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Investigation of salt stress effects
on maize seedling phenotypic
traits based on the PointCornNet
point cloud segmentation model
Xiaozhong Li1, Zhiqian Ouyang2, Qianzhe Cheng2,
Zhibo Zhong3 and Xiuqing Fu2*

1College of Mechanical Engineering, Yangzhou Polytechnic College, Yangzhou, China, 2College of
Engineering, Nanjing Agricultural University, Nanjing, China, 3Institute of Farmland Water Conservancy
and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, Xinjiang, China
To address the limitations of traditional crop phenotyping methods, such as slow

data collection, high error susceptibility, and seedling damage, we proposed a

non-destructive approach for phenotypic trait detection in maize seedlings to

enhance breeding efficiency. We developed an improved point cloud

segmentation model, PointCornNet, based on PointNet++, by integrating the

CBAM attention mechanism, replacing the original loss function with Varifocal

Loss, and incorporating the CronDBSCAN clustering algorithm to enhance

segmentation accuracy and enable both semantic and instance segmentation.

Comparative experiments confirmed the improved model performance.

Phenotypic parameters—including plant height, canopy width, volume, and

surface area—were calculated from the segmented point clouds. The

coefficient of determination (R²) between calculated and manually measured

values for plant height and canopy width reached 0.99 and 0.96, respectively,

demonstrating the accuracy of the method and non-destructive nature. Using

PointCornNet and the phenotyping algorithm, we measured 3D morphological

changes of maize seedlings under different NaCl concentrations during the first

six days after sowing. The results showed that salt stress significantly inhibited

seedling growth, with stronger inhibition at higher NaCl concentrations.

Increased salt concentration delayed initial seedling emergence and led to

gradual decreases in plant height, canopy width, volume, surface area, and

their respective growth rates.
KEYWORDS

maize seedlings, PointNet model, phenotypic detection, salt stress, point
cloud segmentation
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1 Introduction
Plant phenotypes are determined by the combined influence of

genotype and environment, and refer to the observable

characteristics of plants under specific environmental conditions,

including morphology, structure, physiological traits, and growth

status (Cooper and DeLacy, 1994). Measuring specific and well-

defined physiological phenotypes is of great importance for

understanding growth processes, estimating yield, evaluating

disease resistance, and advancing breeding programs (Li et al.,

2021). Phenotypic measurement of seedlings is particularly

critical for both breeding and seed testing. During the breeding

process, growth traits of seedlings aid in the early selection of

superior individuals, thereby enhancing breeding efficiency.

Analysis of morphological features and leaf structure provides a

basis for variety improvement. At the same time, seedling

phenotyping can assess seed quality and ensure germination rates

and growth performance under different environmental conditions,

ultimately improving seed stability and adaptability. Plant height is

one of the key indicators of plant growth and development; accurate

and rapid estimation of plant height can facilitate and improve crop

yield prediction (Varela et al., 2017). Canopy width is an important

parameter for assessing plant growth status and photosynthetic

potential (Guo et al., 2005). Crop volume reflects the plant’s spatial

occupancy, growth condition, and biomass accumulation (Xiao

et al., 2020). The surface area of crops directly determines their

ability to capture light energy; a larger leaf area increases the

photosynthetic surface, promotes dry matter accumulation, and

provides more energy for seedling development (Yang et al., 2009).

Maize is the third most important cereal crop after rice and

wheat (Farooq et al., 2015), primarily composed of starch, protein,

and fat, and is also rich in micronutrients such as vitamin A,

vitamin E, and selenium (Jiao et al., 2022). It can be processed into a

variety of industrial products including starch, sweeteners, oil,

beverages, adhesives, industrial alcohol, and bioethanol (Ranum

et al., 2014), and it also plays a vital role in the livestock and poultry

industries (Loy and Lundy, 2019). With increasing environmental

degradation and climate change, the impact of abiotic stress on

plant growth and productivity has intensified (Chieb and Gachomo,

2023), among which salt stress is one of the most significant abiotic

factors disrupting plant development. Several studies have

investigated the effects of salt stress on maize growth. For

example (Sun et al., 2022), examined its influence on germination

rate, radicle and coleoptile length, and the dry matter content of

radicles and coleoptiles; (Turan et al., 2009) reported that NaCl

reduced the dry biomass of maize plants, increased stomatal

resistance and proline concentration, and decreased chlorophyll

content. However, there is limited research on the effects of salt

stress on the phenotypic traits of maize seedlings. Investigating

these effects could provide experimental support for breeding salt-

tolerant varieties and lay the groundwork for sustainable

agricultural development.

At present, plant phenotyping has become a research hotspot in

agriculture, as studying plant phenotypes under different
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environmental conditions contributes to genetic screening and

field yield assessment of crops (Li et al., 2021). Traditional

phenotypic measurements are primarily conducted manually,

which often suffer from low efficiency, destructiveness, and

subjective errors. These conventional methods are also

constrained by the limitations of the tools used and the

surrounding environmental conditions, making large-scale, high-

precision measurements challenging. Therefore, in modern

breeding and cultivation trials, there is an urgent need to develop

advanced techniques for phenotypic data acquisition.

In recent years, two-dimensional image-based phenotyping has

been widely applied (Gehan et al., 2017) (Hu et al., 2018). conducted

high-throughput phenotypic analysis of sorghum plant height by

capturing RGB images of sorghum fields using unmanned aerial

vehicles (UAVs) and applying a self-calibrating method (Weizheng

et al., 2020). constructed a plant skeleton model using a skeleton-

thinning algorithm, detected endpoints and branching points on the

skeleton, and analyzed the structure through a binary tree approach,

ultimately identifying hierarchical nodes and individual leaves to

achieve segmentation of maize stems and leaves (Bylesjö et al.,

2008). developed LAMINA, a tool for automatic analysis of leaf

image features such as leaf size, area, asymmetry, serration, and

missing regions. The tool’s accuracy was validated using a dataset of

European aspen leaf images.

For more complex plant structures or when measuring multiple

phenotypic traits of a given species simultaneously, three-

dimensional reconstruction offers greater advantages (Guan et al.,

2018). developed a low-cost and efficient imaging system using an

RGB camera and a photonic mixer device (PMD) sensor to

reconstruct 3D models of soybean plants, thereby obtaining

canopy information (Sun et al., 2017). measured cotton plant

height by mounting a 2D LiDAR and RTK-GPS on a high-

clearance tractor to acquire the spatial coordinates of each point

cloud (Ma et al., 2019). used a FastSCAN handheld scanner to

obtain 3D point cloud data of maize and reconstructed the maize

canopy. Phenotypic traits of the canopy were then calculated by

fitting spheres and cylinders to the reconstructed structures.

With the rapid advancement of computing technologies, deep

learning-based methods for processing 3D point cloud data have

become a key approach for acquiring three-dimensional phenotypic

information (Han et al., 2022). proposed a neighborhood spatial

constraint method to filter out floating points and outlier noise

from point clouds, and developed a new network called MIX-Net

for point cloud segmentation. Compared with PointNet++ and

DGCNN, MIX-Net achieved performance improvements of 3.1%

and 1.7%, respectively (Guo et al., 2023). developed the ASAP-

PointNet model, which was used for semantic segmentation of

cabbage point clouds. The resulting phenotypic parameters—

including plant height, leaf length, leaf width, and leaf area—

showed correlation coefficients of 0.96, 0.91, 0.95, and 0.94 with

the corresponding measured values (Shen et al., 2024). proposed a

neural network-based algorithm for organ segmentation of cotton

seedlings, achieving an average accuracy of 96.67%. The segmented

leaf and stem point clouds were then used to calculate phenotypic

parameters such as stem length, leaf length, leaf width, and leaf area.
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In summary, traditional phenotypic measurement methods

have numerous limitations and can no longer meet the demands

of agricultural automation. As a result, 3D phenotypic acquisition

based on deep learning neural network models has become a

promising future direction, enabling rapid and accurate detection

of the effects of salt stress on maize seedling growth. In this study,

we propose an improved model named PointCornNet, based on

PointNet++, which incorporates the CBAM dual-channel attention

mechanism, replaces the original loss function with Varifocal Loss,

and introduces the CronDBSCAN clustering algorithm to achieve

both semantic and instance segmentation of point clouds while

improving the accuracy of the original model. Phenotypic

parameters of the segmented maize seedlings are calculated, and

the strong linear relationships between the calculated results and

the ground truth values are analyzed to validate the method’s

efficiency and non-destructive capability in extracting key

phenotypic traits. We further conducted a germination

experiment under salt stress conditions and, based on the

acquired seedling growth point clouds and the PointCornNet

model, analyzed the variation patterns of different phenotypic

traits of maize seedlings throughout their growth process under

salt stress.
2 Materials and methods

2.1 Data collection

We selected plump, pest-free, and undamaged seeds of the

Jinguan 597 maize variety for the germination experiment. The seed

germination chamber used in the experiment consists of three main

components: a seed cultivation module, an environmental control

module, and a humane,mental interaction module. The seed

cultivation module features a 3D-printed germination tray

designed specifically for conducting maize germination trials. The

environmental control module enables real-time regulation of

temperature, humidity, and light within the chamber, with

temperature adjustable between 10 °C and 50 °C and humidity

ranging from 30% to 70%. The internal lighting system includes

both growth and supplementary lamps. The human.mentary

interaction module allows users to control environmental settings

such as temperature, humidity, and lighting via a touchscreen

interface mounted on the chamber.

The emergence of the first true leaf breaking through the soil by

5–10 mm was used as the indicator of the maize seedling stage.

According to growth stages, maize typically enters the two-leaf and

one-heart stage 5 to 7 days after emergence; thus, we selected day 6

after sowing as the experimental time point. Once the seedlings had

emerged, we recorded videos of each plant using a smartphone

camera every 12 hours. To minimize leaf occlusion, which could

interfere with the 3D reconstruction, we selected the midpoint of

the height of the plant located in the center of the tray as the focal

point. The recording distance was maintained at 40–60 cm from
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this focal point, with plants recorded at two specific angles (10° and

50° relative to the ground). A complete 360° rotation was performed

at each angle to ensure comprehensive coverage. Although manual

operation introduced slight angular deviations within a 0-5° range,

our verification confirmed these minor deviations did not

significantly affect the 3D reconstruction quality. Each video

lasted approximately two minutes and was later processed by

extracting frames, yielding around 250 still images per video. The

germination procedure is illustrated in Figure 1A, and the

experimental parameters are shown in Figure 1B.

In order to verify the accuracy of the plant height and canopy

width calculated by the model subsequently, manual measure was

conducted after each recording is completed. For the plant height, a

ruler was used to measure the distance from the above-ground part

of the plant to the top of the plant canopy. For the canopy width, a

caliper was used to measure the distance from the edge of the leaf on

one side of the plant’s canopy to the opposite edge on the other side.

When measuring each parameter, we repeated the measurement

and took the average to obtain the measured value. In addition, the

leaf was lightly touched during each measurement to prevent the

distortion of the measured values due to the bending or

displacement of the leaf.
2.2 Dataset construction

2.2.1 3D Reconstruction
Image-based 3D reconstruction is a technique that restores

three-dimensional models from two-dimensional images (Aharchi

and Ait Kbir, 2020). To obtain 3D point clouds of maize seedlings,

we employed Agisoft Metashape (version 1.6, Agisoft LLC, St.

Petersburg, Russia) to reconstruct 3D models from video-

extracted image frames. This software primarily utilizes Structure-

from-Motion (SfM) and Multi-View Stereo (MVS) algorithms to

process image data. Specifically, the SfM algorithm applies Scale-

Invariant Feature Transform (SIFT) (Lowe, 2004) to extract key

points from the images and match them across multiple views. By

establishing correspondences between these key points, SfM

estimates the relative positions of the images and generates a

sparse point cloud model while simultaneously solving for camera

positions and intrinsic parameters (Chen et al., 2020). The MVS

algorithm is then applied to densify the point cloud, using refined

image alignment and reconstruction techniques to significantly

enhance both the density and accuracy of the resulting point

clouds (Aanæs et al., 2016). A total of 106 datasets were collected,

resulting in 106 unique 3D point clouds. Selected examples of the

reconstructed models are shown in Figure 2A.

2.2.2 Data annotation
After obtaining the 3D point cloud data of maize seedlings, each

dataset was meticulously annotated to facilitate subsequent model

training. We used CloudCompare (Martinez-Guanter et al., 2019) to

label the point clouds captured during different stages of maize
frontiersin.org
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seedling growth, as illustrated in Figure 2B. The annotated data were

saved in.txt format, with each line representing a single point and

containing the following information: x, y, z coordinates; Nx, Ny, Nz

normals; and two labels—label1 and label2. Label1 was used for

semantic segmentation, with values of 0 indicating non-seedling

points and 1 indicating seedling points. Label2 was used to validate

instance segmentation, where 0 denoted non-seedling points, and

integers such as 1, 2, 3, etc., represented individual seedling instances.

2.2.3 Data augmentation
To enhance the robustness and generalization capability of the

network model, the annotated raw point clouds were augmented to

increase both the quantity and diversity of training samples. The

augmentation techniques applied in this study included: Fake

Dropout, where 10% to 20% of points were randomly dropped;

Jittering, which added Gaussian noise with a standard deviation of

0.01, constrained within ±0.05; Rotation, involving independent

rotations along the X, Y, and Z axes within a range of [fngen 10nge

Scaling, with random scaling factors between 0.67 and 1.5;

Shuffling, achieved through index-based random reordering; and

Translation, with random shifts applied in the range of [fngee 0.1]

along each axis. These augmentation strategies effectively enriched

the training dataset and improved the model’s ability to generalize

across varied inputs. After augmentation, a total of 742 point

clouds, including the original data, were generated. All.txt files

were randomly split into training, testing, and validation sets in a

ratio of 8:1:1, forming the dataset used for model training.
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2.3 Point cloud segmentation model
architecture based on PointNet++
(PointCornNet)

The PointNet family is a crucial set of models in point cloud

processing, leveraging spatial operations to handle the unordered

and unstructured nature of point clouds for classification and

segmentation tasks (Yuan et al., 2023). Compared to traditional

deep learning models, such as voxel-based networks, PointNet

offers several advantages. PointNet extracts features from each

point using multilayer perceptrons (MLPs) and aggregates them

through max pooling. PointNet++ is an enhanced version of

PointNet that divides the point cloud into hierarchical layers,

applying MLPs and max pooling at each layer to extract multi-

level features, thereby capturing both global and local information

in the point cloud. By combining features from multiple scales, it

enhances robustness. The PointNet++_MSG variant, designed for

semantic segmentation, uses Multi-Scale Grouping (MSG) to

sample neighboring points at different scales, allowing the model

to capture local geometric details more effectively. PointNet+

+_MSG has demonstrated particularly strong performance in

semantic segmentation tasks, especially in complex and fine-

grained scenarios (Qi et al., 2017). To better capture point cloud

features and achieve both semantic and instance segmentation of

maize seedlings, we propose an improved version of PointNet+

+_MSG, named PointCornNet. As shown in Figure 3, the input

point cloud is processed through an encoder, decoder, and MLP
FIGURE 1

(A) Seed germination procedure; (B) experimental parameters.
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layers to perform semantic segmentation. The segmented seedling

point clouds are then subjected to a clustering algorithm for

instance segmentation, resulting in the separation of individual

seedlings. The specific improvements are outlined as follows:

(1)Integration of the CBAM Attention Mechanism (Woo et al.,

2018). PointNet++ serves as the backbone network, consisting of an

encoder and a decoder. The encoder comprises three cascaded Set

Abstraction (SA) modules, with each SA module embedded with a

corresponding CBAMmodule to capture salient features and spatial

relationships within the point cloud data. Unlike the traditional

CBAM used for 2D images, PointCornNet has made targeted

adjustments to CBAM in response to the disorder, sparsity and

3D spatial distribution characteristics of point cloud data, enabling

it to effectively capture the local geometric features and global

dependencies of point clouds. Specifically, the original CBAM

processes image features with a grid structure, whose dimensions

are H×W×C (H and W are spatial dimensions, and C is the

channel). In PointCornNet, CBAM processes point cloud features

with dimensions of B×N×C (where B represents batch size, N

represents the number of points and C represents feature

channels). Each SA module includes Sampling, Grouping, and a

PointNet Layer, where the CBAM mechanism is integrated within

the PointNet Layer. As illustrated in Figure 3D, after the input of the

PointNet Layer is processed through an MLP to generate a feature

vector, this vector is passed into the CBAM module for a series of

attention-based weighting operations. Subsequently, a local max
Frontiers in Plant Science 05
pooling operation aggregates the focused local features into a global

representation. As illustrated in Figure 3F, CBAM has two

sequential sub-modules: channel attention and spatial attention.

The overall process can be summarized as:

F1 = Mc(F)⊗ F

F2 = Ms(F1)⊗ F1

Here, F1 denotes the Channel weighted features.Mc denotes the

channel attention map. F denotes the input feature. ⊗ denotes

element-wise multiplication. Ms denotes the spatial attention map.

F2 denotes the refined feature.

In the channel attention module, average-pooling and max-

pooling operations are first performed on the input feature, and

then average-pooled features and max-pooled features are input

into a shared network. After the shared network is applied to each

pooled feature, we use element-wise summation and sigmoid

function to compute the channel attention map. The channel

attention map is computed as:

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

Here, s ( · ) denotes the sigmoid function. MLP( · ) denotes the

multilayer perceptron operation. AvgPool( · ) denotes the average-

pooling operation.MaxPool( · ) denotes the max-pooling operation.

In the spatial attention module, we first apply average-pooling

and max-pooling operations along the channel axis. After that, the
FIGURE 2

(A) 3D reconstruction; (B) data annotation.
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pooled features are concatenated and convolved by a convolution

layer. Finally, the spatial attention map is obtained through the

sigmoid function. The spatial attention map is computed as:

Ms(F1) = s (f (½AvgPool(F1);MaxPool(F1)�))
Here, f ( · ) denotes the convolution operation.

CBAM comprises channel attention and spatial attention

modules that adaptively weight features based on their relevance.

Channel attention highlights the more critical channels in the point

cloud segmentation task by learning the weight of each channel, and
Frontiers in Plant Science 06
suppresses redundant and noisy channels such as irrelevant

backgrounds. Spatial attention enhances the focus on key spatial

positions such as the corners and edge points of seedlings by

learning the weight of each point, while weakening irrelevant

points. This mechanism enhances the network’s focus on critical

information while suppressing less important or irrelevant features,

thereby improving the model’s robustness against noise and

extraneous data.

(2)Use of Varifocal Loss (Zhang et al., 2021). Given the

characteristics of maize seedling point cloud data—specifically,
FIGURE 3

(A) Architecture of the PointCornNet network; (B) structure of the Set Abstraction (SA) module; (C) structure of the Feature Propagation (FP) module;
(D) architecture of the PointNet layer; (E) CornDBSCAN clustering process; (F) CBAM attention module architecture.
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the significant imbalance between seedling and non-seedling points,

with non-seedling points greatly outnumbering seedling points—

the original loss function used in the PointNet++ framework may

overly favor the accurate prediction of non-seedling points. This

imbalance can compromise the model’s overall performance and its

ability to accurately identify seedling regions. To address this issue,

we adopt Varifocal Loss, an improved version of the widely used

Focal Loss (Lin et al., 2017). Varifocal Loss integrates both

classification and regression components, dynamically adjusting

weights to better handle class imbalance and localization

inaccuracies. Specifically, it assigns higher weights to hard-to-

classify samples, such as seedling points, thereby enhancing the

model’s segmentation accuracy and localization precision for

seedling regions. By incorporating Varifocal Loss, we not only

achieve a better balance between the prediction of background

and seedling points but also significantly improve model

performance under imbalanced data distributions. This is

particularly beneficial for enhancing recognition accuracy in

seedling areas, ultimately optimizing the overall point cloud

segmentation task. The Varifocal Loss is defined as follows:

Lvf = Lcls + l · Lreg

Lcls = −
1
No

N
i=1½yi log (pi) + (1 − yi) log (1 − pi)�

Lreg =oi ti − tij j
Here, Lcls denotes the classification loss, and Lreg represents the

regression loss. yi is the ground truth label, and pi is the predicted

class probability. ti and tI refer to the ground truth bounding box

and the predicted bounding box, respectively.

(3)Integration of CornDBSCAN for Instance Segmentation

Clustering. In this study, to separate multiple maize seedling

instances into individual plants, we adopt clustering as a simple

yet effective method for instance segmentation. DBSCAN (Deng,

2020), a density-based clustering algorithm, is well-suited for this

task due to its ability to detect clusters of arbitrary shapes and its

strong robustness to noise. However, the performance of DBSCAN

heavily depends on two key parameters: eps (the neighborhood

radius) and minpts (the minimum number of points required to

form a cluster). To enable adaptive clustering across varying

datasets, we propose an optimized version of DBSCAN, termed

CornDBSCAN, as illustrated in Figure 3E. The core idea involves

using a Nearest Neighbors approach to compute the k-nearest

neighbor distances for each point, where we set k = 55. For each

point, the distance to its 55th nearest neighbor (i.e., the most distant

neighbor within the k-nearest set) is selected as a density indicator.

Subsequently, the mean of these 55th nearest neighbor distances

across all points is computed and used as an estimated eps value.

This process can be described as follows:

eps =
1
No

N
i=1distances½i,  −1�

Here, distances refers to the computed k-nearest neighbor

distance matrix, and distances[i, -1] denotes the distance from
Frontiers in Plant Science 07
point i to its 55th nearest neighbor, i.e., the farthest neighbor within

the top 55 nearest points.

Subsequently, the estimated eps value is applied to the DBSCAN

clustering algorithm, with minpts set to 3, meaning that each cluster

must contain at least three points. The point cloud data is then

clustered using DBSCAN, and each point is assigned a cluster label

accordingly. Noise points are automatically labeled as −1 by the

algorithm. Finally, the Hungarian algorithm is used to perform

optimal matching between the predicted labels and the ground

truth labels, enabling the calculation of accuracy and other

evaluation metrics.
2.4 Model training parameters and
evaluation metrics

The experiments were conducted on a Windows 11 operating

system, equipped with an Intel® Xeon® Gold 6248R @ 3.00GHz

processor, 80 GB of RAM, and an NVIDIA GeForce RTX 4090

GPU with 24 GB of VRAM. The development environment was

based on Python 3.8, with PyTorch 2.0 as the deep learning

framework and CUDA version 11.8. The model training

parameters are summarized in Table 1.

To comprehensively evaluate the effectiveness of the model in

segmenting maize seedling point clouds, we adopted several

performance metrics. For semantic segmentation, we used Overall

Accuracy (Acc), Precision (Pre), Recall (Rec), and Mean

Intersection over Union (mIoU). For instance segmentation, the

evaluation metrics included Precision (Pre), Recall (Rec), F1-score

(F1), and Instance Intersection over Union (iiou).

Accuracy measures the overall performance of the model by

reflecting the proportion of correctly predicted samples among all

samples. Precision indicates the proportion of true positive

predictions among all samples predicted as positive by the model.

Recall represents the proportion of actual positive samples that are

correctly predicted by the model. Mean Intersection over Union

(mIoU) is a widely used metric in semantic segmentation tasks that

evaluates the model’s segmentation performance across different

classes. IoUmeasures the overlap between the predicted and ground

truth regions, and mIoU is the average IoU across all classes. F1-

score is the harmonic mean of Precision and Recall, providing a

balanced measure between them. Instance Intersection over Union

(iiou) assesses the degree of overlap between predicted and ground

truth labels at the instance level. The specific calculation formulas

are as follows:

Acc =
Correct   Predictions
Total   Predictions

=
TP + TN

TP + FP + TN + FN

Pre =
TP

TP + FP

Rec =
TP

TP + FN
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IoUCi
=
IntersectionCi

UnionCi

=
TPCi

TPCi
+ FPCi

+ FNCi

mIoU = 1
NoN

i=1IoUCi

F1 = 2� Pre� Rec
Pre + Rec

IoUIj =
IntersectionIj

UnionIj
=

TPIj
TPIj + FPIj + FNIj

iiou =
1
MoM

i=1IoUIj  

Here, True Positive (TP) refers to the number of samples

correctly predicted as positive; False Positive (FP) refers to the

number of samples incorrectly predicted as positive; True Negative

(TN) refers to the number of samples correctly predicted as

negative; and False Negative (FN) refers to the number of samples

incorrectly predicted as negative. N denotes the total number of

semantic classes, and IoUCI
represents the Intersection over Union

for class Ci. M denotes the total number of instances, and IoUIj

represents the Intersection over Union for instance Ij.
2.5 Effectiveness of PointCornNet network
on seedling datasets

In order to verify the feasibility of the proposed improved

model PointCornNet in terms of performance, we compared the

performance of the semantic segmentation module of the

PointCornNet model with other semantic segmentation models,

including DGCNN, PointNet, and PointNet++_MSG. We also

compared the performance of the instance segmentation module

of the PointCornNet model with other instance segmentation

algorithms, including Euclidean Clustering, DFSP, and DBSCAN.

When training different models and algorithms, all parameters

remained consistent. The comparative test results of different

semantic segmentation models are shown in Table 2, and the

comparative test results of different instance segmentation

algorithms are shown in Table 3.

The experimental results demonstrate that, compared with

previous versions of PointNet, PointCornNet offers superior

accuracy and stability. Additionally, the improved clustering

algorithm CornDBSCAN achieves higher segmentation precision
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than other clustering methods, confirming that the PointCornNet

model can effectively perform both semantic and instance

segmentation on maize seedling point clouds. Figure 4A presents

the segmentation visualizations of the four models at different growth

stages of maize seedlings, where yellow boxes highlight areas of

segmentation errors. Figure 4B shows the instance segmentation

visualizations using the four clustering algorithms at various growth

stages, with red boxes indicating segmentation errors.
2.6 Calculation of phenotypic parameters
in corn seedlings

2.6.1 Coordinate alignment and scale adjustment
Due to discrepancies between the reconstructed point cloud

plane and the actual coordinate plane, various errors may arise,

which can negatively impact the accuracy of phenotypic parameter

calculations. To address this, we first standardized the z-axis

orientation, aligning it to be perpendicular to the ground. This

was achieved using the RANSAC algorithm to detect the ground

plane and obtain its normal vector. The angle between this detected

normal and the target z-axis was then calculated, and the Rodrigues’

rotation formula was used to derive the rotation matrix for point

cloud alignment. To establish a correspondence between the plant

point clouds in the 3D virtual space and the actual physical size of

plants in the real world, a scaling factor was determined based on a

known reference object. In this study, the seedling cultivation tray

was used as a reference to compute the scale ratio. The specific

calculation formula is as follows:

q = cos−1
m · n

mj j � nj j
� �

 

Rrot = E � cos q + (m · n)� d � (1 − cos q) + (m · n)� sin q    

k =
Lreal
Lvirtual

 

Here, q denotes the rotation angle, m is the normal vector of the

actual ground plane, and n is the unit vector along the z-axis. Rrot
represents the rotation matrix, E is the 3×3 identity matrix, and d is

the unit skew-symmetric matrix derived from the cross product of

m · n. The scaling factor k is calculated based on the reference

object, where Lreal is the real-world side length of the cultivation tray

(25 cm), and Lvirtual is the corresponding side length measured from

the reconstructed model.

2.6.2 Plant height calculation method
Plant height is a key indicator for assessing plant growth, and its

variation can be significantly influenced by environmental

conditions (Tilly et al., 2014). In general, plant height is

determined by measuring the vertical distance between the

highest and lowest points of the plant. In this study, the height of

maize seedlings is defined as the distance from the point where the

plant contacts the soil to the top of the seedling. To compute this, all

points within the maize seedling point cloud are traversed to

identify the maximum and minimum values along the z-axis, and
TABLE 1 Model parameter settings.

Parameter Value

Epoch 100

Batch Size 24

Optimizer Adam

Learning Rate 0.0005

Decay Rate 10−4

npoint 4096
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the height is calculated as the difference between these two values. A

schematic illustration of the calculation is shown in Figure 5A. The

formula is as follows:

 H = zmax − zmin

Here, H represents the calculated seedling height, zmax is the

maximum value along the z-axis, and zmin is the minimum value

along the z-axis.

2.6.3 Canopy width calculation method
Canopy width refers to the maximum horizontal span of a

plant’s canopy—including leaves, stems, and other structures—on a

horizontal plane. For maize seedlings, canopy width reflects the

plant’s spatial expansion and serves as an important indicator of

growth status, photosynthetic potential, and biomass accumulation

(Guo et al., 2005). In this study, we constructed an Axis-Aligned

Bounding Box (AABB) around the point cloud data and calculated

the diagonal length of the bounding box using the Pythagorean

theorem based on its length and width. This diagonal is used as an

estimate of the canopy width, as illustrated in Figure 5B.

2.6.4 Volume calculation method
As a key phenotypic parameter, 3D volume reflects not only the

spatial occupancy of a plant but also correlates closely with its

growth condition, health status, and biomass accumulation (Xiao

et al., 2020). To accurately measure the volume of individual maize

seedlings, we employed a voxel-based volume estimation method.

First, an Axis-Aligned Bounding Box (AABB) was constructed

around each point cloud, and the voxel size was determined

based on the bounding box’s length, width, and height. The

bounding box was then divided into a grid of small voxel units,

and each point was assigned to its corresponding voxel. The total
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volume was calculated by counting the number of occupied voxels

and multiplying this count by the volume of a single voxel. A visual

representation of this process is shown in Figure 5C. The voxel-

based volume calculation formula is as follows:

Va =on
i=1Vi

Here, Va represents the voxel-based 3D volume of the seedling,

Vi is the volume of a single voxel, which was set to a cube with side

length of 0.1 cm based on empirical testing, and n denotes the

number of occupied voxels.

2.6.5 Surface area calculation method
Surface area is closely related to various physiological processes,

crop health, photosynthetic efficiency, and resource utilization. In

this study, we estimated the surface area of maize seedlings using

the Ball Pivoting Algorithm (BPA) based on point cloud data. BPA

is a surface reconstruction technique that generates triangular

meshes from point clouds by simulating the motion of a virtual

ball “rolling” across the data points. As the ball rolls over the

surface, it identifies three-point contacts to form triangles, gradually

constructing a surface mesh. Once the mesh is generated, the total

surface area is calculated by summing the areas of all the triangular

facets. A visual example of this process is shown in Figure 5D. The

detailed calculation procedure is as follows:

M =∪N
i=1 T(pi, r)

A =ok
j=1Sj

Here, M denotes the generated mesh, pi is a point in the point

cloud, and r is the radius of the rolling ball, which was empirically

set to 0.2 cm. T(pi, r) represents the local triangular mesh formed by

a ball of radius r centered at point pi. The total surface area A is

computed by summing the areas of all individual triangles, where k

is the total number of triangles and Sj is the area of the j triangle.

The area of each triangle can be calculated using Heron’s formula.

2.6.6 Algorithm effectiveness evaluation
In this study, to evaluate the effectiveness and practicality of the

proposed algorithm, we selected plant height and canopy width from

40 maize seedlings as assessment parameters. Figure 5E illustrates the

relationship between the values obtained using the PointCornNet

model and those obtained through manual measurements. The x-axis

represents manually measured values, while the y-axis corresponds to

the algorithm-derived measurements. As shown in the figure, the

data points are predominantly distributed along the diagonal,

indicating a strong agreement between the two sets of

measurements. The coefficient of determination (R2) for plant

height and canopy width reached 0.99 and 0.96, respectively,

demonstrating a high correlation between algorithm-predicted and

manually measured values. It is necessary to clarify that the

calculation results of volume and surface area in this study were

mainly used to analyze the dynamic changes of maize seedlings under

salt stress. Their accuracy was not verified through manual

measurement values. The interpretation of the relevant results

should be limited to the specific analysis scope of this study.
TABLE 2 Comparative test results of semantic segmentation
performances of network models.

Model Acc/% Pre/% Rec/% mIoU/%

DGCNN 93.76 91.38 75.92 89.13

PointNet 91.66 90.79 72.88 86.27

PointNet
++_MSG

98.23 96.41 79.83 95.92

PointCornNet 99.74 97.45 87.62 97.23
TABLE 3 Comparative test results of instance segmentation
performances of different algorithms.

Algorithm Pre/% Rec/% F1/% iiou/%

Euclidean
Clustering

68.33 53.12 65.48 52.78

DFSP 64.61 60.18 60.45 59.07

DBSCAN 82.90 77.83 80.77 75.32

PointCornNet 97.44 95.00 94.93 92.24
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3 Results

3.1 Experimental design

Using the improved point cloud segmentation model

PointCornNet and the phenotypic trait calculation algorithm, we
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analyzed the dynamic changes in plant height, canopy width,

volume, and surface area of maize seedlings under salt stress

during the first six days after sowing. Salt stress conditions were

simulated using NaCl solutions at six concentration levels: 0, 60

mmol·L-1, 120 mmol·L-1, 180 mmol·L-1, 240 mmol·L-1, and 300

mmol·L-1. For each concentration, plant 9 seeds in each experiment.
FIGURE 4

(A) Visualization of semantic segmentation results from different models; (B) visualization of instance segmentation results from different clustering
algorithms.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1621509
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1621509
The experiment was repeated three times, with 27 plants at each

concentration, and the total sample size was 162 plants (Turan et al.,

2009; He et al., 2024). Since no seedlings emerged within the first 36

hours after sowing, the first data collection was conducted at 48

hours post-sowing. Subsequent data were collected every 12 hours,

with the final collection taking place at 144 hours after sowing.
Frontiers in Plant Science 11
3.2 Effects of different salt stress
concentrations on the phenotypic traits of
maize seedlings

Salt stress is one of the major factors affecting crop growth and

yield, as saline soils can disrupt plant physiological and metabolic
FIGURE 5

(A) Plant height calculation method; (B) canopy width calculation method; (C) volume calculation method; (D) surface area calculation method;
(E) algorithm effectiveness evaluation.
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processes, thereby impairing seed germination (Shahid et al., 2020).

However, the dynamic changes in multiple phenotypic traits of

maize seedlings under salt stress conditions remain poorly

understood. In this study, we systematically measured and

compared plant height, canopy width, volume, and surface area of

maize seedlings grown under six NaCl solution concentrations: 0,

60mmol·L-1, 120 mmol·L-1, 180 mmol·L-1, 240 mmol·L-1, and 300

mmol·L-1. This analysis aimed to investigate the impact of salt stress

on maize seedling growth and provide experimental evidence for

breeding salt-tolerant cultivars.

(1) Effects of Different Salt Stress Concentrations on Plant

Height and Canopy Width of Maize Seedlings. We conducted

maize seed germination experiments under CK (control),

60mmol·L-1, 120 mmol·L-1, 180 mmol·L-1, 240 mmol·L-1, and 300

mmol·L-1 NaCl treatments, and obtained 3D models of the

seedlings during the first six days after sowing. The temporal 3D

reconstruction of maize seedlings under CK treatment from 48h to

144h post-sowing is shown in Figure 6. Using the PointCornNet

model and the phenotypic parameter computation algorithm, we

measured the 3D models throughout the germination process and

obtained the average plant height and canopy width of maize

seedlings over time under different NaCl concentrations, as

illustrated in Figure 7.

Figure 7A shows the temporal variation in average plant height

of maize seedlings cultivated under different NaCl concentrations.

Taking the data at Dt = 48h as an example, the “Mean Value” line

represents the average of three replicate measurements of seedling

height at 48 hours after sowing. As illustrated in Figure 7A, the

average plant height increased over time across all treatment

groups. However, as the concentration of NaCl increased, both

the average plant height and its growth rate exhibited a declining

trend. In addition, the initial emergence time of seedlings was

progressively delayed under higher salt concentrations. At Dt =

144h, the average plant heights under different treatments were as

follows: 12.87 cm (control, deionized water), 9.51 cm (60mmol·L-1),

4.27 cm (120mmol·L-1), 3.71 cm (180mmol·L-1), 1.32 cm

(240mmol·L-1), and 0.29 cm (300mmol·L-1). These results clearly

indicate that increasing NaCl concentration gradually inhibits the

vertical growth of maize seedlings.

Figure 7B illustrates the changes in average canopy width of

maize seedlings over time under different NaCl concentration

treatments. Taking the data at Dt = 48h as an example, the

“Mean Value” line represents the mean of average canopy widths

across three replicate groups measured at 48 hours after sowing. As

shown in Figure 7B, the canopy width of maize seedlings increased

progressively with cultivation time in all treatment groups.

However, as the NaCl concentration increased, both the overall

canopy width and its growth rate exhibited a decreasing trend. At Dt

= 144h, the average canopy widths of maize seedlings under the six

treatments were as follows: 7.59 cm (control, deionized water), 5.14

cm (60mmol·L-1), 2.07 cm (120mmol·L-1), 1.31 cm (180mmol·L-1),

0.44 cm (240mmol·L-1), and 0.17 cm (300mmol·L-1). These results

clearly demonstrate that increasing NaCl concentration gradually

suppresses the lateral growth of maize seedlings, as reflected by

reduced canopy width.
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(2) Effects of Different Salt Stress Concentrations on the

Volume and Surface Area of Maize Seedlings. Using the

PointCornNet model and the phenotypic trait computation

algorithm, we analyzed the 3D models of maize seedlings

throughout the germination process. The average volume and

surface area of seedlings under different NaCl concentration

treatments over time were obtained, as shown in Figure 8.

Figure 8A depicts the changes in maize seedling volume over

time under different NaCl concentration treatments. Taking Dt =

48h as an example, the shaded area in the radar chart represents the

average volume across three replicate groups measured at 48 hours

after sowing. As illustrated in Figure 8A, the volume of maize

seedlings increased over time under all treatment conditions.

However, with increasing NaCl concentration, both the overall

volume and its growth rate exhibited a downward trend. At Dt =

144h, the average volumes of maize seedlings under each treatment

were as follows: 2.46 cm³ (control, deionized water), 2.07 cm³

(60mmol·L-1), 1.08 cm³ (120mmol·L-1), 0.64 cm³ (180mmol·L-1),

0.21 cm³ (240mmol·L-1), and 0.03 cm³ (300mmol·L-1). These results

clearly demonstrate that increasing NaCl concentration

progressively inhibits the volumetric growth of maize seedlings.

Figure 8B illustrates the changes in surface area of maize

seedlings over time under different NaCl concentration

treatments. Taking Dt = 48h as an example, the 3D line plots

represent the mean surface area across three replicate groups

measured 12 hours after emergence. As shown in Figure 8B, the

surface area of maize seedlings increased steadily over time under all

treatment conditions. However, with increasing NaCl

concentration, both the overall surface area and its growth rate

showed a clear decreasing trend. At Dt = 144h, the average surface

areas of maize seedlings under each treatment were as follows: 11.69

cm² (control, deionized water), 8.74 cm² (60mmol·L-1), 3.80 cm²

(120mmol·L-1), 2.46 cm² (180mmol·L-1), 0.61 cm² (240mmol·L-1),

and 0.07 cm² (300mmol·L-1). These results clearly indicate that

higher NaCl concentrations progressively suppress the surface area

expansion of maize seedlings.

In summary, the proposed method for analyzing the full

temporal sequence of maize seedling phenotypic changes based

on the PointCornNet point cloud segmentation model is expected

to provide valuable insights into the growth process of crop seeds

under salt stress. This approach offers a deeper understanding of

how salt stress influences crop phenotypic traits and internal

physiological characteristics, and supports the development of

salt-tolerant crop varieties. Ultimately, it contributes to the

advancement of digital, modern agriculture and the pursuit of

high-quality, high-yield crop production.
4 Discussion

To address the limitations of traditional manual measurements

—namely low efficiency, high error rates, and potential damage to

seedlings—and to meet the need for non-destructive monitoring

throughout the entire growth process of maize seedlings, the

following work was carried out:
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1. Maize seedlings were cultivated using a seed incubator, and

their growth process was recorded with a smartphone

camera. Image frames were extracted from the recorded

videos and used to perform 3D reconstruction, resulting in

the construction of a labeled point cloud dataset for maize

seedlings. In parallel, maize seedling cultivation

experiments were conducted under salt stress conditions,

and full-sequence 3D point cloud data were collected from

48 to 144 hours after sowing.

2. The PointNet++ point cloud segmentation model was

improved and adapted for maize seedling segmentation,

resulting in the proposed PointCornNet model. The key

enhancements include the integration of the CBAM attention

mechanism, the replacement of the original loss function with

Varifocal Loss, and the incorporation of the CronDBSCAN

clustering algorithm after semantic segmentation. The
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performance of the improved PointCornNet model was then

evaluated through comparative experiments against other

semantic segmentation models, including DGCNN,

PointNet, and PointNet++_MSG, as well as against instance

segmentation algorithms such as Euclidean Clustering, DFSP,

and DBSCAN, validating the effectiveness of the

proposed improvements.

3. Four phenotypic traits—plant height, canopy width,

volume, and surface area—were selected as key

measurement indicators, and specific computational

methods were developed for each. The PointCornNet

model was used to perform phenotypic parameter

extraction on the segmented maize seedlings. Results

showed that the calculated plant height and canopy width

exhibited strong correlations with the manually measured

values, with coefficients of determination (R2) of 0.99 and
FIGURE 6

Temporal changes in the 3D point cloud of maize seedlings under CK (control) treatment.
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0.96, respectively. These findings confirm that the proposed

method can efficiently and non-destructively extract critical

phenotypic traits.

4. Based on the PointCornNet model and the phenotypic trait

calculation algorithm, the 3D models of maize seedlings

during the growth process were analyzed. The study

examined the temporal changes in plant height, canopy

width, volume, and surface area within six days after
tiers in Plant Science 14
sowing under different NaCl concentrations: control

(CK), 60 mg·L-1, 120 mg·L-1, 180 mg·L-1, 240 mg·L-1, and

300 mg·L-1. The results revealed that as the NaCl

concentration increased, all four phenotypic indicators

and their growth rates showed a declining trend. In

addition, the initial emergence time of seedlings was

progressively delayed. These findings demonstrate that

salt stress significantly inhibits the growth of maize
FIGURE 7

(A) Temporal changes in average plant height of maize seedlings under different NaCl concentration treatments; (B) Temporal changes in average
canopy width of maize seedlings under different NaCl concentration treatments.
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seedlings, and the inhibitory effect intensifies with

increasing NaCl concentration.
In summary, the non-destructive phenotypic detection method

for maize seedlings based on the PointCornNet point cloud

segmentation model provides effective support for phenotypic
tiers in Plant Science 15
analysis throughout the seedling growth process. It also offers a

powerful tool for the quantitative study of plant growth inhibition

under salt stress. Furthermore, this method holds significant

potential as a reference for the breeding of salt-tolerant crops,

thereby contributing to the advancement of smart agriculture and

crop breeding technologies.
FIGURE 8

(A) Temporal changes in average volume of maize seedlings under different NaCl concentration treatments; (B) temporal changes in average surface
area of maize seedlings under different NaCl concentration treatments.
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