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Introduction: Verticillium wilt, caused by Verticillium dahliae, is one of the most

devastating diseases affecting global cotton (Gossypium hirsutum) production.

Given the limited effectiveness of chemical control measures and the polygenic

nature of resistance, elucidating the key genetic determinants is imperative for

the development of resistant cultivars. In this study, we aimed to dissect the

temporal transcriptional dynamics and regulatory mechanisms underlying

Gossypium hirsutum response to V. dahliae infection.

Methods:We employed a time-course RNA-Seq approach using the susceptible

upland cotton cultivar Jimian 11 to profile transcriptomic responses in root and

leaf tissues post-V. dahliae inoculation. Differentially expressed genes (DEGs)

were identified, followed by weighted gene co-expression network analysis

(WGCNA). To prioritize key candidate genes, we applied machine learning

algorithms including LASSO, Random Forest, and Support Vector Machine (SVM).

Results and discussion: A robust set of core genes involved in pathogen

recognition (GhRLP6), calcium signaling (GhCIPK6, GhCBP60A), hormone

response, and secondary metabolism (GhF3’H) were identified. Our findings

provide novel insights into the spatiotemporal regulation of immune responses

in cotton and offer valuable candidate genes for molecular breeding of

Verticillium wilt resistance.
KEYWORDS
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1 Introduction

Cotton (Gossypium spp.) is an economically and globally

significant fiber and agricultural crop, threatened severely by

Verticillium wilt (Zhang et al., 2022). Cotton Verticillium wilt,

caused by Verticillium dahliae, is now one of the significant

barriers to sustainable Chinese cotton yields (Zhang et al., 2025b).

V. dahliae persists in soil as microsclerotia that can live longer than

14 years (Short et al., 2015). The microsclerotia germinate to form

infectious hyphae that infect cotton plants from roots and infect the

vasculature of plants when provided with proper growth

surroundings, leading to common signs of leaf chlorosis, wilting,

defoliation, and whole-plant death (Short et al., 2015). Due to the

structural durability of microsclerotia and V. dahliae’s varied races,

Verticillium wilt is highly challenging to control. Now, there is no

highly effective fungicide in chemical control available, and

production of disease-resistant varieties is considered to be the

best economic and effective measure to control the pathogen

(Zhang et al., 2025c).

Recently, with advancements in molecular breeding, scientists

have used marker-assisted selection (MAS) to map numerous

quantitative trait loci (QTL) of Verticillium wilt resistance in

cotton and steadily deciphered the mechanisms of resistance

(Ayyaz et al., 2025; Khan et al., 2025). The NBS-LRR type

resistance gene GbaNA1 in Gossypium barbadense and TIR-NBS-

LRR gene GhDSC1 in G. hirsutum have been reported to strongly

advance the resistance of plants to V. dahliae by mediating effector-

triggered immunity (ETI) (Li et al., 2018; Li et al., 2019). The

receptor kinase-mediated pattern recognition receptor (PRR)

pathways also play significant roles in cotton resistance to disease.

As examples, the receptor-like kinase gene GhRLCK-VII and the

wall-associated kinase gene GhWAK7A render resistance by,

respectively, recognizing pathogen-associated molecular patterns

(PAMPs) and cooperatively activating downstream immune

cascades, thereby mediating the primary PAMP-triggered

immunity (PTI) response in cotton (Liu et al., 2023; Wang et al.,

2020). The secondary metabolites’ accumulation offers an essential

chemical defense to cotton as well; as examples, phenylpropanoid

and flavonoid secondary metabolic pathways are intimately related

to improved antimicrobial ability (Xiao et al., 2023, 2021). Generally

speaking, cotton resistance to Verticillium wilt is highly complex

and entailed by numerous genes and hormone signaling as well as

secondary metabolism, whereas resistance mechanisms of elite

resistant germplasm remain to be fully elucidated.

In past few years, RNA-seq has been widely applied to study

cotton disease resistance mechanisms. Transcriptomic analysis

enables genome-wide monitoring of gene expression changes in

cotton after V. dahliae infection, facilitating the discovery of

resistance-related pathways and key genes. For example, one

study used time-series transcriptomics combined with weighted

gene co-expression network analysis (WGCNA) to construct a gene

regulatory network of cotton’s response to Verticillium wilt and

identified core resistance gene modules (Yang et al., 2024). In this

study, we used a Verticillium wilt-susceptible upland cotton

cultivar, Jimian 11, inoculated it with V. dahliae and collected
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samples at multiple time points, and performed transcriptome

sequencing to dissect the dynamic transcriptional regulatory

mechanisms of cotton’s defense response. Meanwhile, we

integrated differential expression analysis, WGCNA co-expression

network analysis, and machine learning to identify key genes

(Zhang et al., 2024). Our study deepens the understanding of the

molecular mechanisms of cotton resistance to Verticillium wilt and

provides candidate genes and a theoretical basis for molecular

breeding of disease-resistant varieties.
2 Materials and methods

2.1 Plant materials and pathogen
inoculation

The experimental cotton was G. hirsutum cultivar Jimian 11.

Cotton seeds were surface-sterilized and germinated in Petri dishes.

When the radicle grew to 3–5 cm, seedlings were transferred to

Hoagland nutrient solution for hydroponic cultivation. V. dahliae

(The strain was a highly virulent isolate collected from a

Verticillium wilt-infected cotton) was first cultured on PDA

medium for 7 days. A mycelial plug was then transferred to

liquid medium and agitated at 200 rpm and 26 °C for 3 days. The

mycelial mat was passed through gauze, and the resulting spore

suspension was diluted to 1×106 spores/mL. This suspension was

introduced into the cotton hydroponic boxes for inoculation. After

12 h of incubation, the spore suspension was removed and replaced

with sterilized water. Leaf and root samples were collected at 0 h, 12

h, 24 h, and 48 h post inoculation. All samples were immediately

frozen in liquid nitrogen and stored at –80°C until use.
2.2 Sampling and RNA-seq

For each time point and tissue, three individual plants were

sampled as biological replicates, yielding 24 samples total (2 tissues

× 4 time points × 3 replicates). Total RNA was isolated in every leaf

and root sample via Trizol method. The integrity and purity of RNA

were verified using NanoDrop spectrophotometry and agarose gel

electrophoresis. The RNA of each sample was applied to construct

libraries for sequencing: mRNA was enriched and afterwards

fragmented, first-strand cDNA was synthesized, adapters were

ligated, and PCR amplification was done to achieve the final

library. All libraries were sequenced following library quality

control onto an Illumina HiSeq X platform. Library construction

and sequencing were performed by Novogene Co., Ltd. Raw

sequencing reads were processed with Trimmomatic (v0.39) to

remove adapters and low-quality reads and evaluated with

FastQC (v0.12.1) for quality control, yielding high-quality clean

reads. The clean reads were aligned to the cotton reference genome

(G. hirsutum (AD1) ‘TM-1’ T2T genome JZU_v1.0 from the

CottonGen database, Yan et al., 2025) using HISAT2 (v2.2.1).

Transcript abundance was quantified as transcripts per million

(TPM) using Salmon (v1.9.0).
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2.3 Differential expression analysis and GO
enrichment

Differentially expressed genes (DEGs) were identified using the

DESeq2 v1.48.1R package (Love et al., 2014). The 0 h samples were

used as control, gene expression at each treatment time point (12 h,

24 h, 48 h) was compared for both leaves and roots. DEGs were

determined through DESeq2 R package (Love et al., 2014). The 0 h

samples served as control, and gene expression at every treatment

duration (12 h, 24 h, 48 h) was contrasted in both roots and leaves.

DEGs were identified by using |log2 (Fold Change) | ≥ 1 and FDR <

0.05 as the threshold. Gene Ontology (GO) enrichment analysis of

the identified differentially expressed genes (DEGs) was performed

using the R package clusterProfiler (v4.16.0; Wu et al., 2021). The

enrichGO() function was applied to identify significantly enriched

GO terms across the Biological Process (BP), Cellular Component

(CC), and Molecular Function (MF) categories. GO annotations

were ob ta ined f rom the func t iona l annota t ion fi l e

AD1_TM1_T2T_ZJU_v1_genes2GO.xlsx.gz, provided by the

CottonGen database, which contains GO terms assigned via

InterProScan for the Gossypium hirsutum (AD1) ‘TM-1’ T2T

genome JZU_v1.0 (Yan et al., 2025). The enrichment analysis was

conducted using the hypergeometric test with the following

parameters: pvalueCutoff = 0.05, pAdjustMethod = “BH”

(Benjamini-Hochberg), qvalueCutoff = 0.05, and ont = “ALL”.

GO terms with a false discovery rate (FDR) < 0.05 were

considered significantly enriched. Additionally, to characterize

gene expression change patterns over time, we carried out

clustering analysis genes in roots. Using the Mfuzz time-series

clustering method (R package ClusterGvis v 0.1.3, https://

github.com/junjunlab/ClusterGVis), genes with similar expression

dynamics across 0 h, 12 h, 24 h, and 48 h were grouped into clusters,

and the expression trend of each cluster was analyzed. GO

enrichment analysis was then performed for each gene cluster to

reveal the main functions and pathways associated with genes of

different expression patterns.
2.4 Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA) was

employed to form gene co-expression networks (Langfelder and

Horvath, 2008). The expression matrix was processed initially to

remove lowly and constitutively expressed genes in the majority of

samples to minimize noise in the network. Using the WGCNA R

package v1.7.3, a Pearson correlation matrix was calculated for all

gene pairs. An appropriate soft-thresholding power b was chosen to

transform the correlation matrix into an adjacency matrix,

approximately scale-free. A topological overlap matrix (TOM)

was then computed from the adjacency matrix, and hierarchical

clustering was performed to group genes with high co-expression

into modules. After initial modules were identified via dynamic tree

cutting, modules with similar expression profiles were merged to

obtain the final set of co-expression modules. For each module, the
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level of that module in each sample. Module eigengenes were

correlated with sample phenotypic data to identify modules

significantly associated with specific traits. In this study, infection

time point (0, 12, 24, 48 h) was treated as a numeric trait and tissue

type (root or leaf) as a categorical trait for correlation analysis, and

we focused on modules highly correlated with the “infection time”.

Additionally, each gene’s intramodular connectivity and module

membership value was calculated; genes with the highest

connectivity and significant module membership were selected as

candidate hub genes for their modules.
2.5 Key genes selected by machine
learning

To further identify key genes potentially involved in disease

resistance, we employed a machine learning-based feature selection

framework. A set of candidate genes was initially compiled based on

differential expression analysis, expression pattern clustering

(specifically, Cluster C3), and weighted gene co-expression

network analysis (WGCNA). As the primary objective of this

study was to identify stable and reproducible gene markers, rather

than to evaluate model generalization performance, we adopted a

bootstrap resampling strategy instead of a conventional train-test

split. This approach enhances the robustness of feature selection

and mitigates the variability and bias introduced by single-

split partitioning.

We conducted 50 iterations of bootstrap sampling with

replacement from the full dataset. In each iteration, a new

training set equal in size to the original dataset was generated,

and gene expression values were standardized using StandardScaler.

Three machine learning algorithms implemented in Python’s scikit-

learn library (v1.5.2) were then applied to independently rank

feature importance: 1) LASSO regression with L1 regularization

was applied using 3-fold internal cross-validation to determine the

optimal penalty coefficient (l). Genes with non-zero regression

coefficients were considered important. 2) Random Forest models

were constructed using 100 trees and a maximum depth of 4.

Feature importance was calculated based on the Gini impurity

index, and the top-ranking genes were selected. 3) SVM with a

linear kernel was used to evaluate the absolute values of model

coefficients, and genes with the largest weights were selected. For

each model and iteration, the top 20 genes were recorded. After 50

iterations, a consensus score for each gene was calculated based on

its frequency of selection across all models. Genes repeatedly

selected by multiple algorithms were defined as core

candidate genes.
2.6 qRT-PCR validation

To confirm the reliability of transcriptome data, quantitative

real-time PCR (qRT-PCR) analysis was carried out with a subset of

the identified key genes. Specific primers according to the sequences
frontiersin.org
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of genes determined by RNA-seq were designed using Primer3

(Table 1). Total RNA was isolated as described in RNA-seq, and

then reverse-transcribed to cDNA. The internal reference gene was

GhUBQ (ubiquitin), and both the target gene and reference were

amplified as well. qRT-PCR then was implemented using SYBR

Green I in real-time PCR (ABI7500, Thermofisher Scientific) with

three technical replicates of every sample. The program of qRT-

PCR was of a two-step nature: an initial denaturation at 95 °C, and

then 40 cycles of amplification cycling between 95 °C and 60 °C.

Post-amplification, melt curve analysis was done to verify primers’

specificity. The relative amounts of treatment samples with respect

to 0 h were calculated by using the 2^-DDCt method, and these values

were compared to relative changes in expression (log2 fold change)

measured by RNA-seq. Pearson correlation analysis was employed

to as s e s s s imi l a r i t y be tween qRT-PCR resu l t s and

transcriptome data.
3 Results

3.1 Response patterns of leaves and roots
after V. dahliae infection

We carried out RNA-seq of leaf and root samples at 0 h, 12 h, 24

h, and 48 h post-inoculation. Sequencing yielded high-quality data

with consistently high mapping rates and low levels of multi-

mapped reads across all samples (Supplementary Table S1),

supporting the reliability of downstream analyses. We

subsequently conducted principal component analysis (PCA),

DEG identification, and GO enrichment analysis (Figure 1). The

PCA results showed high repeatability among biological replicates

within each treatment and clear separation between leaf and root

samples (Figure 1A). This indicates that V. dahliae infection

induces tissue-specific transcriptional responses, and that roots

and leaves differ markedly in pathogen recognition and signal

transduction processes. DEGs analysis revealed distinct temporal
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infection. Notably, roots exhibited much more dramatic gene

expression changes: in the comparison of 0 h vs. 12 h, there were

5,128 upregulated genes and 3,757 downregulated genes in roots, far

more than in leaves at the same time (2,761 upregulated and 765

downregulated). This finding suggests that as the primary infection

site, roots initiate the immune response earlier and more strongly.

As the disease progressed, roots continued to sustain a higher level

of gene expression changes at 24 h and 48 h (Figure 1B). Therefore,

subsequent analyses focused on the root samples. GO enrichment

analysis of root DEGs at each time point revealed that such genes

were enriched in many defence-related biological processes

(Figure 1C). DEGs at 12 h post-inoculation were significantly

enriched in terms related to ‘RNA polymerase II transcription

factor activity’, ‘sequence-specific DNA binding’, ‘protein serine/

threonine phosphatase activity’, and ‘glycolytic process’. This

indicates that at the initial infection period, cotton roots

responded quickly by activating transcriptional regulators, signal

transduction factors, and energy metabolisms. By 48 h, DEGs

became enriched in terms such as “calmodulin binding”, “cation

binding”, “response to stimulus/stress”, “cell wall”, and “apoplast”,

indicating that at later stages the roots may enhance defense by

modulating calcium signaling pathways, the extracellular

environment, and cell wall structure.
3.2 Gene expression pattern analysis

To further dissect the temporal changes in gene expression in G.

hirsutum roots during V. dahliae infection, we performed clustering

analysis on all gene expression profiles from the root samples. Based

on expression changes at 0, 12, 24, and 48 h, the root DEGs were

grouped into 6 co-expression clusters (C1–C6) (Figure 2, left panel).

Different clusters showed distinct temporal expression patterns. For

example, C1 (4,618 genes) represents genes that were rapidly

upregulated at the early stage of infection and then declined,
TABLE 1 Primers used for qRT-PCR analysis.

Gene ID Forward Primer (5’→3’) Reverse Primer (5’→3’)

GhChrA04G1295.1 ATGGCTGCTTCATCATCATCTG TCAAGACAGGAATCCGTCCA

GhChrD05G0160.1 TCGGATCGGTAAAGGAGGGT GGACGACGGGAGGTCAAAAT

GhChrA11G1796.1 AAGCCGCGACCAACAATTTC AGCGTCTCACAGCAACAATG

GhChrD10G2704.1 AACTCCAGCAATGGCAAAGC AACAAAAGCAAGGCCATGGC

GhChrA01G1099.1 ACATTGCAAGGCCAATCCAC AGGTCCCAATTTTGCCAAGC

GhChrD12G2803.1 ACAGCTAAGGGTGCATTTGG ACATTCTGTTGTGGCTGTCC

GhChrA10G0139.1 TAGAAGTGGAGAGCTCGGATAC AATCAGCCAAAGTCCTTCCG

GhChrA11G0187.1 TTAAACGCCGGAAACACACG TCCGATCAACCGCGAAAATC

GhChrA12G2635.1 AAGCATGCCGCATTCATGAC ACCTTTTCAGGCCATGTTGC

GhChrA13G1329.1 TGCCATCTCATTTGCAACGG AAGCAGTCCATTTGCCATCC

GhChrA01G0691.1 TGGTGGGAAAGATTGCTTGC ACGCGAGGTTGATGAATTCG
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being strongly induced at 12 h and then gradually falling off by 24-

48 h. Clusters C3 (5,113 genes) and C5 (7,023 genes) showed a trend

of sustained or delayed upregulation, reaching their highest

expression at 48 h. These patterns suggest that cotton roots

harbor two major groups of responsive genes: early transient

response genes and later sustained response genes. GO

enrichment analysis was performed for each gene cluster to

explore the functional categories associated with the different

expression patterns (Figure 2, right panel). The results showed

that the functions enriched in each cluster corresponded to their

expression timing. Gene clusters with high expression at early stages

(such as C1 and C2) were significantly enriched in functions related

to transcriptional regulation and signal transduction, including

transcription factor activity and protein kinase and phosphatase

activity. In contrast, clusters that were continuously or later

upregulated (C3 and C5) were enriched in metabolic and defense

response processes. Of particular note, C3 genes were notably

enriched in some significant biological processes related to

defense, such as ‘defense response’, ‘reactive oxygen metabolic

process’, ‘secondary metabolic process’, and ‘hormone-mediated

signaling pathway’. This suggests that during the infection process,
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C3 genes will be continuously triggered and coordinate intricate

defense mechanism in cotton, such as oxidative burst, synthesis of

antimicrobial compounds, and hormone signaling, to effectively

block further invasion and spread of the pathogen.
3.3 WGCNA analysis

To analyze the coordinated expression of resistance genes from

a global network perspective, we conducted WGCNA on the

transcriptome data. A total of 16 co-expression modules were

detected based on the expression profiles of all samples, with each

module labeled by a different color. We focused on modules that

were significantly correlated with the infection time course, in order

to identify gene groups exhibiting specific patterns as the disease

progressed. Correlation analysis revealed that the blue module,

turquoise module, and yellow module had module eigengenes

strongly positively correlated with time (Pearson correlation

coefficients 0.60, 0.57, and 0.24, respectively; p values all highly

significant, Figure 3A), meaning the genes in these modules showed

continuously increasing expression as infection time progressed.
FIGURE 1

Transcriptomic responses of G. hirsutum to V. dahliae inoculation. (A) PCA and cluster analysis of transcriptomic data from leaf and root samples at
different time points post V. dahliae inoculation; (B) DEGs in leaf and root tissues at various time points after V. dahliae inoculation; (C) GO
enrichment analysis of DEGs in G. hirsutum roots at three time points post-inoculation compared to 0h (from left to right: 0h vs. 12h, 0h vs. 24h,
and 0h vs. 48h).
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These results indicate that the positively time-correlated modules

are rich in defense-related genes that are activated progressively as

the disease develops.

To further understand the biological functions of the key

modules, we examined the functional composition and

representative genes of the modules that were positively

correlated with time. The blue module contains 7,326 genes and

is enriched for many known disease resistance-related genes,

including various signaling components and defense enzymes.

The turquoise module has 9,443 genes and is significantly

enriched in secondary metabolism and stress response functions.

The yellow module has relatively fewer genes (5,564) but is rich in

diverse transcriptional regulators. Notably, each of these modules

contains several genes that were already identified as significantly

upregulated in the differential expression and clustering analyses,

further underscoring their importance in cotton’s defense response.

We calculated intramodular connectivity for each gene and

identified hub genes in each module. For example, in the blue
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encoding receptor-like protein kinases and pathogenesis-related

proteins; in the turquoise module, many of the hub genes were

metabolic enzymes and signaling molecules; and the yellow

module’s hub genes were predominantly transcription factors.

These hub genes likely play central roles in the function of their

respective modules, driving the coordinated expression of other

genes in the module. The characteristics of these modules reflect the

major defense activities of cotton at different times, such as a

continuous enhancement of defense metabolism and signal

transduction throughout the infection.
3.4 Machine learning analysis of key genes

By applying the machine learning feature selection, we obtained

a high-confidence list of core resistance genes. In total, 15 genes

were consistently selected by all three algorithms (Table 2). These
FIGURE 2

Temporal expression patterns and GO enrichment analysis of co-expressed gene clusters in G. hirsutum roots in response to V. dahliae infection.
Gene expression profiles were obtained from cotton roots at 0 h, 12 h, 24 h, and 48 h after V. dahliae infection, and genes were grouped into six
co-expressed clusters (C1–C6). The left panel shows the dynamic expression trends of each cluster across the four time points. The heatmaps
represent the expression levels within each cluster (Z-score), where red indicates high expression and blue indicates low expression. The right panel
displays the GO enrichment results for each cluster.
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genes all showed high importance in the machine learning models,

indicating that their expression changes are closely associated with

cotton’s response to V. dahliae infection.

The functional annotations of the core genes listed in Table 1

show that they encompass multiple defense-related categories,

including signal perception, hormone signaling pathways,

transcriptional regulation, and metabolism. This suggests that

cotton’s resistance to V. dahliae is achieved through multi-layered

regulatory processes. The core genes include receptor protein genes

(e.g., GhRLP6, encoding receptor-like protein 6), resistance protein

genes (e.g., RPP2B-like disease resistance protein), calcium

signaling-related genes (e.g., GhCIPK6, encoding CBL-interacting

protein kinase 6; GhCBP60A, calmodulin-binding protein 60 A),

hormone signaling genes (e.g., GhGID1B, a gibberellin receptor),

transcription factor genes (e.g., GhSCL1, a member of the GRAS

family), as well as various genes involved in metabolism and protein

processing (such as UDP-glucuronate 4-epimerase 1, a chaperone

DnaJ11 protein, etc.). These genes cover the key layers of plant

defense-pathogen recognition, signal transduction, transcriptional

reprogramming, and execution of defense-implying that they

collectively contribute to cotton ’s resistance through

coordinated action.
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3.5 Co-expression network analysis of key
genes

To gain deeper insight into the key regulatory genes and the

defense pathways they participate in, we performed an integrated

analysis combining the DEGs, the genes in cluster C3, the WGCNA

module results, and the machine learning-selected core genes. We

constructed a co-expression gene network of these key genes

(Figure 4A). In this network, each node represents a key gene; node

size reflects the gene’s connectivity (degree) within the network, and

node color indicates the gene’s source category. Red nodes represent

core hub genes identified by all three machine learning methods

(LASSO, RF, SVM), while green nodes represent important resistance-

related genes that were prominently featured in DEGs and clustering

analysis (C3 cluster), as well as in the WGCNA analysis (genes from

the yellow, turquoise, and blue modules).

Network analysis revealed that these crucial genes represent

multiple general plant disease-resistance functional groups, and

notably include NBS-LRR class resistance proteins, receptor-like

kinases (RLKs, of which L-type lectin receptor kinases, L-LecRKs,

are included), transcription factors (such as WRKY33, WRKY40,

WRKY60, and NAC family members like NAC11), and signaling
FIGURE 3

WGCNA of cotton in response to V. dahliae infection. (A) Heatmap shows the correlation between each module and the time trait. The numbers in
the boxes indicate Pearson correlation coefficients, with the corresponding p-values shown in parentheses. The black and red modules exhibit
significant correlations with time. (B) Correlation analysis between module membership and gene significance for the 3 time-associated modules
(blue, turquoise, and yellow), with correlation coefficients of 0.6 (p < 1e−200), 0.57 (p < 1e−200), and 0.24 (p = 9.9e−74), respectively.
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protein kinases (e.g., PKs, Ser/Thr protein kinases, MPK18), among

other core regulators. Specifically, WRKY transcription factors

WRKY33, WRKY40, and WRKY60 have high centrality within

the network, and it can be speculated that they play significant

regulatory functions in cotton infection response by directly

regulating many downstream gene expressions. Moreover, several

NBS-LRR genes, traditional plant R genes, occupy significant

network positions and suggest that effector-triggered immunity

(ETI) would be crucial to cotton Verticillium wilt resistance

response. The receptor-like kinases (RLKs) and L-LecRKs in the

network could be involved in activating initial defense response by

perceiving pathogen-associated molecular patterns (PAMPs).

To further identify biological processes involved in these pivotal

genes, we carried out GO enrichment analysis of this group of genes

(Figure 4B). The analysis revealed that these pivotal genes are

enriched predominantly in significant terms like ‘response to

stimulus ’ , ‘response to oxygen-containing compound ’ ,

‘carbohydrate metabolic process’, ‘response to biotic stimulus’,

‘cell wall organization or biogenesis’, and ‘defense response to

other organism’. The enrichment of ‘defense response’ and ‘cell

wall organization or biogenesis’ suggests that at mid-to-late

infection stages of cotton resistance, the plant presumably

organizes its cell wall structure and controls deposition of cell
Frontiers in Plant Science 08
wall compounds to physically block spread of the pathogen and

at the same time to synthesize and secrete antimicrobial secondary

metabolites to defend chemically.
3.6 qRT-PCR validation of key genes

To verify the reliability of the expression patterns for key genes

observed in the transcriptome data, we selected 10 key genes for

qRT-PCR analysis. These genes included a representative set of

different functional categories: a receptor gene (GhRLP6), a kinase

gene (GhCIPK6), a resistance protein gene (GhRPP2B-like), a

transcription factor gene (GhSCL1), and several enzyme genes

(GhPK1 encoding pyruvate kinase 1, GhF3’H encoding flavonoid

3’-monooxygenase, etc.). The analysis showed that the expression

changes of these genes measured by qRT-PCR were highly

consistent with the RNA-seq data (Figure 5A). For example, the

expression of GhRLP6 in roots was about 5-fold higher at 12 h

compared to 0 h, continued to rise at 24 h, and peaked at 48 h. The

corresponding RNA-seq results showed log2 fold changes of 2.3, 3.1,

and 3.6 at those time points, which closely matched the qRT-PCR

quantification. Similarly, genes such as GhCIPK6 and GhCBP60A

showed strong induction in roots and relatively lower changes in
TABLE 2 LASSO-RF-SVM hub genes and their WGCNA network modules in cotton.

Gene ID Function LASSO RF SVM
Models
Selected

Module
in WGCNA

GhChrA05G3082.1 Unknown 26 8 8 LASSO, RF, SVM yellow

GhChrA01G0490.1 Receptor-like protein 6 16 4 21 LASSO, RF, SVM turquoise

GhChrD11G1349.1 Gibberellin receptor GID1B 2 1 37 LASSO, RF, SVM yellow

GhChrD11G3762.1 disease resistance protein RPP2B-like 0 5 34 RF, SVM turquoise

GhChrD04G1036.1 UDP-glucuronate 4-epimerase 1 30 1 0 LASSO, RF turquoise

GhChrA04G0025.1 chaperone protein dnaJ 11 10 7 13 LASSO, RF, SVM turquoise

GhChrD05G0556.1 CBL-interacting kinase 6 1 1 28 LASSO, RF, SVM yellow

GhChrA09G0965.1 Unknown 2 5 22 LASSO, RF, SVM /

GhChrA12G3377.1 Calmodulin-binding protein 60 A 2 1 23 LASSO, RF, SVM turquoise

GhChrA09G0007.1 Unknown 9 4 13 LASSO, RF, SVM turquoise

GhChrA10G2543.1 Pyruvate kinase 1 15 6 4 LASSO, RF, SVM green

GhChrA03G1605.1 Unknown 17 3 5 LASSO, RF, SVM black

GhChrA05G0662.1 Coatomer subunit beta-1 2 4 18 LASSO, RF, SVM blue

GhChrA02G0724.1 Scarecrow-like protein 1 17 3 3 LASSO, RF, SVM brown

GhChrD05G1517.1 E3 ubiquitin-protein ligase RSL1 0 0 21 SVM turquoise

GhChrD03G2069.1 Regulator of nonsense transcripts 1 12 8 0 LASSO, RF /

GhChrD02G2071.1 Unknown 1 6 13 LASSO, RF, SVM turquoise

GhChrD05G0070.1 xyloglucan endotransglucosylase/hydrolase protein 22 18 2 0 LASSO, RF turquoise

GhChrA03G0198.1 flavonoid 3’-monooxygenase 7 1 11 LASSO, RF, SVM blue

GhChrA11G3574.1 Unknown 1 8 10 LASSO, RF, SVM /
frontiersin.org

https://doi.org/10.3389/fpls.2025.1621604
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lei et al. 10.3389/fpls.2025.1621604
leaves, and these patterns were well validated by qRT-PCR. To

quantitatively assess the consistency between the two methods, we

performed a correlation analysis of the expression values for all the

validated genes across different times and tissues (Figure 5B). The

results showed a significant positive correlation between the relative

expression levels measured by qRT-PCR and the TPM changes

from RNA-seq (Pearson R² = 0.83, p < 2.2×10−16), indicating that

the transcriptome data are highly reliable.
4 Discussion

In this study, a time-course transcriptome analysis,

comprehensively revealed the dynamic defense response

characteristics of cotton under V. dahliae infection. The results

indicate that roots and leaves play different roles and operate on

different timelines in the resistance response. Roots, as the frontline

of pathogen entry, quickly detect the pathogen and activate a large

number of defense-related genes at the early stage of infection,

whereas the leaves mainly initiate defense responses at later stages

upon receiving systemic signals. This pattern is consistent with the

concept of local immunity and systemic acquired resistance (SAR)

in plants (Wang et al., 2025). At 12 h post-inoculation, cotton roots

already show a significant transcriptional response (5,128

upregulated genes, 3,757 downregulated genes), which is

markedly stronger than the response in leaves at the same time

(2,761 upregulated, 765 downregulated genes, Figure 1B). Such

tissue-specific differences in early response are also observed in

other plants like tomato and Arabidopsis during early infection by

Verticillium spp., where roots mount a faster and more intense

initial immune response than leaves (Buhtz et al., 2015; Rich-Griffin

et al., 2020). This is likely related to the roots’ direct role in sensing

the pathogen and blocking its further invasion into the plant.

At 12 h after V. dahliae inoculation, the roots’ DEGs were

significantly enriched in GO terms such as “RNA polymerase II
Frontiers in Plant Science 09
transcription factor activity”, “sequence-specific DNA binding”,

and “glycolytic process” (Figure 1C). This indicates that at the

early stage, cotton roots are rapidly activating transcription factors

and fundamental energy metabolism pathways to cope with the

stress of pathogen attack. Recent studies have shown that quick

activation of the glycolysis pathway not only provides sufficient

energy for immune signal transduction but may also directly

participate in defense signaling through metabolic intermediates

(Guo et al., 2022). Therefore, the dramatic changes in gene

expression at early time points likely represent a critical strategy

for cotton to rapidly establish the first line of defense.

Cotton resists pathogen invasion and dissemination by

fortifying its cell wall structure and enhancing the deposition of

lignin and flavonoid compounds. This is particularly visible in the

C3 and C5 gene clusters (5,113 and 7,023 genes, respectively),

representative of later-stage sustained response genes. The clusters

were highly enriched in processes such as MAPK kinase activity,

ubiquitination of proteins, and reinforcement of cell walls

(Figure 2). It is hypothesized that at mid-to-late infection stages,

cotton is thought to continuously amplify defense signals by MAPK

cascades and modulate sustained transcription of downstream

defense genes to fortify the cell wall and stimulate secondary

metabolism (Mi et al., 2024). The MAPK signaling pathway has

been identified as an effective pathway in Verticillium infection

responses in plants and is capable of modulating transcriptional

activity of a series of resistance-related genes and increasing the

sustained resistance of plants to the infection (Mi et al., 2024; Zhu

et al., 2022). Previous studies have indicated that genetic

enhancement of lignin accumulation in cotton can effectively

increase resistance to Verticillium wilt (Hu et al., 2021; Liu et al.,

2024; Xiong et al., 2021). Concurrently, naphthoquinones and

flavonoids are significant antimicrobial compounds in cotton

(Long et al., 2023; Zu et al., 2023). Flavonoid 3’-monooxygenase,

as a pivotal enzyme in secondary metabolism, can potentially

inhibit growth and invasion of hyphae of pathogens and spread
FIGURE 4

Regulatory network and GO enrichment analysis of key module genes in cotton roots in response to V. dahliae infection. (A) Gene regulatory
network of hub genes within key co-expression modules. Each node represents a gene, with node size indicating its connectivity in the network.
Node colors denote gene selection sources: red indicates key genes identified by machine learning, and green marks genes jointly identified by
DEGs, Cluster C3 from expression pattern analysis, and yellow, turquoise, and blue modules from WGCNA. Key transcription factors, receptor-like
kinases, and other regulators are labeled. (B) GO enrichment analysis of genes from the key modules. The bar chart shows the number of genes
enriched in each biological process term, with color gradients indicating FDR values.
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by catalyzing synthesis of certain antimicrobial flavonoids and

concurrently mitigate oxidative damage due to infection at the

same time. The enzyme has been extensively reported to increase

resistance of plants to several kinds of pathogens (Wang et al.,

2021). Therefore, accumulation of lignin and flavonoid-like

compounds seems to be an integral feature of subsequent-

stage defence.

With WGCNA, we determined 2 significant modules significantly

associated with infection process: the blue module (7,326 genes) and

turquoise module (9,443 genes), both of them strongly positively

correlated with infection time (Figure 3). Both modules were

enriched with many receptor-like kinases, calcium-signaling-related

genes, and disease resistance protein genes. This indicates that at mid-

to-late infection stages of the pathogen, cotton probably reinforces its

resistance by integrating multiple hierarchies of defense signaling

pathways. Receptor-like proteins would receive firstly pathogen

signal, then initiate activation of calcium signaling pathways, and

these, by regulators like GhCIPK6 and GhCBP60A, further amplify

and perpetuate downstream defense gene expressions. Integrating the
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significant genes determined by machine learning (Table 1), we further

identified the molecular players that likely function as chief

components in resistance, such as receptor protein GhRLP6,

resistance protein GhRPP2B-like, and calcium-signaling components

GhCIPK6 and GhCBP60A, and flavonoid 3’-monooxygenase as a

metabolic enzyme (Kumari et al., 2022; Vishwakarma et al., 2025).

We surmised that GhRLP6 as a PR (pattern recognition receptor)

sensor is likely to detect pathogen-associated molecular patterns

(PAMPs) in cotton roots, as in Arabidopsis some of the RLPs

stimulate plasma membrane immune complexes and stimulate

broad-spectrum resistance (Zhang et al., 2025a). The GhRPP2B-like

gene falls in the traditional NB-LRR group of R genes; it would increase

pathogen effector recognition by mediating ETI (effector-triggered

immunity) and induce hypersensitive response (HR) cell death and

restrict pathogen spread (Chicowski et al., 2024). Also, Arabidopsis and

rice plants have revealed that calcium-sensing molecules GhCIPK6 and

GhCBP60A induce wide-spectrum disease resistance by maintaining

calcium ion flow and downstream transcriptional reprogramming, and

it’s probable that they also play significant parts in cotton Verticillium
FIGURE 5

Expression patterns of key genes validated by qRT-PCR. (A) Log2 fold changes of 10 key genes at 12 h, 24 h, and 48 h in leaf and root tissues,
relative to 0 h. Blue bars represent qPCR results, and orange bars represent RNA-seq data, with error bars indicating standard error. (B) Correlation
analysis between qRT-PCR and RNA-seq results. Different shapes represent different time points, and different colors represent tissue types. The red
regression line indicates a strong positive correlation between the two methods (R² = 0.83, p < 2.2e−16).
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wilt resistance (Vishwakarma et al., 2025; Yu et al., 2025). We speculate

thatGhRLP6, as a pattern recognition receptor (PRR), is responsible for

sensing pathogen-associated molecular patterns (PAMPs) in cotton

roots, similar to how in Arabidopsis certain RLPs activate plasma

membrane immune complexes and induce broad-spectrum resistance

(Zhang et al., 2025a). The RPP2B-like gene belongs to the classic NB-

LRR class of R genes; it may enhance recognition of pathogen effectors

by mediating effector-triggered immunity (ETI) and trigger

hypersensitive response (HR) cell death, thereby limiting pathogen

spread (Chicowski et al., 2024). In addition, the calcium-signaling

molecules CIPK6 and CBP60A have been shown in Arabidopsis and

rice to promote broad-spectrum disease resistance by regulating

calcium ion flux and downstream transcriptional reprogramming,

suggesting they likely play important roles in cotton’s Verticillium

wilt resistance as well (Vishwakarma et al., 2025; Yu et al., 2025).
5 Conclusion

In this study, we systematically characterized the dynamic

transcriptional responses and molecular resistance mechanisms of G.

hirsutum to V. dahliae infection. Our results demonstrate that roots

serve as the primary site of early immune activation, rapidly initiating

PAMP-triggered signaling and transcriptional reprogramming,

highlighting a distinct spatial-temporal defense pattern. Through

differential expression analysis, co-expression network construction,

and machine learning-based screening, we identified key defense genes

involving receptor-mediated pathogen recognition, calcium and

hormone signaling, transcriptional regulation, and secondary

metabolism. A number of pivotal genes, such as GhRLP6, GhCIPK6,

GhCBP60A, GhSCL1, and GhF3’H, were identified as primary

regulators of G. hirsutum resistance. The results show that cotton

Verticillium wilt resistance is controlled by complicated regulatory

networks and multi-level defense mechanisms. Our research not only

sheds light on the novel molecular mechanism of disease resistance in

cotton but provides useful gene resources for improving Verticillium

wilt resistance in cotton. Future efforts focusing on functional

validation of these candidate genes and elucidation of their

regulatory networks will further advance molecular breeding

strategies for developing resistant cotton cultivars, ensuring more

sustainable cotton production.
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SUPPLEMENTARY FIGURE 1

Soft-thresholding and Module Detection in Cotton Gene Co-expression

Network under V. dahliae Infection. (A) Soft-thresholding power

selection. The left panel shows the scale-free topology fit index as a
function of soft-thresholding power, used to determine an appropriate
Frontiers in Plant Science 12
weighting parameter; the right panel displays the mean connectivity

corresponding to each power, reflect ing the degree of gene

connectivity. (B) Hierarchical clustering dendrogram of gene co-
expression modules based on topological overlap, with different colors

representing distinct modules.
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