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Potassium is a critical macronutrient for plant growth, yet accurately and rapidly 
estimating its content in karst regions remains challenging due to complex 
terrestrial conditions. To address this, we collected leaf potassium content and 
reflectance data from 301 plant samples across nine karst regions in Guangxi 
Province. Our results showed that hybrid models combining Partial Least Squares 
Regression (PLSR) with three machine learning algorithms—Random Forest (RF), 
Extreme Gradient Boosting (XGBoost), and Multi-Layer Perceptron (MLP)— 
namely PLSR-RF, PLSR-XGBoost, and PLSR-MLP, demonstrated exceptional 
accuracy in estimating leaf potassium content. Validation coefficient of 
determination (R²) values reached 0.89, 0.94, and 0.96, respectively— 
representing improvements of 206%, 147%, and 108% over standalone 
algorithms. This performance gain was attributed to rigorous overfitting 
control: PLSR’s dimensionality reduction synergized with ensemble machine 
learning (RF, XGBoost, MLP) to eliminate redundant spectral features while 
retaining  predictive  signals.  Furthermore,  fractional  differentiation  
preprocessing significantly improved the correlation between spectral 
reflectance and potassium content, enhancing model robustness. Two spectral 
regions (700–1100 nm, 1400–1800 nm) were identified as key predictors, 
aligning with known potassium-related biochemical absorption features. 
Collectively, the integration of these strategies offers a robust framework for 
nutrient monitoring in ecologically fragile karst ecosystems. 
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1 Introduction 

The karst landscapes of southwestern China constitute a 
globally significant geomorphological system (D’Ettorre et al., 
2024). Characterized by distinctive lithological structures and 
heterogeneous vegetation assemblages, this ecologically fragile 
region serves as a vital reservoir of terrestrial biodiversity. 
Nevertheless, intensive anthropogenic activities—particularly 
shifting slash-and-burn agriculture and unsustainable slope 
farming practices—have induced substantial degradation of 
surface vegetation cover (Jiang et al., 2014). This degradation may 
adversely affect the availability of essential nutrient such as 
potassium, which plays a critical role in plant growth by 
regulating water balance, facilitating nutrient transport (Wang 
et al., 2013; Hasanuzzaman et al., 2018), and enhances plant 
resilience against biotic and abiotic stressors (Anschütz et al., 
2014). Foliar potassium concentration serves as a robust 
phytochemical indicator strongly correlated with plant 
physiological status, providing critical insights into vegetation 
health assessment. Consequently, precise quantification of foliar 
potassium levels emerges as a methodological imperative for 
elucidating plant adaptive strategies in degraded karst ecosystems. 

Conventional laboratory methods for leaf potassium analysis, 
relying on destructive wet chemistry techniques, face inherent 
limitations in operational efficiency and scalability. In contrast, 
hyperspectral  reflectance  technology  has  emerged  as  a  
transformative non-destructive solution, enabling rapid in situ 
nutrient assessment through advanced spectroscopic platforms. 
The integration of hyperspectral remote sensing systems has 
particularly  enhanced  real-time  potassium  monitoring  
capabilities, demonstrating remarkable success in precision 
agriculture applications (Lin et al., 2024; Azadnia et al., 2023). 
However, species-specific variations result in differing spectral band 
sensitivities to potassium content across plant taxa. Current 
research has yet to fully resolve uncertainties in characterizing 
potassium-related spectral responses, necessitating further 
investigation into their underlying mechanisms. For example, Lu 
et al. (2020) found that the spectral reflectance of rice leaves in the 
shortwave infrared region (1300–2000 nm) is particularly sensitive 
to potassium content. Similarly, Lyu et al. (2023) identified 
potassium-sensitive bands in grape leaves at 410 nm, 490–500 
nm, and 1242 nm. These discrepancies between rice and grape 
studies underscore the variability in potassium-sensitive spectral 
regions across species, highlighting both the challenges in universal 
band selection and the critical need for taxa-specific calibration. 
This variability becomes particularly relevant in ecologically unique 
regions such as karst landscapes, which host specialized plant 
communities. Karst-adapted species exhibit distinct spectral 
signatures compared to non-karst flora due to their divergent 
evolutionary adaptations and environmental stressors (Yue et al., 
2010). Consequently, region-specific studies are imperative to map 
the spectral sensitivity patterns of leaf potassium in karst 
ecosystems, enabling accurate nutrient monitoring and 
supporting ecological conservation in these biodiverse yet 
fragile habitats. 
Frontiers in Plant Science 02 
While spectral information enables precise characterization of 
potassium signatures in leaf spectral response curves, noise 
interference remains a significant concern (Xie et al., 2020). 
Hyperspectral data acquisition is inherently susceptible to 
artifacts introduced by sample properties (e.g., particle size and 
surface texture) and environmental variability (Kong et al., 2023). 
Spectral differentiation transformations serve as a robust 
preprocessing technique to mitigate background noise and 
unwanted spectral reflectance variations. These transformations 
enhance spectral sensitivity, amplify diagnostic features, and 
optimize predictive model performance (Yang C, et al., 2021). 
First- and second-order derivatives are widely employed to 
improve spectral signal-to-noise ratios. However, integer-order 
differentiation exhibits limitations in resolving subtle spectral 
features when curvature variations are gradual, often leading to 
feature loss (Li et al., 2024). In contrast, fractional differentiation 
operates at finer computational intervals, enabling enhanced 
spectral information extraction from in situ leaf measurements 
(Benkhettou et al., 2015). In addition, using fractional 
differentiation can further sharpen peak shapes and perform 
better in detecting subtle signal changes in positive and negative 
spectral peaks (Tan et al., 2024). This methodological refinement 
directly translates to improved precision in estimating critical 
biochemical parameters, such as foliar potassium levels, which 
will be rigorously evaluated in our experimental framework. 

In the field of nutrient content inversion, mainstream empirical 
approaches can be broadly categorized into four types (Berger et al., 
2020): empirical parameter regression (Jay et al., 2017), linear 
nonparametric regression (Furlanetto et al., 2024), physically 
based methods, and nonlinear nonparametric regression (i.e., 
machine learning) (Furlanetto et al., 2023; Flynn et al., 2023). 
Empirical parameter regression typically employs narrowband 
vegetation indices (e.g., NIR/SWIR combinations) for rapid 
estimation of nutrients. However, due to the lack of distinct 
absorption features for certain elements and the influence of 
spectral signal coupling, these methods often suffer from limited 
generalizability (Li et al., 2021). Linear nonparametric regression 
techniques such as Partial Least Squares Regression (PLSR) and 
Principal Component Regression (PCR) utilize full-spectrum 
information and avoid manual feature selection. Still, their 
reliance on linear assumptions makes it difficult to capture the 
complex nonlinear relationships between spectral responses and 
plant biochemical properties (Atzberger et al., 2010). Physically 
based radiative transfer models (e.g., PROSAIL) aim to simulate the 
nutrient–spectrum relationship from a mechanistic perspective. 
Nonetheless, the weak absorption features of nutrients can be 
easily confounded with canopy water content and structural 
parameters, leading to ill-posed inversion problems (Féret et al., 
2019). In contrast, machine learning methods are well-suited for 
nutrient estimation due to their strong capabilities in modeling 
complex nonlinear relationships and handling large-scale datasets 
(He et al., 2021). 

However, significant challenges in model fitting persist when 
applying machine learning algorithms to vegetation parameter 
estimation (Doktor et al., 2014). The performance of machine 
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learning models critically depends on feature selection - excessively 
large feature sets or overcomplicated architectures frequently lead 
to overfitting, compromising both training accuracy and model 
generalizability. Conversely, insufficient feature quantities and 
oversimplified models may result in underfitting. This issue is 
particularly pronounced in field spectroscopy data characterized 
by high dimensionality and multicollinearity. To address these 
challenges, researchers have implemented multiple mitigation 
strategies: (1) expanding training datasets to improve statistical 
representation; (2) employing dimensionality reduction techniques; 
(3) adopting robust cross-validation protocols; (4) applying 
regularization methods (Zhang et al., 2021); and (5) developing 
ensemble learning frameworks (Wang R, et al., 2020). 

Hyperspectral data is characterized by high dimensionality and 
multivariate features, and the issue of feature redundancy has yet to 
be effectively resolved (Liu et al., 2021). This necessitates systematic 
dimensionality reduction of hyperspectral data to ensure model 
robustness. Notable implementations include Cao et al. (2021), who 
successfully mitigated overfitting in maize leaf nitrogen estimation 
through optimized spectral compression, and Ni et al. (2024) 
achieving superior predictive performance (R²=0.98) in sucrose 
quantification models via principal component analysis (PCA). 
This  empirical  evidence  collectively  substantiates  that  
dimensionality reduction techniques, particularly PCA, 
significantly enhance both model accuracy (p<0.01) and 
algorithmic stability compared to untreated hyperspectral inputs. 
Building upon these methodological advancements, our study 
innovatively integrates partial least squares (PLS)-optimized PCA 
with ensemble machine learning frameworks to establish a robust 
estimation model for leaf potassium content in karst ecosystems, 
specifically designed to improve generalizability across 
heterogeneous geological environments. 

Based on field spectrometer data, this study used a fractional 
differential spectroscopy method combined with multiple models to 
estimate the potassium content in the leaves of mixed forests in the 
Guangxi karst region. The main objectives of this research are as 
follows: (1) To assess the distribution of wavelengths sensitive to 
potassium content in plant leaves in the karst region; (2) To explore 
the role of fractional differentiation in estimating potassium content 
in karst plant leaves based on spectroradiometer data; and (3) To 
investigate whether combined models can overcome the overfitting 
issues encountered in machine learning models when estimating 
potassium content in karst plant leaves. 
2 Materials and methods 

2.1 Study area 

The investigation was conducted in the karst-dominated terrain 
of Guangxi Zhuang Autonomous Region, Southwest China (20°54′
26°24′N, 104°28′-112°04′E; Figure 1). This geomorphologically 
complex area exhibits altitudinal gradients ranging from coastal 
plains (0 m) to montane systems (2141 m ASL), bisected by the 
Tropic of Cancer and bounded by tropical marine systems to the 
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south. These latitudinal and topographic configurations engender a 
monsoonal climate regime with pronounced seasonality, 
manifesting in mean annual temperatures of 17.5-23.5°C and 
precipitation gradients from 841.2 mm (leeward basins) to 
3387.5 mm (windward slopes). Nine standardized plots (200 m² 
each) were established across karst terrains, covering three 
vegetation succession stages: primary forests, secondary forests, 
and shrublands. This stratified design effectively captures karst 
ecosystem heterogeneity. 
2.2 Data collection 

Longitudinal foliar sampling spanned July 2018 to September 
2020 across all study plots. Within each plot, phyllosphere 
specimens were systematically collected from 8–15 dominant 
species, establishing a comprehensive karst flora spectral database 
comprising 301 samples representing 37 families, 59 genera, and 70 
species. To ensure spatial representativeness, sampling followed 
triaxial orientation protocols (0°[N], 120°, and 240°) within the 
horizontal plane. 

Spectral acquisition employed a high-resolution field 
spectroradiometer (Fieldspec4, ASD Inc., USA) with 3 nm VNIR 
(350–1000 nm) and 8 nm SWIR (1001–2500 nm) spectral 
resolution (Shah et al., 2019). Three photometric replicates per 
tree were obtained through standardized protocol: 1) periodic 
radiometric calibration (10-minute intervals) using integrated 
reference panels; 2) constrained by field operation limitations (4
hour battery endurance), two mature leaves per branch underwent 
non-destructive scanning; 3) branch-level spectral signatures were 
averaged to derive tree-specific reflectance profiles. 

Post-spectral analysis, target leaves were immediately preserved 
in sterile bags (Whirl-Pak®) under controlled conditions 
(ICERSICE940 incubator, 4°C). Samples underwent laboratory 
processing within 24 h: 1) oven-drying at 75°C to constant mass; 
2) mechanical homogenization to 100-mesh particle size; 3) 
quantitative potassium determination via flame photometric 
analysis (Sherwood 410, ± 0.01 ppm detection limit) following 
standard digestion protocols (Reddy and Veeranki, 2013). 
2.3 Methodology 

2.3.1 Fractional differentiation 
The fractional differentiation extends the concept of traditional 

integer-order differentiation to any arbitrary order, enabling 
continuous interpolation between integer orders (Hong et al., 
2019). This method emphasizes subtle changes in spectral 
information (Wang Z, et al., 2020). Currently, the classic 
definitions of fractional differentiation include Riemann-Liouville 
(R-L), Grünwald-Letnikov (G-L), and Caputo (Pu et al., 2008; 
Wang et al., 2018). In this study, the Grünwald-Letnikov (G-L) 
definition was mainly adopted to derive the differentiation to the n
th order, as shown in Equation 1. 
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t−a 

h
1 
v o h 

G (v + 1)  
dvf (x) =  l im m=0( − 1)m f (x − mh) (1) 

h→∞ m ! G (v − m + 1)  

where v is the order of differentiation, h is the step size, t and a 
are the upper and lower bounds of differentiation, respectively, and 
G(⋅) is the Gamma function, as defined in Equation 2. 

∞ −tG(b) =  ∫0 e tb−1dt = (b − 1) ! (2) 

where b is an arbitrary variable. In this study, the leaf spectra 
were differentiated within the range of 0 to 3 orders (at intervals of 
0.1 order). 

2.3.2 Partial least squares regression 
Partial Least Squares Regression (PLSR) is a multivariate data 

analysis technique that combines the features of Principal 
Component Analysis (PCA) and Multiple Linear Regression 
(MLR). It is used to predict a set of dependent variables from a 
large number of collinear independent variables. This method 
assumes that the datasets of independent and dependent variables 
are Z = ½z1, z2, ⋯ zklnxk and Q = ½qlnx1, respectively. First, the first 
latent variable f1 is extracted from Z, which is a linear combination 
of z1, z2, ⋯ zk, and maximizes the correlation with the dependent 
variable Q. Then, a regression model is established for Q using f1. If  
the regression equation achieves the desired accuracy, component 
Frontiers in Plant Science 04
extraction is stopped; otherwise, the next component is extracted 
until the model reaches a satisfactory level of accuracy. The 
regression model is given by Equation 3, and each latent variable 
is defined as shown in Equation 4: 

q = f1a1 + f2a2 + ⋯ +fkak (3) 

fm = wm1z1 + wm2z2 + ⋯ +wmkzk (4) 

where m is the number of principal components, k is the 
number of independent variables, a is the regression coefficient of 
y with respect to f, and w is the linear coefficient of f with respect 
to z. 
2.3.3 Random forest 
Random Forest (RF) is a machine learning algorithm based on 

decision trees (Breiman, 2001). RF resamples multiple samples from 
the training dataset and constructs a decision tree for each sample. 
Finally, the output value is calculated as the average of the 
predictions from all decision trees (Yang T, et al., 2021). RF has 
two important parameters: the number of trees and the number of 
features considered for splitting at each node. Initially, the number 
of decision trees was set to 50, and was then gradually increased in 
steps of 50 until it reached 200. The feature parameters for each 
FIGURE 1 

Location of the nine sample plots. 
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node split were set as sqrt, log2, and 10. The optimal parameters 
were determined through grid search (Yang and Shami, 2020a). 

2.3.4 Extreme gradient boosting 
XGBoost is an improved algorithm based on Gradient Boosted 

Decision Trees (GBDT), proposed by Chen and Guestrin (2016), 
which efficiently constructs boosted trees and supports parallel 
computation. Compared with traditional GBDT, which only 
utilizes first-order differential information, XGBoost performs a 
second-order Taylor expansion on the loss function, thereby 
improving the efficiency of finding the optimal solution. Finally, 
XGBoost obtains the overall prediction by summing the predictions 
of multiple decision trees, as shown in Equation 5. 

M ŷ n = o fmxn,fm ∈ F (5)n 

where ŷ n represents the final predicted value of the model, M 
denotes the number of combined decision trees, which is the 
number of trees to be tuned, fm is the m-th tree, xn represents the 
n-th input sample, and F is the set of all tree models. 

2.3.5 Multilayer perceptron 
A Multilayer Perceptron (MLP) is a feedforward neural network 

composed of multiple neurons or nodes, which learns complex 
nonlinear mappings through connections between input and output 
vectors. It utilizes a parallel hierarchical structure consisting of an 
input layer, hidden layers, and an output layer, with information 
being transmitted through connection weights among these layers 
to predict target variables (Ehteram et al., 2020). In an MLP, the 
sum of the input signals received by a node is transformed through 
a nonlinear activation function to generate the output signal 
(Gardner and Dorling, 1998). 

n0sj = oi=1wijxi + aj (6) 

−cj )−1 zj = f (sj) = (1 + e (7) 

In Equations 6, 7, sj represents the input to the j-th neuron in 
the hidden layer, aj is the bias for the j-th neuron in the hidden 
layer, wij is the weight between the i-th input neuron and the j-th 
neuron in the hidden layer, f (bj) is the activation function, and zj is 
the output of the j-th neuron. The final output of the MLP is 
obtained by computing a weighted sum of the hidden layer outputs, 
as shown in Equation 8: 

n1Ok = o (8)j=1wjkzj + ak 

where Ok is the output of the k-th neuron in the output layer, 
wjk is the weight between the j-th neuron in the hidden layer and the 
k-th neuron in the output layer, and n1 represents the number of 
neurons in the hidden layer. 

2.3.6 Combined models, sample segmentation, 
and accuracy assessment 

The partial least squares regression (PLSR)-derived latent 
variables served as input variables for three machine learning 
Frontiers in Plant Science 05 
architectures: RF, XGBoost, and MLP. Subsequently, the 
integrated models PLSR-RF, PLSR-XGBoost, and PLSR-MLP 
were established. This hybrid dimensionality reduction approach 
effectively mitigated high-dimensionality challenges inherent in 
spectral data while controlling algorithmic complexity. During 
latent variable extraction from fractionally differentiated spectra, 
we implemented a variance retention threshold, where the process 
was terminated once the cumulative explained variance reached 
75%, to preserve critical spectral features. 

To effectively split the data into training and validation sets, the 
train_test_split function from the scikit-learn library in Python 3.10 
was used. This function allows for random splitting of the dataset 
into different subsets, ensuring the independence of model training 
and validation. The training set accounted for 4/5 of the total 
samples, while the validation set accounted for 1/5. The model 
accuracy was evaluated using the coefficient of determination (R²), 
mean squared error (MSE), and mean absolute error (MAE). 

2.3.7 Model parameter optimization 
To ensure optimal predictive performance, the key 

hyperparameters of each model were systematically optimized. 
For the Partial Least Squares Regression (PLSR) model, the 
optimal number of components (n_components) was determined 
through exhaustive manual search over a predefined range (1 to 20) 
with model performance evaluated via 10-fold cross-validation. For 
the three machine learning models integrated with PLSR-Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), and Multi-

Layer Perceptron (MLP)—hyperparameter tuning was performed 
using grid search with 10-fold cross-validation (Yang and 
Shami, 2020a). 

In the RF model, the primary parameters optimized included 
the number of trees (n_estimators, e.g., 100, 200, 300) and the 
maximum tree depth (max_depth, e.g., 5, 10, 15). For the XGBoost 
model, key parameters such as the learning rate (learning_rate, e.g., 
0.01, 0.05, 0.1), maximum depth (max_depth), and the number of 
estimators (n_estimators) were adjusted. In the MLP model, 
optimization focused on the architecture of hidden layers 
(hidden_layer_sizes, e.g., (100), or (100, 50)), activation function 
(activation, e.g., ReLU), solver algorithm (solver, e.g., Adam), and 
the L2 regularization term (alpha). 
3 Results 

3.1 Descriptive statistics of the samples 

A total of 301 leaf samples were collected and analyzed for their 
total potassium content (expressed in units of 10 g/kg). The results 
showed that the potassium content ranged from 0.06 to 5.87, with a 
mean value of 0.81 (Figure 2). The coefficient of variation was 
calculated to be 1.30, indicating a high degree of variability among 
the samples. This substantial variation provides a solid foundation 
for  model  deve lopment  and  accuracy  eva luat ion  in  
subsequent analysis. 
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3.2 Fractional differentiation of reflectance 
and its correlation 

Figure 3 illustrates the variations in spectral reflectance with 
different fractional differentiations. Compared to integer-order 
differentiations (0th, 1st, 2nd, and 3rd), fractional differentiation 
exhibits smaller amplitudes and smoother transitions. This gradual 
transformation maintains the detailed features of the spectral curves 
and prevents the abrupt fluctuations typically observed in integer-
order differentiations. These results suggest that fractional 
differentiation, demonstrates greater advantages in the analyzing 
of complex experimental designs. 

Figure 4 illustrates the distribution of absolute correlation 
coefficients between fractional differentiation spectra and leaf 
potassium content across fractional differentiation orders ranging 
from FD (0.0) to FD (3.0), with wavelengths spanning from 400 to 
2500 nm. Before fractional differentiation (FD (0.0)), the spectral 
bands between 400–505 nm and 640–680 nm show significant 
correlation with leaf potassium content, though the correlation 
coefficients are relatively low. As the order of fractional differential 
(FD) increases—particularly between FD (1.5) and FD (3.0)—the 
spectral information in the ranges of 700–1100 nm and 1400–1800 
nm shows stronger correlations with leaf potassium content, with 
most correlation coefficients exceeding 0.2. The maximum absolute 
correlation coefficient generally increases from FD (0.0) to FD (2.2), 
reaching a peak value of 0.46, before declining at higher orders. 
These findings highlight that selecting an appropriate fractional 
differentiation order, such as FD (2.2), can effectively improve the 
Frontiers in Plant Science 06
correlation between spectral features and the target variable in 
practical applications. 
3.3 Performance evaluation of individual 
models 

The performance of the Partial Least Squares Regression (PLSR) 
model under fractional differentiation is shown in Figure 5a. Across 
the FD range from 0.0 to 3.0, the R² values for the training set 
consistently exceed those of the validation set by approximately 0.2 
to 0.3, suggesting the presence of a certain level of overfitting in the 
PLSR model. The validation set achieves its highest R² value of 0.51 
when the fractional differentiation is set to 0.8. Although the 
model’s fitting accuracy is relatively low, it demonstrates stable 
performance without significant overfitting. 

As shown in Figures 5b–d, the RF, XGBoost, and MLP models 
all exhibit a marked discrepancy in R² values between the training 
and validation sets, reflecting a clear tendency toward overfitting. In 
comparison to RF and XGBoost, the MLP model demonstrates 
marginally superior validation performance, with a maximum R² of 
0.46, outperforming RF (0.29) and XGBoost (0.38). 

In summary, although the PLSR model has limited fitting 
accuracy in predicting leaf potassium content, it demonstrates 
good stability. The training set R² remains between 0.6 and 0.7, 
while the validation set R² stays between 0.3 and 0.5. In contrast, the 
RF, XGBoost, and MLP models perform well on the training set but 
poorly on the validation set, indicating potential overfitting. 
FIGURE 2 

The leaf potassium content frequency distribution. 
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Therefore, among these four individual models, the PLSR model is 
the most suitable for estimating leaf potassium content. 
3.4 Performance evaluation and analysis of 
combined models 

The PLSR-RF model (Figure 6a) demonstrates strong fitting 
and generalization capabilities, as evidenced by its stable 
performance across most FD settings. The training set achieves 
consistently high R2 values around 0.9, while the validation set 
maintains moderately high R² values ranging from approximately 
0.75 to 0.89. Notably, within the FD range of 0.5 to 1.3, the 
validation performance improves sharply, with the R² value 
increasing from 0.01 to 0.77. The model achieves optimal 
performance at a fractional differentiation of FD (2.7), where the 
training set R² is 0.98, with MSE and MAE of 0.01 and 0.07, 
respectively. For the validation set, the R² value is 0.89, with MSE 
and MAE of 0.21 and 0.29, respectively. 
Frontiers in Plant Science 07 
The PLSR-XGBoost model shows significant fluctuations across 
different FD settings, particularly for the training set. Despite these 
fluctuations, the difference in R² values between the training and 
validation sets decreases significantly when the fractional 
differentiation exceeds 1.2 (Figure 6b). This indicates that the 
combined model effectively mitigates overfitting. When the 
fractional differentiation is set to FD (2.7), the model 
performance reaches its peak, with R², MSE, and MAE values are 
0.99, 1.8*10-5, and 0.003 for the training set, and 0.94, 0.1, and 0.22 
for the validation set, respectively. These findings indicate that 
PLSR combined with XGBoost provides more stable predictions 
under higher fractional differentiation levels. 

The PLSR-MLP model performs poorly at low fractional 
differentiation values (FD < 0.8), with validation R² remaining 
below 0.4 between FD (0.2) and FD (0.6). Notably, at FD (0.3), 
the model exhibits signs of underfitting, as indicated by similarly 
low performance on both the training and validation sets. This 
suggests that the MLP has limited adaptability to raw data or data 
processed with low-order fractional differentiation (Figure 6c). 
FIGURE 3 

Effect of fractional differentiation orders from FD (0.0) to FD (3.0) on vegetation spectral reflectance: average reflectance spectra for each order. 
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FIGURE 5 

Determination Coefficients (R²) of different single models ((a) PLSR, (b) RF, (c) XGBoost, (d) MLP) for leaf potassium content estimation using 
fractional differentiation spectra: comparison of training and validation sets across different fractional differentiation orders (FD (0.0) to FD (3.0)). 
FIGURE 4 

Absolute value distribution of correlation coefficients between fractional differentiation spectra and leaf potassium content, and the maximum 
absolute value of correlation coefficients for different fractional differentiations. 
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However, as FD increases, the model’s performance improves 
significantly. At FD (2.8), the R² values for both the training and 
validation sets reach 0.99 and 0.96, respectively, with MSE and 
MAE values of 0.01 and 0.05 for the training set, and 0.07 and 0.16 
for the validation set, indicating excellent model performance at this 
optimal order. 

Overall, the three combined models exhibit distinct responses to 
fractional differentiation. PLSR-RF improves with increasing FD 
but shows signs of overfitting. PLSR-XGBoost generalizes well when 
FD > 1.0, despite early instability. While PLSR-MLP achieves the 
highest accuracy in this study (Figure 7), PLSR-XGBoost involves 
fewer  hyperparameter  adjustments,  demonstrates  high  
computational efficiency, and facilitates easy deployment 
Therefore, although PLSR-MLP is the optimal model in terms of 
predictive performance, PLSR-XGBoost may offer a more practical 
solution for real-world potassium prediction tasks, especially in 
scenarios with limited computational resources or where rapid 
deployment is required. 
3.5 Model comparison and selection of the 
optimal model 

In this study, seven models, namely PLSR, RF, XGBoost, MLP, 
PLSR-RF, PLSR-XGBoost, and PLSR-MLP, were applied to predict 
the plant leaf potassium content using spectral differentiation 
transformation techniques in the karst region of Guangxi 
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Province. The optimal fractional differentiation prediction results 
for each model are shown in Figure 7. Based on the coefficient of 
determination (R²) on the validation sets, the top three models are 
PLSR-MLP (R²=0.96), PLSR-XGBoost (R²=0.94), and PLSR-RF 
(R²=0.89), respectively. In comparison, the RF model alone 
showed the worst performance, with an R² of only 0.29 on the 
validation sets. 

Among these seven models, the PLSR-RF, PLSR-XGBoost, and 
PLSR-MLP models all effectively predict potassium content in plant 
leaves in the southwestern karst region. Relative to individual 
models, the three combined models exhibit improvements of 
206%, 147%, and 108% in R2 on the validation set, respectively. 
These substantial gains suggest that the combined modeling 
approach effectively mitigates overfitting and enhances 
generalization capability. 
3.6 Advantages of fractional differentiation 

The fractional differentiation is determined to be the optimal 
spectral transformation approach for all seven models (Table 1). The 
application of fractional differentiation significantly enhances 
the models’ performance in estimating leaf potassium content. For 
the PLSR model, the optimal fractional differentiation is FD (0.8), 
resulting in a validation R² of 0.51, a marked improvement over the 0th 
order (R² = 0.26), 1st order (R² = 0.39), 2nd order (R² = 0.33), and 3rd 
order (R² = 0.35). The PLSR-RF model achieves its best performance at 
FIGURE 6 

The relationship between different differential orders (FD) and the determination coefficient (R²) for training and validation sets across three models: 
(a) PLSR-RF, (b) PLSR-XGBoost, and (c) PLSR-MLP. 
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FD (2.7), with a validation R² of 0.89, significantly outperforming the 
0th order (R² = 0.005), 1st order (R² = 0.58), 2nd order (R² = 0.82), and 
3rd order (R² = 0.86).The PLSR-XGBoost model performs optimally at 
FD (2.7), with a validation R² of 0.94, significantly outperforming the 
0th order (R² = 0.08), 1st order (R² = 0.58), 2nd order (R² = 0.83), and 
3rd order (R² = 0.89). Finally, the PLSR-MLP model achieves its 
Frontiers in Plant Science 10 
highest validation R² of 0.96 at FD (2.8), outperforming all integer 
orders from 0.0 to 3.0. 

The results show that the optimal differentiation orders in all 
seven models are fractional rather than integer. This highlights the 
advantage of fractional differentiation in improving the accuracy 
and robustness of leaf potassium content estimation. 
FIGURE 7 

Prediction accuracy of leaf potassium content for each model at the optimal fractional differentiation order, showing the performance of individual 
models and combined models with evaluation metrics such as R², MSE, and MAE for both training and validation sets. 
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TABLE 1 Performance comparison of seven models at different fractional differentiation orders (0.0, 1.0, 2.0, 3.0) and the optimal fractional 
differentiation order, based on evaluation metrics including R², MSE, and MAE for both individual and combined models. 

Model Orders Training 
Sets R2 

Training 
Sets MSE 

Training 
Sets MAE 

Validation 
Sets R2 

Validation 
Sets MSE 

Validation 
Sets MAE 

PLSR 

FD (0.0) 0.44 0.49 0.49 0.26 1.41 0.77 

FD (1.0) 0.60 0.35 0.40 0.39 1.17 0.60 

FD (2.0) 0.55 0.39 0.40 0.33 1.28 0.60 

FD (3.0) 0.65 0.31 0.35 0.35 1.25 0.58 

FD (0.8) 0.76 0.21 0.33 0.51 0.94 0.62 

RF 

FD (0.0) 0.75 0.22 0.27 0.07 1.78 0.75 

FD (1.0) 0.77 0.2 0.25 0.15 1.63 0.71 

FD (2.0) 0.87 0.11 0.19 0.29 1.31 0.59 

FD (3.0) 0.76 0.21 0.25 0.3 1.43 0.64 

FD (1.9) 0.87 0.11 0.19 0.29 1.34 0.58 

XGBoost 

FD (0.0) 0.33 0.58 0.47 0.001 1.9 0.76 

FD (1.0) 0.72 0.23 0.31 0.17 1.59 0.69 

FD (2.0) 0.98 0.01 0.09 0.3 1.33 0.61 

FD (3.0) 0.84 0.14 0.21 0.31 1.32 0.61 

FD (2.2) 0.99 8*10-8 2.2*10-4 0.38 1.19 0.61 

MLP 

FD (0.0) 0.01 0.85 0.65 0.19 1.55 0.75 

FD (1.0) 0.42 0.51 0.42 0.45 1.05 0.7 

FD (2.0) 0.73 0.23 0.32 0.17 1.59 0.97 

FD (3.0) 0.91 0.08 0.17 0.12 1.67 0.98 

FD (0.9) 0.73 0.23 0.37 0.46 1.03 0.7 

PLSR-RF 

FD (0.0) 0.51 0.41 0.39 0.005 1.91 0.77 

FD (1.0) 0.93 0.06 0.15 0.58 0.79 0.49 

FD (2.0) 0.99 0.007 0.06 0.82 0.34 0.36 

FD (3.0) 0.99 0.004 0.03 0.86 0.26 0.32 

FD (2.7) 0.98 0.01 0.07 0.89 0.21 0.29 

PLSR-XGBoost 

FD (0.0) 0.52 0.41 0.38 0.05 2.0 0.77 

FD (1.0) 0.99 1.4*10-6 8.4*10-4 0.58 0.81 0.51 

FD (2.0) 0.99 3.1*10-5 0.004 0.84 0.3 0.33 

FD (3.0) 0.99 1.9*10-5 0.003 0.93 0.13 0.24 

FD (2.7) 0.99 1.8*10-5 0.003 0.94 0.1 0.22 

PLSR-MLP 

FD (0.0) 0.38 0.55 0.45 0.07 1.77 0.71 

FD (1.0) 0.86 0.12 0.21 0.79 0.39 0.35 

FD (2.0) 0.99 0.007 0.06 0.91 0.06 0.16 

FD (3.0) 0.99 0.001 0.02 0.91 0.04 0.19 

FD (2.8) 0.99 0.01 0.07 0.96 0.05 0.16 
F
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This table presents the R2, MSE, and MAE for the training and validation sets under the optimal fractional order, with the best-performing results shown in bold. 
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4 Discussion 

4.1 Distribution of sensitive wavelengths 

This study demonstrates that the spectral ranges of 700–1100 
nm and 1400–1800 nm are critical for accurately estimating 
potassium content in plant leaves. Previous studies have identified 
the 964–1024 nm range as important for detecting potassium status 
in mature rubber tree leaves (Hu et al., 2024). In addition, specific 
wavelengths such as 720 nm and 1027 nm have been shown to play 
essential roles in predicting potassium content in rapeseed leaves 
(Zhang et al., 2013). The sensitive band in the 1400–1800 nm range 
identified in this study also aligns closely with the findings of 
Pimstein et al. (2011), further validating the relevance of this 
region for potassium estimation. Potassium is an essential ion in 
plant cells, involved in regulating osmotic pressure, activating 
enzymatic processes, and controlling stomatal dynamics (Nieves-
Cordones et al., 2014; Yu et al., 2023). These physiological activities 
influence leaf cellular structure and water status, thereby indirectly 
affecting spectral reflectance. In the 700–1100 nm range, 
particularly within the near-infrared region (700–900 nm), 
spectral responses are strongly associated with internal leaf 
structure, which is sensitive to variations in tissue density and 
cellular arrangement. Since potassium plays a key role in water 
transport, cell turgor, and tissue development, changes in potassium 
levels can induce structural modifications that alter reflectance in 
this region (Lyu et al., 2023). Moreover, the short-wave near-
infrared region (900–1100 nm) captures spectral signals related to 
leaf water content and biochemical composition, both of which are 
closely linked to potassium-mediated regulation (Dos Santos 
et al., 2023). 

The presence of sensitive bands in the 1400–1800 nm range is 
closely linked to the various physiological roles of potassium in 
plant growth. Potassium influences leaf water transpiration by 
regulating stomatal opening, which in turn affects spectral 
reflectance (Lin et al., 2024). Consequently, potassium-sensitive 
bands are often found near the peak wavelengths of water 
absorption, such as 1450 nm and 1950 nm (Yu et al., 2023). 
However, some wavelengths farther from these water absorption 
peaks also show high sensitivity, likely due to changes in plant 
chemical composition and physiology under the unique 
environmental conditions of the karst regions. Previous studies 
have demonstrated significant differences in stoichiometric 
characteristics between plants in karst and non-karst regions 
(Zhang et al., 2019). Potassium is crucial for activating enzymes 
involved in starch, protein, and fat synthesis, as well as promoting 
the synthesis of plant hormones that regulate meristem growth 
(Amirruddin et al., 2020). These functions may contribute to the 
sensitive bands distanced from water absorption peaks. Therefore, 
the presence of such bands in the 1400–1800 nm range likely 
reflects potassium’s regulatory effects on physiological traits linked 
to long-term adaptation of plants to the karst environment. 
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4.2 The capabilities of fractional 
differentiation 

Spectral data are often affected by instrument noise, 
environmental conditions, sample surface scattering, and 
background signals (Liu et al., 2023). Preprocessing techniques 
help mitigate these interferences, yielding a purer spectral signal 
that prevents the model from being affected by irrelevant signals 
and reduces errors (Li et al., 2025). Among these techniques, 
differentiation—particularly fractional differentiation—has 
emerged as a powerful method for capturing subtle spectral 
details and improving the accuracy of spectral-based estimations. 

While traditional preprocessing techniques such as SNV and 
MSC effectively reduce scattering effects and smooth spectra, they 
are limited in handling high-noise spectral data (Oliveri et al., 
2019). Differentiation processing of near-infrared spectra effectively 
removes noise while extracting subtle inflection points and spectral 
changes (Wang et al., 2018). Yang et al. (2022) demonstrated that 
applying differentiation to crop spectra significantly improves 
model prediction accuracy. Similarly, Shen et al. (2020) found 
that fractional differentiation significantly improves the accuracy 
of soil organic matter (SOM) content estimation. These studies 
highlight the significant advantages of differentiation in spectral 
preprocessing. Our findings similarly show that differentiation 
enhances the correlation between leaf potassium content and 
spectral reflectance, thereby improving estimation accuracy. 

Differentiation includes both integer-order and fractional 
differentiation (Jin and Wang, 2022). Integer-order differentiation 
typically involves the first and second differentiations. However, the 
large intervals between these first and second differentiations result 
in significant differences between the nth and (n+1)th 
differentiation curves. This limitation causes integer-order 
differentiation to overlook finer spectral details (Anon, 2020). In 
contrast, fractional differentiation can extract detailed spectral 
information over smaller intervals while minimizing the 
introduction of excessive high-frequency noise (Zununjan et al., 
2024; Song et al., 2023). The advantages of fractional differentiation 
stem from its unique mathematical structure, which, through the 
Grünwald-Letnikov definition, achieves a generalized difference 
structure, smooth attenuation, and long memory effects (Scherer 
et al., 2011). This enables fractional differentiation to more 
accurately capture spectral detail variations in data with complex 
background noise. Ge et al. (2022) demonstrated that fractional 
differentiation is highly effective for processing hyperspectral data 
in soil salinization risk assessment, with models using fractional 
differentiation proving more stable than those using integer-order 
differentiation. This conclusion from Ge et al. (2022) aligns with our 
findings, where fractional differentiation outperformed integer-
order differentiation in estimating potassium content in plant 
leaves in the karst region. 

However, the application of fractional differentiation also 
presents challenges. Low-order differentiation transformations 
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provide limited improvement in correlation, while higher-order 
differentiation does not significantly enhance correlation 
coefficients between spectral reflectance and potassium content. 
Additionally, the optimal fractional differentiation varies across 
models, and similar studies on nutrient inversion in plant leaves 
suggest that the best fractional differentiation should be chosen 
based on the specific model being used. 
4.3 Control overfitting 

The results indicate that the RF, XGBoost, and MLP models 
generally exhibit overfitting (Figure 5). Due to their strong 
nonlinear fitting abilities (Bentéjac et al., 2021), these models tend 
to capture noise and irrelevant features when handling high-
dimensional data, resulting in overfitting (Ying, 2019). 

Common methods to control overfitting include dimensionality 
reduction, regularization, cross-validation, feature selection (Barbosa 
et al., 2024), and ensemble models. Several studies have explored the 
application of these methods in controlling overfitting. For example, 
Teresa et al. (2022) showed that dimensionality reduction effectively 
addresses over-parameterization in deep learning. Du et al. (2024) 
estimated rapeseed growth parameters using an ensemble learning 
algorithm, achieving better performance than individual machine 
learning models. For dimensionality reduction, we employed a PLS-
based PCA method to extract latent variables that are highly 
correlated with the target variable. These latent variables were used 
as input features for the RF, XGBoost, and MLP models, effectively 
reducing the risk of overfitting in complex datasets. 

In addition, hyperparameter optimization is a crucial strategy for 
mitigating overfitting and improving model generalization (Bischl 
et al., 2023). By tuning parameters such as the number of estimators, 
learning rate, and maximum tree depth (for RF and XGBoost), or the 
number of hidden layers and neurons (for MLP), models can better 
balance bias and variance. In this study, we employed grid search 
combined with cross-validation to optimize the key hyperparameters 
of each model, thereby reducing overfitting and enhancing predictive 
robustness. These findings are consistent with previous studies, which 
have demonstrated that well-tuned models generally outperform 
those using default configurations, particularly in high-dimensional 
datasets (Quan, 2024). 

Combining dimensionality reduction with machine learning shows 
great potential for predicting nutrient content in plant leaves. For 
instance, Mahajan et al. (2024) used a PLSR-based machine learning 
model to predict potassium content in cashew leaves, achieving an R² 
of 0.66. Zhou et al. (2024) combined PCA with machine learning to 
predict cadmium content in lettuce leaves, obtaining an R² of 0.92 for 
the validation set. In our study, potassium content estimation in karst 
plants achieved an R² of 0.96 in the prediction set. This result confirms 
the effectiveness of PLS-based dimensionality reduction for retrieving 
leaf nutrient content across multiple species. This approach provides a 
valuable reference for future research. 

In summary, combined machine learning models effectively 
control overfitting and enhance prediction performance. However, 
our research is limited  to  the leaf scale, and  further validation is needed  
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for their effectiveness in controlling overfitting when applied to UAV 
or satellite platforms. Future studies should explore the applicability of 
these models at larger scales and with higher-resolution data to 
comprehensively assess their generalization and practical value. 
Moreover, selecting the best model should not rely solely on 
prediction accuracy; factors such as model complexity, training 
time, and computational cost must also be taken into account to 
ensure the model’s feasibility and efficiency in real-world applications. 
5 Conclusions 

This study identifies key spectral bands (700–1100 nm, and 
1400–1800 nm) that are critical for estimating potassium content in 
plant leaves. These bands correspond to important physiological 
processes, including photosynthesis, pigment concentration, and 
water regulation, which are influenced by potassium. Fractional 
differentiation effectively reduces noise and captures subtle spectral 
features, significantly improving the accuracy of potassium 
estimation compared to traditional integer-order differentiation. 

Furthermore, the study addresses overfitting in machine 
learning models by combining dimensionality reduction, and 
advanced algorithms such as Random Forest (RF), Extreme 
Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP). 
This integrated approach resulted in a high prediction accuracy (R² 
= 0.96) for potassium content in karst region plants. 

In summary, this research advances potassium estimation 
through hyperspectral data by optimizing data preprocessing, and 
enhancing model performance. These findings provide valuable 
insights for plant nutrient monitoring, particularly in complex 
ecological environments, and offer a foundation for future 
research on large-scale remote sensing applications. 
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