ISDra2 protein structures were predicted

using Alphafold v2.2.0. Protein structure visualizations and

diagrams were generated using PyMOL (DeLano, 2002).
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