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Introduction: Accurate leaf area quantification is vital for early phenotyping in

small-seeded crops such as broccoli (Brassica oleracea var. italica), where dense,

overlapping, and irregular foliage makes traditional measurement

methods inefficient.

Methods: This study presents YOLOv11-AreaNet, a lightweight instance

segmentation model specifically designed for precise leaf area estimation in

small-seeded broccoli seedlings. The model incorporates an EfficientNetV2

backbone, Focal Modulation, C2PSA-iRMB attention, LDConv, and CCFM

modules, optimizing spatial sensitivity, multiscale fusion, and computational

efficiency. A total of 6,192 germination-stage images were captured using a

custom phenotyping system, fromwhich 2,000 were selected and augmented to

form a 5,000-image training set. Post-processing techniques—including

morphological optimization, edge enhancement, and watershed segmentation

—were employed to refine leaf boundaries and compute geometric area.

Results: Compared to the original YOLOv11 model, YOLOv11-AreaNet achieves

comparable segmentation accuracy while significantly reducing the number of

parameters by 57.4% (from 2.84M to 1.21M), floating point operations by 25.9%

(from 10.4G to 7.7G), and model weight size by 51.7% (from 6.0MB to 2.9MB),

enabling real-time deployment on edge devices. Quantitative validation against

manual measurements showed high correlation (R² = 0.983), confirming the

system’s precision. Additionally, dynamic tracking revealed individual growth

differences, with relative leaf area growth rates reaching up to 26.6% during

early germination.
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Abbreviations: P, Precision; R, Recall; AP, Average

Average Precision; Params, parameters; FLOPS, floatin

second; IoU, Intersection over Union; YOLO, You On

Convolutional Context-aware Fusion Module; MAC, mem

Inverted Residual Mobile Block; EW-MHSA, Enhanced

Self-Attention mechanism; IRB, Inverted Residual Block

separable convolution; DCN, deformable convolution;

Network; PAN, Path Aggregation Network.
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Discussion: YOLOv11-AreaNet offers a robust and scalable solution for

automated leaf area measurement in small-seeded crops, supporting high-

throughput screening and intelligent crop monitoring under real-world

agricultural conditions.
KEYWORDS

broccoli seedlings, improved YOLOv11, lightweight model, leaf area segmentation,
plant trait quantification, smart agriculture
1 Introduction

With the accelerating shift toward digitalization and intelligent

systems in agriculture, the accurate and efficient extraction of

crucial phenotypic characteristics has emerged as a central issue

in plant science and precision farming. Notably, leaf area represents

a major physiological parameter, directly impacting processes like

photosynthesis, transpiration, biomass development, and final crop

yield (Richards, 2000; Kruger and Volin, 2006; Santesteban and

Royo, 2006).In research areas including genetic improvement,

targeted cultivation, and ecological adaptability studies,

technologies for automating leaf area assessment have shown

substantial practical relevance. As the demand for high-

throughput phenotyping intensifies, traditional manual or semi-

automatic approaches often fall short in meeting the speed and

precision expectations of both academic and real-world

agricultural applications.

Broccoli (Brassica oleracea var. italica), a widely cultivated and

nutritionally dense cruciferous crop, is recognized for its abundant

health-promoting compounds and bioactive properties, including

anti-cancer, antioxidant, and anti-inflammatory effects (Lugasi

et al., 1999; Yong and Kyung, 2021). As molecular breeding and

rapid selection technologies advance, broccoli germplasm studies

have transitioned into stages characterized by high-precision and

high-throughput phenotypic analysis. The research emphasis has

shifted from basic trait evaluation to early-stage quantification of

detailed phenotypic traits. Within this context, reliably and

efficiently extracting leaf area during the initial seedling phase has

become a major bottleneck, constraining both the throughput of

germplasm screening and the quality of breeding decisions.Broccoli

seeds are classified as small-seeded types, and during the seedling

stage, the leaves tend to exhibit characteristics such as small size,

high density, diverse shapes, and frequent occlusion or overlap, which
Precision; mAP, mean

g point operations per

ly Look Once; CCFM,

ory access cost; iRMB,

Window Multi-Head

; DW-Conv, depthwise
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greatly increases the difficulty of automatic leaf area measurement

(Heather and Sieczka, 1991). In practical applications, traditional

methods relying on manual measurement or leaf scanning suffer

from significant limitations in terms of efficiency, subjective error,

and operational complexity—especially when handling large-scale,

multi-temporal datasets (Kusuda, 1994). Therefore, the development

of a leaf area extraction technology suitable for small-seeded plants

that provides high precision, strong robustness, and automation

capability has become a key element in achieving agricultural

intelligence and high-throughput phenotyping.

In recent years, deep learning, especially convolutional neural

networks (CNNs), has shown great potential in the field of

agricultural image processing. YOLO (You Only Look Once)-

series models, known for their efficient end-to-end detection and

real-time performance, have been widely applied in tasks such as

pest and disease identification, fruit counting, and weed detection

(Deng et al., 2021; Washburn et al., 2021). For example, Deng et al.

proposed combining Faster R-CNN with Feature Pyramid

Networks (FPN) to automatically count rice spikelets, achieving

99.4% accuracy even under complex background (Deng et al.,

2021); Castro-Valdecantos et al. trained deep models using RGB

images to estimate maize leaf area index, significantly improving the

accuracy of agricultural remote sensing analysic (Castro-

Valdecantos et al., 2022); Hamila et al. leveraged multispectral

point clouds and 3D convolutional networks to spatially detect

and assess the severity of Fusarium head blight in wheat (Hamila

et al., 2024); and Masuda et al. combined CNNs with transcriptomic

data to identify and predict key physiological changes in

persimmon fruit softening (Masuda et al., 2023).While YOLO-

based object detection frameworks are widely adopted in

agricultural imaging, their standard outputs—bounding boxes and

classification tags—are inadequate for pixel-level segmentation of

intricate, flexible, and overlapping structures like plant foliage. This

shortfall becomes especially problematic when dealing with small,

densely clustered elements such as broccoli seedling leaves, where

accurately tracing leaf boundaries is vital for precise area estimation.

Further complicating these tasks are environmental variables

including changing illumination, complex backgrounds, and

frequent occlusions between adjacent leaves.

In efforts to enhance segmentation accuracy for visually

complex targets, instance segmentation has gained increasing
frontiersin.org
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traction as a promising solution. By integrating object detection

with semantic segmentation, this technique facilitates both

classification and pixel-level mask generation, offering deeper

interpretability in agricultural images (Yang et al., 2024). In

recent developments, YOLO architectures have been adapted to

perform instance segmentation, as seen in models like YOLOv5-seg

and YOLOv8-seg, which have found growing use in detecting

leaves, fruits, and disease regions. For instance, Kumar et al.

incorporated a Bi-FAPN module using YOLOv5 and DenseNet-

201 for early-stage rice disease recognition (Kumar et al., 2023);

Sampurno et al. implemented YOLOv8n-seg on robotic weeders,

yielding over 76% precision in natural field conditions (Sampurno

et al., 2024); Yuan et al. combined YOLOv8 with drone-captured

multispectral data to segment Chinese cabbage seedlings with a

mAP of 86.3% (Yuan et al., 2024); and Khan et al. enhanced

YOLOv8 with dilated convolution and GELU activations to

achieve 93.3% accuracy in orchard canopy segmentation (Khan

et al., 2024).Despite recent advances, many current instance

segmentation models continue to struggle with small, irregularly

shaped targets. Challenges such as excessive architectural

complexity, sluggish inference, and imprecise boundary extraction

persist (Chen et al., 2021). These limitations are especially

pronounced for crops like broccoli, where overlapping and

densely packed seedling leaves demand advanced edge and

contour learning. Additionally, the heavy parameter loads in

many existing models impede their deployment on edge devices

or in real-time field applications (Liu et al., 2025), where efficiency

and responsiveness are critical.

To address the above limitations, we developed YOLOv11-

AreaNet for segmenting broccoli seedling leaves. It uses

EfficientNetV2 as the backbone, with reduced width and depth

(0.25 and 0.5) to improve efficiency.A Focal Modulation layer is

embedded in the sixth stage to improve contextual awareness and

sensitivity to local features. For finer recognition of small structures,

we introduce the lightweight attention mechanism C2PSA_iRMB to

sharpen feature focus while preserving speed. Additionally, the

network’s original PANet and ASF modules are replaced by

CCFM (Context-aware Cross-scale Fusion Module), which

adaptively fuses multi-resolution features using a gated, multi-

branch configuration—striking a balance between semantic

abstraction and detail resolution. LDConv, a lightweight

deformable convolution, substitutes standard layers to further cut

computational load. Together, these optimizations enable accurate,

efficient, and robust instance segmentation in multi-target, multi-

time broccoli phenotyping tasks.

This research builds upon a custom-designed phenotyping

platform developed for seed germination studies, used to collect

and annotate broccoli seedling images across various growth stages.

The YOLOv11-AreaNet framework was then applied for high-

resolution instance segmentation, followed by downstream

processing and time-series leaf area analysis. Comparative

experiments revealed that our model significantly outperforms

classical YOLO variants and established segmentation methods in

terms of detection accuracy for small objects, boundary delineation,

segmentation robustness, and inference latency. The system
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supports autonomous monitoring of small-seeded plant

development under natural environments, providing valuable

tools for early-stage breeding, seedling health diagnostics, and

precision agricultural interventions. Additionally, this approach

holds potential for application in other small-seeded crop species

with similar phenotyping challenges.
2 Materials and methods

2.1 Experiment equipment

A full-time-sequence monitoring platform for crop growth

vitality was employed in this study, as illustrated in Figure 1. The

system integrates a seed germination chamber, an industrial image

capture module, a human–machine interaction interface, and real-

time status monitoring components, facilitating continuous

observation of plant phenotypic traits. The operational workflow

is detailed in Figure 1.

The germination chamber is equipped with independently

adjustable temperature and lighting controls, supporting

experimental conditions ranging from 5°C to 50°C. Illumination

is uniformly provided through a dedicated LED array. Multiple

custom-made culture trays (25 cm × 25 cm) can be placed

simultaneously within the chamber to enable parallel observation

of different experimental groups. These trays are fabricated using

3D printing technology, specifically designed to minimize acrylic

surface reflection.The image capture component includes a HIK

Vision industrial camera mounted on a horizontal rail, driven by a

stepper motor for precise linear motion. High-resolution images

(2592 × 2048 pixels) are captured dynamically and transmitted via

GigE to the host system. Users can fine-tune focal length, capture

intervals, and pre-cropping parameters through the software

interface. The PLC module automatically stores the acquired

images in a designated directory, where they undergo preprocessing

for dataset generation.This configuration supports uninterrupted

time-series image collection of the germination process, establishing

a robust foundation for automated analysis of seedling phenotype

dynamics using instance segmentation techniques.
2.2 Data collection and preprocessing

2.2.1 Data collection
To construct a growth rate model for leaf area in broccoli

seedlings, we selected 300 broccoli seeds with uniform size and

intact morphology, strictly screened according to appearance and

size standards to ensure data reliability and reproducibility. The

seeds were soaked in deionized water at 30°C for 6 hours to activate

cellular growth mechanisms and ensure optimal hydration. After

soaking, seeds that had settled to the bottom of the container were

collected and evenly laid on a moist towel, placed inside a

germination chamber, and subjected to 24 hours of priming

treatment in an incubator with constant temperature (28°C) and

continuous illumination to ensure optimal germination
frontiersin.org
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conditions.Following priming, 216 healthy and full seeds were

selected and arranged in a 6×6 pattern in each culture box. The

culture boxes were then placed in a 3×2 configuration inside a

constant temperature and constant light incubator, as shown in

Figure 2a, and seedling monitoring began for a period of 11 days.

The experimental environment parameters (temperature, humidity,
Frontiers in Plant Science 04
illumination) were strictly controlled to ensure growth stability.

Specific experimental parameters are listed in Table 1.

During the experiment, the plant seed germination

phenotyping system captured images every 15 minutes, recording

leaf area changes from germination to seedling stage for growth

model construction.
FIGURE 1

(a) Overall view of the full time-series crop growth monitoring system. (b) Continuous Time-series Crop Growth Vitality Monitoring System.
(c) human-computer interaction interface. (d) image acquisition setup. (e) real-time monitoring software.
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2.2.2 Data pre-processing
A total of 6,192 germination images were collected using the

plant seed germination phenotyping system. Since germination

phenomena were not obvious during the first 48 hours and leaves

had not yet emerged, images from this time period were excluded.
Frontiers in Plant Science 05
Subsequently, 2,000 images were selected from the remaining

dataset to construct the dataset for model training. Figure 2b

illustrates the germination and growth process of the broccoli

seedlings. Image annotation was performed using the eiseg

software, as shown in Figure 2c, treating all leaves as a single
FIGURE 2

(a) Seed preparation process, including soaking, selection, and arrangement. (b) Time-series images showing seedling growth progression. (c) Image
labeling of seeds. (d) Data augmentation techniques applied to seed images. (e) System workflow for time-series data collection, model training, and
area calculation.
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category labeled as “SEED.” After annotation, We applied a series of

data augmentation techniques to enhance leaf edge clarity, improve

recognition under complex backgrounds, and reduce overfitting, as

shown in Figure 2d. These augmentation techniques were not only

applied to increase the diversity of the dataset but were also carefully

selected to simulate typical visual disturbances encountered in real-

world agricultural environments. Specifically, exposure adjustments

emulate challenges caused by strong backlighting or localized

shadows; grayscale conversion and color perturbations mimic

color distortions and reduced saturation resulting from reflective

mulch, soil backgrounds, or uneven natural illumination; and noise

or blur effects correspond to sensor noise, motion blur, or defocus

that frequently occur during high-throughput field image

acquisition. Incorporating these perturbations during training

helps the model learn more robust feature representations and

enhances its generalization capability under practical deployment

scenarios. Ultimately, we obtained 5,000 images, which were

divided into training, validation, and test sets at a ratio of 7:2:1.

Figure 2e illustrates the overall workflow of this study, including
Frontiers in Plant Science 06
time-series data collection, image preprocessing, annotation, model

training, instance segmentation, and leaf area calculation.
2.3 YOLOv11 model optimization

With the great success achieved by YOLOv11 in the field of

computer vision, especially in object detection, it has become one of

the most accurate and fastest detection models currently available

(Jiang et al., 2022). However, in practical agricultural applications,

many devices are limited by computational capacity, requiring the

reduction of model complexity through optimization while

maintaining high accuracy, so that it can be deployed on

embedded systems or mobile platforms. Therefore, we conducted

multiple optimizations based on YOLOv11 to ensure the retention

of accuracy while successfully achieving model lightweighting.

We propose an improved YOLOv11-AreaNet model for leaf

area segmentation, based on YOLOv11 with added new

modules.The main improvements include the EfficientNetV2

backbone network, Focal Modulation, C2PSA-iRMB, LDConv,

and CCFM modules. The introduction of these modules not only

significantly improves the model’s processing efficiency but also

enhances its adaptability in complex backgrounds. Figure 3 shows

the overall architecture of the improved YOLOv11. With the

integration of these new modules, YOLOv11 not only successfully

achieves a lightweight design but also maintains segmentation

accuracy comparable to the original model, demonstrating its

unique advantages particularly in agricultural image segmentation

tasks and the specific improvements are as follows:

(1) To strengthen YOLOv11’s capability in detecting and

segmenting small-scale targets, this work replaces the default
TABLE 1 Experiment parameters.

Number of seeds per plate 36

Incubation temperature 28°C

Shooting interval 15min

Total number of images 6192

Image cropping resolution 1500×1500

Picture format JPG

The ratio of training, validation and prediction 7:2:1
FIGURE 3

Improved YOLOv11 segmentation model architecture.
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CSPDarknet backbone with EfficientNetV2. This architecture is

designed for efficiency and incorporates several enhancements,

including optimized structural design, faster training convergence,

progressive learning techniques, and adaptive regularization

strategies. Leveraging its compound scaling approach,

EfficientNetV2 allows simultaneous adjustment of depth, width,

and input resolution, effectively balancing performance and

computational cost. As a result, the model maintains strong

accuracy and throughput even under hardware or deployment

constraint (Tan and Le, 2021).

Specifically, EfficientNetV2 adopts the fused-MBConv module

in its early stages, which combines the advantages of standard

convolution and depthwise separable convolution. It reduces

memory use and improves local feature capture using small

expansion and 3×3 kernels (Zhang Y. et al., 2024)., and

significantly improving the ability to model contour and texture

features of small-sized targets such as seedling leaves.Regarding the

training paradigm, EfficientNetV2 adopts a progressive learning

strategy combined with adaptive regularization techniques. Initially,

the model is trained on smaller-sized inputs with mild

regularization; as training advances, both image resolution and

regularization intensity are incrementally increased. This staged

approach helps to manage training complexity effectively. The

mechanism has shown improved robustness and generalization

performance in detection and segmentation scenarios involving

intricate background conditions.
Frontiers in Plant Science 07
(2) To address the limitations of the original SPPF module—

specifically its reliance on fixed-size pooling kernels and its

inadequacy in modeling intricate spatial dependencies—we

incorporate the Focal Modulation module to enhance the

detection of small objects and extraction of fine-grained features

in visually complex environments. Grounded in attention

mechanisms, this module offers a more adaptive and expressive

framework for contextual representation, significantly improving

the model’s sensitivity to salient regions within the input image

(Yang et al., 2022).Focal Modulation replaces standard attention

with a more efficient way to capture context.The module introduces

a “focal contextualization” design, which stacks several layers of

depth-wise convolution to capture features across multiple spatial

scales—allowing the model to understand structural hierarchies

from localized patterns to global image context. It also integrates a

“gated aggregation mechanism” that selectively merges multi-scale

contextual information using learnable gates, amplifying

semantically important areas while suppressing extraneous

background conten (Liu et al., 2024). The fused context is then

injected back into the query path via “element-wise modulation,”

enabling position-aware, content-adaptive modulation of feature

responses and enhancing the semantic expressiveness of the

final outputs.

As illustrated in Figure 4a, Focal Modulation introduces key

improvements over conventional self-attention by streamlining the

processes of “Query–Key interaction” and “Query–Value
FIGURE 4

(a) Focal Modulation module for enhanced context modeling. (b) C2PSA_iRMB module with inverted residual blocks and self-attention. (c) LDConv
module for efficient shape modeling and edge detection.
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aggregation.” By eliminating high-order fully connected operations,

it enhances the module’s contextual awareness through spatially

adaptive convolution and gated fusion mechanisms. At the initial

stage, input features are processed by several convolutional layers to

extract progressively scaled contextual information. These features

are then aggregated and selectively weighted using a gating

mechanism to generate a modulation tensor. This modulator

subsequently performs point-wise interactions with the query

features, resulting in content-aware feature enhancement. The

design effectively decouples contextual encoding from feature

modulation, allowing the model to remain lightweight while

achieving robust representation capacity for handling intricate

image patterns.

(3) The original C2PSA module in YOLOv11 captures cross-

level contextual information by embedding self-attention into the

CSP structure, but it mainly focuses on spatial information and

tends to overlook fine-grained differences between channels.

Therefore, we adopted the C2PSA_iRMB module, which

integrates the Inverted Residual Mobile Block (iRMB) and the

Enhanced Window Multi-Head Self-Attention mechanism (EW-

MHSA) in the cross-stage connections, further enhancing the

model’s contextual modeling ability and fine-grained feature

recognition capability under complex backgrounds, while

balancing the efficiency of local information compression and

global semantic dependency modeling (Zhang et al., 2023).

The central concept behind the iRMB (Inverted Residual

Mobile Block) is to incorporate Transformer-inspired dynamic

modeling into compact CNN architectures, enabling efficient

processing in dense prediction tasks. Structurally, it extends the

design philosophy of the Inverted Residual Block (IRB) by

integrating 3×3 depthwise separable convolution (DW-Conv),

1×1 convolutional layers for channel compression and expansion,

and attention modules such as ACmix or custom Attn Mat.

Specifically, the 1×1 convolutions regulate the dimensionality of

feature channels, DW-Conv layers extract spatial positional

features, and the attention components enhance global semantic

association across disparate regions of the feature map. This design

effectively reconciles the needs for localized structural perception

and long-range context modeling.Additionally, the iRMB

architecture incorporates the Meta-Mobile Block, which achieves

structural variability at the module level by combining diverse

expansion ratios with learnable operations. This approach

enhances the network’s adaptability and generalization across

image inputs with varying complexity. As illustrated in Figure 4b,

the iRMB follows a “bottleneck convolution nested with self-

attention” scheme: initially, a 1×1 convolution reduces the

channel dimension, followed by a 3×3 depthwise separable

convolution to capture spatial characteristics. A lightweight

attention mechanism is then applied for global context extraction.

Finally, another 1×1 convolution restores the channel depth and

establishes a residual connection with the input. This layered

configuration improves computational efficiency while

strengthening inter-feature interactions, making the design

particularly advantageous for complex visual tasks involving high-

density small objects and intricate backgrounds.
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(4) Traditional convolutional operations are limited in their

ability to adapt to spatial variations in object shape (Butkiewicz,

2010). Traditional DCN improves flexibility but becomes costly as

kernel size increases (Dong et al., 2025). To address these issues, we

propose the LDConv module, which improves the model’s

capability to represent irregular object geometries and enhances

boundary localization using a more computationally efficient linear

offset strategy. Architecturally, LDConv incorporates a coordinate

generation mechanism coupled with linear offset computation,

allowing the sampling process to adaptively deform while

maintaining a controlled parameter budget. This design

supports better runtime performance and structural adaptability

(Zhang X. et al., 2024). Specifically, LDConv begins by generating

a regular set of initial sampling points derived from the kernel size

using a coordinate generation procedure. It then applies learnable

linear offsets to refine these positions, forming a dynamic

sampling grid that conforms to the geometric contours of the

target. This allows for more accurate and adaptable convolution

operations across localized areas of the input feature map, while

ensuring linear scalability in terms of both parameter count and

computational burden.

As depicted in Figure 4c, LDConv operates through three main

stages: generation of base sampling coordinates, prediction of offset

values, and convolution-based resampling. Initially, a lightweight

convolution is applied to derive offset parameters from the input

features. These are combined with the predefined sampling

locations to determine the actual sampling points, which are then

used to extract feature information via standard convolution. This

flexible architecture enables real-time adaptation to diverse object

shapes and facilitates multi-scale feature refinement. As a result, it is

particularly effective in handling fuzzy contours, densely packed

small objects, and structurally intricate regions. The final feature

maps, post-normalization and activation, can be directly fed into

the main backbone for further processing.

(5) To enhance feature fusion in scenarios involving multi-scale

objects, we integrate a lightweight context-aware fusion component

—CCFM (Convolutional Context-aware Fusion Module)—into the

Neck of YOLOv11, replacing the original FPN (Feature Pyramid

Network) and PAN (Path Aggregation Network). Traditional FPN

and PAN architectures rely on fixed hierarchies for inter-scale

information exchange. Although they enable multi-scale

processing to some extent, their static topologies often lead to

semantic inconsistencies between shallow and deep layers, and

excessive feature aggregation—especially in complex scenes with

clutter, occlusion, or dramatic scale variation (Wu et al., 2023).

These issues hinder the precise modeling of small objects and edge

features.To overcome these limitations, CCFM employs a multi-

branch context modeling scheme coupled with a gated fusion

strategy, enabling the adaptive weighting of features across scales.

Its architecture allows information flow strength to be modulated

dynamically based on semantic content during inter-level fusion.

This alleviates the fine-detail suppression commonly seen in

traditional pyramid networks when facing visually complex

environments (Zhao et al., 2024). More specifically, CCFM first

encodes features from various scales in a unified manner, applies a
frontiersin.org
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context-sensitive gating unit to model the relative importance of

each, and produces a single fused output with enhanced

discriminative power. While maintaining computational

efficiency, this design significantly improves the model’s

responsiveness to occlusions, overlaps, and background clutter.
2.4 Evaluation metrics for broccoli seedling
leaf area features

2.4.1 Model training configuration
In this experiment, the operating system used was Windows 11,

with hardware configuration including an Intel Core i9-13900K

processor and an NVIDIA GeForce RTX 4090 graphics card. The

development environment was Python 3.10.16, with the deep

learning framework PyTorch 2.6.0 and CUDA version 12.4.

Detailed training parameters of the model are listed in Table 2.

The model’s performance in segmenting the broccoli leaf area

was evaluated through instance segmentation analysis. Precision

(P), Recall (R), and mean Average Precision (mAP) served as the

metrics to assess the model’s accuracy. Meanwhile, model

complexity was measured using the number of parameters

(Params), floating point operations per second (FLOPs), and

weight size (Weight Size).During model training, the input image

size was set to 640×640 pixels, and the total number of training

iterations was 100. To ensure fairness and comparability of the

ablation and comparative experiments, no pre-trained weights were

used in any of the experiments.

2.4.2 Model evaluation
We used instance segmentation to evaluate model performance

in broccoli leaf area segmentation.This study mainly adopted mean

Average Precision (mAP) and model complexity metrics to assess

the performance of the proposed model. mAP50 refers to the

average precision when the Intersection over Union (IoU)

threshold is set to 0.5, which reflects the model’s detection

capability under moderate overlap conditions. mAP50–95 is

calculated by averaging the AP values under IoU thresholds

ranging from 0.5 to 0.95 in steps of 0.05, thus providing a more

comprehensive and stringent evaluation of the model’s

detection performance.
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We adopt two standard metrics to assess computational

complexity: FLOPs and Parameters. FLOPs (Floating Point

Operations) quantify the total number of arithmetic operations

performed during a single forward propagation through the

model, while Parameters denote the overall count of trainable

weights and biases within the architecture. These indicators

jointly reflect the model’s computational load and structural

efficiency, and are particularly informative in deployment

contexts where hardware resources are constrained. The precise

formulas [Equations 1–6] used to compute these metrics are

outlined below.

P =
TP

TP + FP
  (1)

R =
TP

TP + FN
(2)

AP =
Z 

0
1P(R), dR   (3)

mAP =
1
Co

C
i=1APi (4)

mAP =
1
Co

C
i=1APi (5)

mAP50 : 95 =
1
10co


i=1co

j=110AP
IoU=0:5+0:05(j−1)
i (6)

Among them, TP, FP, and FN represent true positives, false

positives, and false negatives, respectively, and C denotes the total

number of categories. To evaluate the structural complexity and

lightweight characteristics of the model, this study introduces two

computational metrics: Parameters and FLOPs. Parameters refer to

the total number of trainable weights and biases in the network, and

the calculation formula [Equation 7] is as follows:

Params = Cin � K2 � Cout (7)

Where Cin is the number of input channels, Cout is the number

of output channels, and K is the kernel size. FLOPs (Floating Point

Operations) refer to the total number of floating point operations

required for the model to complete a single forward pass, and are

primarily used to evaluate the computational complexity of the

model. The calculation formula [Equation 8] is as follows:

FLOPs = 2�H �W � (Cin · K
2 + 1) · Cout (8)

Here, H and W denote the height and width of the output

feature map, respectively, and the constant term “1” accounts for

the bias included in each convolutional kernel.

In summary, the mean Average Precision (mAP) serves as a key

metric for evaluating detection accuracy, while FLOPs and

Parameters are used to quantify computational demands and

memory consumption. Together, these metrics provide a

comprehensive view of the model’s practical deployability.
TABLE 2 Model training parameters.

Parameters name Parameters value

Epoch 100

Batch size 16

Image size 640×640

Optimizer SGD

Learning Rate 0.01

Momentum 0.937

Weight Decay 5×10-4
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2.5 Comparative test

To thoroughly assess the instance segmentation capabilities of

the proposed YOLOv11-AreaNet, we conducted a series of

controlled comparative experiments against several widely used

object detection and segmentation frameworks, namely YOLOv5-

seg, YOLOv8-seg, and the baseline YOLOv11-seg. In addition, we

included three commonly used but computationally heavy instance

segmentation models—Mask R-CNN (R50-FPN) (He et al., 2020),

SOLOv2 (R50-FPN) (Wang et al., 2020), and Mask2Former (R50-

FPN) (Cheng et al., 2022)—to broaden the scope of comparison. All

models were trained and tested under the same settings to ensure

fairness. As illustrated in Figure 5a, the performance of these seven

models was analyzed across seven key metrics: parameter count

(Params), computational complexity (FLOPs), model file size

(Weight Size), detection accuracy (mAPbox50, mAPbox50–95),

and segmentation accuracy (mAPmask50, mAPmask50–95).

Despite their use in many segmentation tasks, Mask R-CNN,

SOLOv2, and Mask2Former show no clear advantage in

accuracy while exhibiting extremely large model sizes and

computational burdens.

To better highlight the performance of lightweight models, we

additionally present Figure 5b, which focuses solely on YOLOv5-

seg, YOLOv8-seg, YOLOv11-seg, and the YOLOv11-AreaNet. This

zoomed-in comparison provides a clearer view of the trade-off

between accuracy and model efficiency within the YOLO family.

According to the experimental results, YOLOv11-AreaNet

shows comparable or even slightly improved accuracy compared
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to YOLOv11-seg (with mAPbox50–95 increased to 92.0% and

mAPmask50–95 reaching 69.3%), while its number of parameters

is reduced from 2.84M in the original model to 1.21M, FLOPs

decrease from 10.4G to 7.7G, and the model weight size is

significantly compressed to only 2.9MB, representing reductions

of 57.4%, 25.9%, and 51.7%, respectively. This shows the model uses

fewer resources without losing accuracy, making it easier to deploy.

Although YOLOv5-seg and YOLOv8-seg exhibit certain advantages

in segmentation accuracy, their models are large and inference

efficiency is low. In particular, YOLOv8-seg has FLOPs reaching

10.9G and model weight size up to 6.2MB, posing certain challenges

for deployment on edge devices. In contrast, YOLOv11-AreaNet

achieves comparable accuracy to YOLOv8-seg while significantly

compressing model complexity, showing stronger lightweight

capability and deployment flexibility.

In summary, YOLOv11-AreaNet demonstrates a well-

optimized trade-off between precision and computational

efficiency, rendering it particularly suitable for deployment on

agricultural terminal devices with limited resources. Its strong

engineering applicability and deployment readiness make it a

compelling solution for instance segmentation tasks involving

broccoli seedling leaves.
2.6 Ablation test

To assess the individual contributions of each proposed

component to overall model performance, we conducted a
FIGURE 5

Comprehensive comparison of model performance.(a) Overall comparison of segmentation and detection performance among seven models,
including YOLO-based and transformer-based methods. (b) A zoomed-in view focusing on four lightweight YOLO variants (YOLOv5-seg, YOLOv8-
seg, YOLOv11-seg, and YOLOv11-AreaNet) for clearer comparison in model complexity and precision.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1622713
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2025.1622713
structured ablation study. Starting with the original YOLOv11-seg

as the baseline, we incrementally incorporated the EfficientNetV2

backbone, the Focal Modulation module for contextual awareness,

the iRMB lightweight attention mechanism, the CCFM structure for

cross-scale fusion, and the LDConv deformable convolution

module—ultimately assembling the complete YOLOv11-AreaNet

architecture. In each experimental iteration, only one architectural

modification was applied, while all training configurations and

hyperparameters were held constant to ensure fair and valid

comparisons. The results, including segmentation accuracy,

parameter count, computational complexity (FLOPs), and model

weight size, are visualized in Figure 6.

According to the experimental results, in the first stage, after

introducing EfficientNetV2 (YOLOv11-eNet), the number of

parameters decreased from 2.84M to 2.34M, FLOPs dropped to

9.2G, and the model weight size was reduced to 5.1MB, while the

accuracy remained stable, with mAPbox50–95 and mAPmask50–95

reaching 91.6% and 69.5%, respectively. Further replacing the

original backbone with a compound scaling structure (YOLOv8-

efNet and YOLOv11-efiNet) reduced the parameters and FLOPs to

2.01M and 8.8G, respectively, while detection and segmentation

accuracy remained stable at 91.9% and 69.1%, indicating that the

introduction of EfficientNetV2 effectively compressed the model

weight size without affecting accuracy.Subsequently, after adding
Frontiers in Plant Science 11
the Focal Modulation and iRMB modules (YOLOv11-eficNet), the

computational cost further decreased to 7.8G, the parameters were

compressed to 1.23M, and the weight size was only 2.9MB. The

model still maintained 91.9% mAPbox50–95 and 69.1%

mAPmask50-95, indicating that Focal Modulation and iRMB can

enhance contextual modeling and local attention capabilities under

low computational cost, improving the model’s recognition ability

for small targets and complex backgrounds.Finally, the fully

constructed YOLOv11-AreaNet integrated all five structural

improvements, with the number of parameters further reduced to

1.21M (approximately 55.4% reduction), FLOPs reduced to 7.7G

(approximately 48.6% reduction), and the model weight size

compressed to 2.9MB (approximately 54.7% reduction).

Meanwhile, mAPbox50–95 and mAPmask50–95 increased to

92.0% and 69.3%, respectively, achieving the dual objective of

“lightweight design” and “high precision.”

In addition to numerical comparisons, we further analyzed the

interaction and effectiveness of each module. We found that

EfficientNetV2 provides a strong foundation by reducing model

size while maintaining accuracy, which is further enhanced by

Focal Modulation’s ability to capture contextual dependencies.

When used together, these two modules exhibit a synergistic

effect, resulting in greater gains than using either module

individually. However, as more modules such as iRMB,
FIGURE 6

Ablation study results of the model.
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LDConv, and CCFM are added, the performance improvement

tends to plateau, indicating a trend of diminishing returns.

Moreover, we observed that certain modules show stronger

advantages under specific conditions: LDConv contributes more

under scenarios with overlapping leaves due to its deformable
Frontiers in Plant Science 12
edge perception, while Focal Modulation is more effective under

complex illumination or cluttered backgrounds. These

observations provide deeper insight into how each module

contributes not only individually but also collectively to the

overall segmentation performance.
FIGURE 7

Eigen CAM heatmap comparison results.
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3 Segmentation results and leaf area
estimation

3.1 Visualization-Based comparative
analysis

In order to further evaluate the effectiveness and focus

capability of the improved model in leaf instance segmentation,

we utilized the EigenCAM technique to visualize the model’s

output. Through the heatmaps, we can intuitively observe the

model’s response intensity to the target regions and thereby

determine whether its attention distribution is more reasonable.

Figure 7 shows the visualization results of the heatmap comparison.

Each group displays three columns of images: the original image,

the heatmap of the YOLOv11 model, and the heatmap of the

improved YOLOv11-AreaNet model.

From the comparison results of the heatmaps, it can be

observed that the original model exhibits problems such as

scattered activation regions, blurred edges, and insufficient

attention to small leaves in many samples. Some areas even show

misactivation or missed detection of targets. In contrast, YOLOv11-

AreaNet presents more focused and reasonably covered response

regions in most images. Especially at the edges and overlapping

regions of broccoli seedling leaves, the CAM response is more

concentrated and the object boundaries are clearer, which effectively
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improves the model’s recognition robustness under complex

backgrounds. This phenomenon indicates that the introduced

Focal Modulation, iRMB attention mechanism, and LDConv edge

modeling capability enhance the model’s ability to capture local

features and perceive contextual information, making the model

structurally more sensitive to targets and more complete

in representation.

In addition, to quantify the differences in activation responses

between different models, we calculated the average activation

values across 12 images under four CAM methods and plotted

bar charts as shown in Figure 8. According to the statistical results,

regardless of whether Grad CAM, Grad CAM++, Layer CAM, or

Eigen CAM was used, YOLOv11-AreaNet had stronger activation

than the original model, especially in Grad-CAM++ and

EigenCAM.This indicates that in the segmentation task, the

improved model not only covers the key target regions more

effectively but also differentiates the target from the background

with greater accuracy, thereby enhancing the overall completeness

of the semantic understanding.

Based on the comprehensive visualization analysis, it is clear

that, through structural optimization, YOLOv11-AreaNet not only

achieves a lightweight design but also significantly enhances the

model’s focus on complex structures and fine-grained leaves, as well

as its spatial resolution capability. This further supports the

effectiveness and interpretability of the proposed improvements.
FIGURE 8

Comparison of activation responses across four CAM methods.
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3.2 Post-processing of leaf segmentation
results

3.2.1 Leaf area segmentation processing
To accurately extract valid contours from the segmentation masks

of broccoli leaves output by the model and to calculate the leaf area, a

series of image processing techniques were introduced in this study as

post-processing steps based on the segmentation results. These include

morphological operations, binarization, edge detection, region

segmentation, geometric measurement, and visual mapping. The

specific methods and formulas are described as follows:

(1)To eliminate segmentation noise and edge discontinuities,

this study adopts morphological opening and closing operations

(Sun et al., 2007). Let the binary image be A and the structuring

element be B, then the definitions of morphological opening and

closing operations are given in (Equations 9-12):

Opening (erosion followed by dilation) is defined as:

A ∘B = (A⊖B)⊕ B (9)

Closing (dilation followed by erosion) is defined as:

A · B = (A⊕ B)⊖B (10)

Where the erosion and dilation operations are defined as

follows:

(A⊖B)(x, y) = m in
(u,v)∈B

A(x + u, y + v) (11)

(A⊕ B)(x, y) = max
(u,v)∈B

A(x + u, y + v) (12)

where: ⊖ denotes the erosion operation ⊕ denotes the

dilation operation

These operations help smooth object contours, eliminate small

artifacts, and bridge narrow gaps in the segmented mask.

(2) To achieve automatic binarization of images, the Otsu

adaptive thresholding method is introduced. Its objective is to

maximize the between-class variance s_B²(t), calculated as shown

in Equations 13-16 (Goh et al., 2018):

s 2
B(t) = w0(t)w1(t)(m0(t) − m1(t))

2 (13)

Where the class weights and means are defined as follows:

w0(t) =ot
i=0p(i),w1(t) =oL

i=t+1p(i) (14)

m0(t) =
ot

i=0ip(i)

w0(t)
,m1(t) =

oL
i=t+1ip(i)

w1(t)
(15)

The ultimate goal is to find the optimal threshold:

t* = argmax
t

s 2
B(t) (16)

(3) To extract the leaf contour edges, the Canny algorithm is

adopted, which includes gradient calculation, non-maximum

suppression, and double threshold connection (Ding and Goshtasby,

2001). The gradient is defined as shown in (Equations 17-18):
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Gx(x, y) =
∂ I(x, y)
∂ x

,Gy(x, y) =
∂ I(x, y)
∂ y

(17)

           G(x, y) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x(x, y) + G2

y(x, y)
q

, q(x, y)

= arctan2(Gy(x, y),Gx(x, y)) (18)

(4) To further refine the segmentation of overlapping leaf

regions, a distance-transform-based watershed algorithm is

introduced (Tang and Wang, 2006). Its core steps include

distance transform and watershed segmentation as defined in

(Equations 19-20):

Distance Transform:

D(x, y) = m in
(u,v)∈B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − u)2 + (y − v)2

q
(19)

Watershed Marking and Segmentation:

M(x, y) = watershed(D(x, y)) (20)

(5) Based on the extracted contours, the pixel-level leaf area and

perimeter are as shown in (Equations 21-25):

Pixel Area:

A =
Z 

W
1dxdy   (21)

Pixel Perimeter:

P =
Z 

∂W
1ds   (22)

By applying a pixel-to-physical unit conversion factor, the

actual area and perimeter can be obtained:

Areal = Apixels � Dx � Dy, Preal = Ppixels � Dx (23)

To ensure that the segmentation results carry a rigorous

physical interpretation during the calculation of leaf area and

perimeter, all images in this study were uniformly cropped to a

resolution of 1500 × 1500 pixels. This region corresponds precisely

to the full field of view of the cultivation tray, covering an area of 25

cm × 25 cm. Based on this, the pixel-to-centimeter conversion

factors Dx and Dy were defined to represent the actual physical

length corresponding to a single pixel in the horizontal and vertical

directions, respectively. The formulas are as follows:

Dx =
Lx
w

,Dy =
Ly
h

(24)

Where Lx= Ly= 25cm, w = h = 1500pixels。Substituting the

values yields:

Dx = Dy =
25
1500

=
0:0167cm
pixel

(25)

This conversion factor was applied to the pixel-based contour

area to obtain results in cm², and similarly, to convert the perimeter,

it was multiplied by Dx to yield measurements in cm. This approach

not only improves the physical interpretability of the leaf area
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measurements but also ensures the consistency and comparability

of the quantitative results across different samples.

3.2.2 Visualization of the image processing
pipeline and transformation path analysis

After completing the above image processing steps, the results

were visualized to demonstrate the full conversion process from the
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YOLO model-predicted segmentation masks to the final area

extraction. Figures 9 and 10 illustrate the seven key steps

involved, covering multiple time points (from 48 hours to 156

hours), with the aim of clearly showing the progression from coarse

predictions to precise geometric measurements.To enhance the

interpretability of the post-processing workflow, each row in

Figures 9 and 10 corresponds to a specific step in the image
FIGURE 9

Visualization of the image processing workflow for different time points (48h to 96h).
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analysis pipeline. The first row shows the original image, serving as

the baseline reference. The second row presents the YOLO-based

segmentation result, highlighting detected leaf regions. The third

row applies Canny edge detection to emphasize leaf boundaries. In

the fourth row, contour extraction is performed to isolate leaf

outlines. The fifth and sixth rows display the area and perimeter

calculations, where pixel-wise masks are analyzed to quantify
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morphological characteristics. Finally, the seventh row illustrates

the visual mapping, using pseudocolor overlays to provide intuitive

feedback on leaf size and shape. This step-by-step structure reflects

the complete transformation from raw input to quantitative output

and facilitates transparent understanding of the analysis pipeline.

The original image is first processed by the YOLOv11-AreaNet

model to generate an initial leaf segmentation mask. Morphological
FIGURE 10

Visualization of the image processing workflow for different time points(108h to 156h).
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operations are then applied to refine the mask by removing noise

and smoothing the edges, leading to more precise delineation of the

leaf regions. To further improve the segmentation results, the

optimized mask is overlaid onto the original image using a semi-

transparent technique, ensuring the segmented areas align more

closely with the details of the original image.

Background removal is then applied to isolate the pure leaf

regions, preparing the image for the next stage of feature extraction.

During this process, edge detection is employed to capture the

detailed contours of the leaves, ensuring precise localization of the

boundaries. Following this, the leaf area is calculated from the

binarized image, guaranteeing the accuracy of the computed

results.The edge map is then combined with the contour map to

further refine the leaf boundary and calculate the perimeter. This

series of processing steps effectively illustrates the progression from

rough segmentation to precise geometric measurement, providing

reliable data for leaf geometric feature analysis and subsequent

applications.Finally, a visual mapping image is created, overlaying

the refined contours along with area and perimeter information
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onto the original image, facilitating further analysis and

presentation. These steps not only improve the segmentation

performance of the YOLO model but also significantly enhance

the accuracy and visualization quality of leaf segmentation through

image processing techniques, providing strong support for

subsequent automated leaf analysis.

From the image visualization, it can be observed that the

morphological operations effectively eliminate boundary

breakages and noise spots in the segmentation results, enabling

more stable edge detection in the subsequent steps. The leaf contour

boundaries extracted by the Canny algorithm exhibit good

continuity and closure, which facilitates the watershed algorithm

in effectively segmenting overlapping leaf regions. Meanwhile, the

final area calculation results are visualized to provide an intuitive

perception of leaf contours and area size.

This image processing workflow not only effectively reflects the

underlying algorithmic logic but also generates verifiable

intermediate outputs that validate the accuracy of the subsequent

leaf area measurements. The post-processing pipeline established in
FIGURE 11

Correlation analysis between manual and algorithmic leaf area measurements: (a) fitted straight line. (b) 3D scatter plot of manual and algorithmic
measurements. (c) residual plot. (d) normal distribution of residuals.
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this study provides strong visual interpretability and demonstrates

robust capability in separating complex targets, such as occluded,

overlapping, or morphologically irregular plant leaves.In

comparison to direct area estimation from segmentation masks,

this workflow effectively minimizes cumulative errors and structural

ambiguity, ensuring that the final area computation results are

stable and highly reproducible.

3.2.3 Comparative analysis with manual leaf area
measurements

We further verified our method by comparing model-estimated

leaf areas with manual measurements.A subset of images was

randomly selected from the test set, and leaf area was measured

using both manual methods and the automatic extraction process of

the model. Based on the obtained data, regression fitting plots,

residual plots, and normal distribution plots were constructed (as

shown in Figure 11) to evaluate the correlation, consistency, and

error characteristics between the two measurement methods.

Figure 11a illustrates the linear fitting relationship between the

manually measured leaf area (x-axis) and the model-predicted area

(y-axis). The fitted curve approximates the diagonal line, indicating a

significant linear correlation between the two. Based on least squares

calculation, the slope of the fitted line is close to 1, and the intercept is

close to 0, with a coefficient of determination R² reaching 0.983,

demonstrating a high degree of consistency between the model

predictions and the ground truth, and verifying the high reliability

of YOLOv11-AreaNet in the leaf area estimation task.

Figure 11b presents a 3D spatial distribution plot that shows the

distribution of different samples (i.e., the measured leaf values in the

images) based on both model-based and manual measurements.

From the figure, it is evident that the model and manual

measurements exhibit a strong linear correlation in the sample

space, further validating the consistency between the two

measurement methods.

Figure 11c displays a residual plot, which illustrates the

distribution of deviations between the model predictions and the

manually measured values. It can be seen that the majority of

residual points are clustered around zero, with no apparent

systematic trend, indicating that the errors are minimal and

random. This further supports the accuracy and reliability of the

fitted model.

Figure 11d shows the results of a normality test for the error

distribution, illustrating the frequency distribution curve of the

measurement errors. The figure suggests that the error distribution

closely follows a standard normal distribution, with well-

maintained kurtosis and symmetry. This indicates that the errors

are caused by random fluctuations rather than any systematic bias

in the model, further confirming the scientific validity and stability

of the automatic segmentation and area calculation process.

3.2.4 Single-leaf tracking and dynamic leaf area
analysis

A deeper understanding of the early-stage growth dynamics of

individual broccoli seed leaves during germination was gained by

selecting representative leaf samples in this study, with their original
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images, mask-cropped results, and area-annotated images

sequentially presented, as shown in Figure 12. This sequence

clearly illustrates the complete process, from image acquisition to

quantitative analysis.On this basis, six representative leaves were

further selected to construct a time-series area growth curve

(Figure 13a), a relative growth rate per unit time plot

(Figure 13b), and a 3D bar chart (Figure 13c), in order to

systematically analyze the dynamic growth characteristics of the

leaves between 60 and 120 hours.

Analysis of the leaf area growth curves between 60 and 120

hours indicates that all tracked leaves followed a general upward

trajectory. However, growth dynamics varied based on initial leaf

size. Smaller leaves, such as Leaf1 and Leaf2, exhibited steadier and

slower expansion, while larger leaves like Leaf5 and Leaf6

experienced accelerated growth during the later phases—

highlighting variability in inherent growth potential.Examination

of the relative growth rate per time unit further revealed that leaves

such as Leaf2 and Leaf3 showed sharp early-stage increases, with

peak rates reaching 26.6%. Yet, these leaves also displayed mid-to-

late stage fluctuations, potentially influenced by environmental or

physiological factors including light availability or nutrient uptake.

In contrast, Leaf4 through Leaf6 demonstrated more consistent

growth, remaining within a stable range of 10% to 13%, indicative of

a steady developmental rhythm.

The 3D bar visualization clearly maps the interplay between

time, leaf identity, and area expansion. This chart illustrates both

absolute area disparities at fixed time points and a coordinated

overall growth trend. Despite observable individual variability, the

collective behavior of the leaves suggests that environmental

conditions during the experiment were well-controlled and stable.
4 Conclusion

To enable precise segmentation and automated leaf area

estimation for small-seeded crops—while addressing the

inefficiencies, inaccuracies, and inconsistencies associated with

traditional manual approaches—this study centers on broccoli

seedlings and introduces YOLOv11-AreaNet, an enhanced instance

segmentation framework. Built upon the original YOLOv11, the

model incorporates several architectural improvements:

EfficientNetV2 serves as the backbone to balance parameter

reduction with representational strength; Focal Modulation

enhances contextual feature modeling; the lightweight C2PSA-

iRMB module strengthens both spatial and channel-wise attention;

CCFM is employed in the neck to fuse multi-scale features; and

LDConv is integrated to optimize downsampling with deformable

perception. Collectively, these refinements lead to substantial

compression—achieving reductions of 57.4% in parameters, 25.8%

in FLOPs, and 51.7% in model weight size—without compromising

segmentation accuracy, thereby offering a lightweight yet high-

performing solution with practical deployment potential.

Building on the segmentation of broccoli seedling leaves, the

study also establishes a comprehensive post-processing pipeline

that bridges model outputs with quantifiable area calculations. This
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pipeline encompasses mask refinement, edge detection, contour

tracing, watershed segmentation, and geometric computation—

completing the full workflow from prediction to physical

measurement. To assess the alignment between automated and

manual leaf area estimates, a multi-faceted statistical validation

framework was employed. This included linear regression
Frontiers in Plant Science 19
visualization, residual analysis, swarm distribution plots, and

normality testing. Results revealed a high level of agreement

between both approaches, with a regression coefficient reaching

0.987 and error distributions conforming to normality without

systematic deviation—demonstrating both the reliability and

accuracy of the method in real-world agricultural scenarios.
FIGURE 12

Visualization of typical leaf growth: (a, b) Original images, segmented masks, and calculated leaf areas of two representative leaves from 60h to
120h.
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Moreover, leveraging time-series imagery, the study conducted

individualized leaf tracking to investigate growth dynamics over

time. Six representative leaves were selected for analysis, with

visualizations of their area expansion from 60 to 120 hours, per-

time-unit growth rates, and corresponding 3D growth surfaces.

While all leaves displayed a general upward growth trajectory, clear

inter-individual variability was observed: some maintained steady

and continuous expansion, whereas others showed irregular

fluctuations or noticeable deceleration during the later stages. The

3D bar graphs and rate curves provided an intuitive representation

of differences in growth efficiency, revealing a distinct two-phase

pattern characterized by “early rapid enlargement followed by

gradual slowing.” These findings offer both theoretical insights

and empirical data to support plant-level growth modeling and

enable fine-scale temporal monitoring.

This work introduces an effective, automated, and precise

approach for high-throughput monitoring of leaf area in small-

seeded crops, with broccoli serving as the representative case. The

proposed method demonstrates strong generalizability and

operational feasibility, particularly for large-scale phenotyping

applications on resource-limited platforms. Nonetheless, certain

challenges persist: segmentation accuracy can be affected by issues

like occlusion and leaf adhesion, and the current post-processing

workflow still requires enhancements in robustness. Future research

will focus on refining structural compression techniques,

incorporating multimodal sensing strategies, and extending the

applicability of this framework to broader smart agriculture

domains—including morphological tracking, disease detection,

and temporal growth analysis across diverse crop species. These
Frontiers in Plant Science 20
efforts are expected to support the advancement of digital

phenotyping and contribute to modern agricultural innovation.
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