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Accurate estimation of mangrove biomass is significant for ensuring the

mangrove ecosystem’s productivity and global carbon cycling. Although well-

known deep neural networks (DNNs) have been successfully applied in

mangrove biomass estimation using remote sensing data, the key problem of

data scarcity is not addressed very well for existing methods. Thus, a novel DNN

called self-supervised disturbing feature reconstruction network (SSDFRN) is

constructed in this article for mangrove biomass estimation with limited data.

First, a disturbing feature reconstruction-based self-supervised learning (DFRSSL)

method based on random feature shuffle and disturbing feature reconstruction is

proposed for solving the data scarcity problem. In addition, a multi-view

convolutional neural network (MVCNN) is constructed by stacking several

multi-view cascaded convolution modules (MVCCMs), which effectively

enhances feature learning performance and improves mangrove biomass

estimation accuracy. The mangrove biomass dataset obtained from Ximen

Island (28° 21′ N, 121° 10′ E) is used in this study to verify the outperformance

of SSDFRN. The experimental results illustrate that SSDFRN is effective in deep

feature learning and mangrove biomass estimation with limited data.
KEYWORDS

mangrove biomass estimation, self-supervised learning, disturbed feature
reconstruction, multi-view convolution neural network, deep learning
1 Introduction

Mangrove plays a significant role in maintaining biodiversity, carbon sequestration,

and carbon storage (Tran et al., 2022). Accurate estimation of aboveground biomass (AGB)

is an important part of the mangrove ecosystem carbon cycle, which is conducive for

assessing the carbon sink potential of the mangrove ecosystem (Sliva et al., 2024). The
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traditional mangrove survey method is destructive, costly, and

inefficient, which greatly restricts the efficiency of estimating and

monitoring mangrove biomass distribution (Morais et al., 2021;

Zhang et al., 2022). Due to the interference of various external

environmental factors (e.g., growing environment, climatic factors,

and geographical position), it is difficult to promptly and accurately

estimate mangrove biomass using the traditional survey method.

Remote sensing technology has the advantages of a large spatial

scale, strong timeliness, and high efficiency (Zhao et al., 2023;

Hazmy et al., 2024), which greatly saves the manpower and

material resources required by traditional investigation (Gao

et al., 2022) (Muhd-Ekhzarizal et al., 2018). employed simple and

multilinear regression methods for the estimation of AGB in the

entire study area using remote sensing images (Pandey et al., 2019).

utilized logarithmic and polynomial (second degree) models for

mangrove biomass estimation, and the study shows that normalized

difference vegetation index (NDVI) and enhanced vegetation index

(EVI) derived from satellite images are effective indexes for biomass

estimation. However, traditional remote sensing-based linear

regression and non-linear regression models have poor

performance in estimating mangrove biomass and are not suitable

for practical application.

Machine learning (ML) [e.g., support vector machine (SVM)

(Li et al., 2023), random forest (RF) (Xiao et al., 2024), and support

vector regression (SVR) (Rahimikhoob et al., 2023)] learns the

relationship between input and output by fitting a flexible model

(Teshome et al., 2023), which has been widely used in mangrove

biomass estimation (Tian et al., 2021; Hao et al., 2024) (Selvaraj and

Perez, 2023). developed an RF-based spatial estimation approach

to assess mangrove AGB using the Google Earth Engine (GEE)

platform (Bui et al., 2024). proposed an ML-based (i.e., LightGBM

and XGBoost) AGB estimation method, and the hyperparameters

were tuned by Bayesian-based optimizers and a novel Tasmanian

Devil optimization algorithm (Tian et al., 2022). analyzed the

quantitative relationship between invasive mangrove biomass and

hydrological units using different ML algorithms (Do et al., 2022).

proposed a principal component analysis-based ML technique for

estimating the mangrove AGB (Rijal et al., 2023). developed a novel

ML-based mangrove aboveground carbon (AGC) estimation

technique based on extreme gradient boosting and genetic

algorithm analyses (Hu et al., 2024). proposed an SVM-based

AGB estimation method using remote sensing data (Luo et al.,

2024). developed a novel AGB estimation method using SVR, and

the parameters of SVR were optimized by the global best particle

swarm algorithm. However, the feature learning ability of

traditional ML methods is limited due to their shallow network

structures. In addition, RF-based methods typically cannot make

accurate estimations when the training samples are limited, and the

performance of SVM and SVR models depends heavily on the

choice of kernel function (He et al., 2024). Thus, effective feature

learning techniques are needed for mangrove biomass estimation

based on remote sensing data.

Recently, deep learning (DL) techniques have been widely used in

various domains due to their outstanding feature learning capacity (Li

et al., 2024; Miao and Yu, 2024). Typical deep neural networks (DNNs)
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[e.g., deep belief network (DBN), convolutional neural network (CNN),

and long short-term memory (LSTM) network] have been successfully

applied in mangrove biomass estimation (Akkem et al., 2023) (Chen

et al., 2022). proposed a generative adversarial network for data

augmentation using Sentinel-2 images and a DBN for deep feature

learning and obtaining the salt marsh distribution (Nakajima et al.,

2023). proved that the CNN-based estimation technique is outstanding

and can be applied for monitoring crop AGB in diverse cultivars (Tian

et al., 2024). proposed a novel AGB estimation method based on CNN

and LSTM using different remote sensing image data

(Talebiesfandarani and Shamsoddini, 2022). developed a novel

global-scale biomass estimation method by learning features using

CNN, and RF and SVR are used for feature selection (Song andWang,

2023). proposed a recurrent neural network (RNN)-based method for

forest energy estimation (Zhang et al., 2024). proposed a novel

framework for AGB estimation using Sentinel-1 synthetic aperture

radar (SAR) and Sentinel-2 optical data, where the bidirectional long

short-term memory (BiLSTM) neural network is implemented for

deep feature learning (Liu et al., 2024). proposed a residual neural

network (ResNet)-based model to extract phenological information

from wheat and implemented the AGB estimation. Nevertheless, these

methods always assume that training samples are sufficient and rely

heavily on the quantity and quality of data. When the data are limited,

these models are prone to overfitting. In the actual scenario, the data

scarcity problem is inescapable due to the difficulty of obtaining high-

quality mangrove biomass data, which greatly limits the application of

these methods.

In order to address the above problems, a novel DNN, called

self-supervised disturbing feature reconstruction network

(SSDFRN), is proposed for mangrove biomass estimation with

limited data in this study. The main contributions of this study

are summarized as follows: 1) a self-supervised disturbing feature

reconstruction network is proposed for deep feature learning, 2) a

disturbing feature reconstruction-based self-supervised learning

(DFRSSL) method based on random feature shuffle and

disturbing feature reconstruction is developed for solving the data

scarcity problem, and 3) a multi-view convolutional neural network

(MVCNN) is constructed by stacking several multi-view cascaded

convolution modules (MVCCMs), which effectively enhances the

feature learning performance and improves the mangrove biomass

estimation accuracy. The experimental results on the mangrove

biomass dataset obtained from Ximen Island (28° 21′ N, 121° 10′ E)
demonstrate the outperformance of SSDFRN for mangrove biomass

estimation with limited data.

The remainder of this article is organized as follows. The details

about SSDFRN are given in Section 2. The experimental analysis of

SSDFRN-based mangrove biomass estimation is implemented in

Section 3. Finally, the conclusions are given in Section 4.
2 Self-supervised disturbing feature
reconstruction network

In this study, SSDFRN is proposed for mangrove biomass

estimation with limited data. In particular, first, Landsat 8 remote
frontiersin.org
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sensing data and Digital Elevation Model (DEM) data are used for

extracting 22 features (i.e., band information, vegetation indexes,

texture features, and elevation features). Then, the shuffle window is

masked on partial input features randomly for generating auxiliary

data and residual data. MVCNN is constructed for deep feature

learning from residual data, and learned features are combined with

auxiliary features for disturbing feature reconstruction. In the

process of DFRSSL, the feature representation ability of the deep

network will be greatly enhanced with limited data.
2.1 Network structure

The SSDFRN-based mangrove biomass estimation method is

shown in Figure 1, which includes two stages: DFRSSL and fine-

tuning. In Figure 1, L denotes the total number of input features,

and W is the length of the shuffle window. In the stage of DFRSSL,

first, limited samples are used to generate plenty of auxiliary data

and residual data. Then, MVCNN is implemented for deep feature

learning from sufficient residual data. Finally, disturbing feature

reconstruction is implemented based on deep features and auxiliary

data for solving the problem of feature learning with limited data. In

the stage of fine-tuning, learned representations are fed into the

biomass estimator for mangrove biomass estimation.
2.2 Disturbing feature reconstruction-
based self-supervised learning

In the actual scenario of mangrove biomass estimation, the

problem of data scarcity is inevitable due to the difficulty of data
Frontiers in Plant Science 03
collection. Traditional mangrove biomass estimation methods

highly depend on data quantity and quality, which could limit

their applications in a real environment. Thus, DFRSSL is

developed in this study for solving the problem of feature

learning and mangrove biomass estimation with limited data.

2.2.1 Generation of auxiliary data and residual
data

In the stage of DFRSSL, first, Landsat 8 remote sensing image and

DEM elevation data are used for extracting 22 features (i.e., band

information, vegetation indexes, texture features, and elevation

features). Then, the shuffle window is masked on partial input

features randomly for generating auxiliary data and residual data.

This operation has two main functions: 1) the masking method can

generate data pairs that are not limited by the scarcity of original data

so as to solve the problem of limited data availability. 2) This method

largely reduces redundancy and creates a challenging SSL task that

requires a holistic understanding of the relationship between all input

features (i.e., band information, vegetation indexes, texture features,

and elevation features). The generation process of auxiliary data and

residual data is shown in Figure 2. In particular, a shuffle window with

length W is used to randomly select W features for feature

disturbance. In the meantime, Gaussian noise is used to mask the

W features after the disturbance to simulate the interference of the

external environment.

The generation process of auxiliary data is represented as

follows:

P = y (1 ∼ (L −W − 1)) (1)

~x = _N + c(x½P, P +W�) (2)
FIGURE 1

Network structure of SSDFRN. SSDFRN, self-supervised disturbing feature reconstruction network.
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where P is the randomly selected feature position, y (a ∼ b)

indicates that an integer is randomly selected from a to b, L is the

total number of input features (L = 22 in this study),W is the length

of shuffle window, ~x denotes the generated auxiliary data, _N

represents the Gaussian noise, x[a, b] represents features from

segments a to b of the original data, and c() is the feature

disturbance operation. For the unselected feature segments, the

residual data are obtained by data concatenation, which is expressed

as follows:

xres = ∐ x½1, P�, x½P +W , L�f g (3)

where xresindicates the residual data, and ∐  f g is the data

concatenation operation. It should be noted that the number of

auxiliary data and that of residual data are not limited by the size of

the original samples, and the original limited data will be greatly

enhanced by generating multiple auxiliary and residual data.

2.2.2 Disturbing feature reconstruction-based
self-supervised learning

In this study, MVCNN is constructed for deep feature learning

from residual data. The structure of MVCNN is shown in Figure 3,

which is composed of multiple MVCCMs. In Figure 3, the numbers

of circles in MVCCM signify different sliding strides.

Taking the first MVCCM as an example, the small-scale

convolution is first used to obtain small-field features from

residual data xres using different convolution steps, which are

calculated as follows:

OS
i = ConvSi (xres) i = 1 2 3 (4)

where OS
i denotes the ith small-view feature and ConvSi () is the

small-scale convolution with step size i. After obtaining the small-

view features, medium-scale convolution is used to obtain medium-

view features with different convolution steps, as follows:

OM
i = ConvMi (OS

i ), i = 1, 2, 3 (5)
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where OM
i denotes the ith medium-view feature, and ConvMi ()

represents the medium-scale convolution with step size i. After

obtaining the small-view features and medium-view features, large-

scale convolution is used to obtain the big-view features based on

the cascading convolution, which is calculated as follows:

OB
i = ConvBi (Q OS

i ,O
M
i

� �
), i = 1, 2, 3 (6)

where OB
i is the ith big-view feature, ConvBi () denotes the large-

scale convolution with step size i, and Q  f g represents the feature

concatenation operation. Finally, the output feature of the first

MVCCM is obtained as follows:

OMVCCM = Q OB
1 ,O

B
2 ,O

B
3

� �
(7)

where OMVCCM represents the output feature of the first

MVCCM. MVCNN is constructed by cascading multiple

MVCCMs and pooling layers, and the output feature of MVCNN

is represented as follows:

OMVCNN = Fn Pool(MVCCM)h i (8)

where OMVCNN denotes the learned hidden representation,Fn  h i
indicates the cascading operation of n MVCCMs, and Pool and

MVCCM represent the pooling layer and MVCCM, respectively.

After obtaining hidden representations OMVCNN, the simplified

decoder is implemented for disturbing feature reconstruction (He et

al., 2022) based on auxiliary data ~x and corresponding feature

position P. First, the hidden representation OMVCNN learned by

MVCNN is flattened and then spliced with auxiliary data as the

input of simplified decoder. It should be noted that the feature

disturbing position is considered in the splicing process. The input

of the simplified decoder is obtained as follows:

xde = ∐ Flat(OMVCNN )½1, P�, ~x, Flat(OMVCNN )½P +W, L�� �
(9)

where xde denotes the input feature of the simplified decoder and

Flat () indicates the feature flatten operation. In this study, multiple one-
FIGURE 2

Generation process of auxiliary data and residual data.
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dimensional convolution layers and pooling layers are cascaded to

construct the simplified decoder, which is represented as follows:

Ode = Fn Pool(Conv(xde))h i (10)

where Ode represents output feature of the simplified decoder.

Finally, the reconstructed feature is obtained as follows:

x̂ = FC(Flat(Ode)) (11)

where x̂ is the output reconstructed feature and FC indicates the

fully connected layer.
2.3 Mangrove biomass estimation

In the stage of fine-tuning, the biomass estimator is constructed

based on two fully connected layers for mangrove biomass

estimation, as follows:

ŷ = FC2(FC1(Flat(O
MVCNN ))) (12)

where ŷ denotes the estimated mangrove biomass and FCi

indicates the ith fully connection layer.
2.4 Loss function of SSDFRN

In this study, the training process of SSDFRN consists of two

stages: DFRSSL and fine-tuning. In the stage of DFRSSL, the loss of

SSDFRN is calculated as follows:
Frontiers in Plant Science 05
Ls1 =
1

M � Lo
M

j=1
o
L

i=1
(x̂ j(i) − xj(i))

2 (13)

where Ls1 is the loss of SSDFRN in the DFRSSL stage; x̂ j(i) and

xj(i) denote the reconstructed value and actual value of the ith

feature for the jth mangrove sample, respectively; andM is the total

number of samples.

In the stage of fine-tuning, the loss of SSDFRN is calculated as

follows:

Ls2 =
1
Mo

M

j=1
(ŷ j − yj)

2 (14)

where Ls2 is the loss of SSDFRN in the fine-tuning stage, and ŷ j

and yj represent the estimated mangrove biomass and the actual

mangrove biomass of the jth sample, respectively. The training

process of SSDFRN is shown in Table 1.
3 Experimental analysis

In this section, the mangrove biomass dataset obtained from

Ximen Island (28° 21′ N, 121° 10′ E) is used for verifying the

effectiveness of SSDFRN in mangrove biomass estimation. The

research area is located north of Wenzhou City, which experiences a

subtropical oceanic monsoon climate. The study area is mild and

humid throughout the year, with abundant rainfall. The experiment

hardware environment is as follows: CPU, Intel® i7-10875H; GPU,

RTX2060 6G. The software environment is as follows: programming
FIGURE 3

Structure of MVCCM and MVCNN. MVCCM, multi-view cascaded convolution module; MVCNN, multi-view convolutional neural network.
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language, Python3.7; compiler, Pycharm2022.3.2; framework,

Tensorflow-gpu2.6.0+Cuda10.0.

3.1 Experimental description

3.1.1 Data description
Ximen Island covers a land area of 6.98 km2 and a mudflat area

of 15.11 km2. The average annual temperature is approximately
Frontiers in Plant Science 06
18.3°C, with an annual precipitation of 1,595.7 mm and an average

annual sunshine duration of 1,714.6 hours. The mangrove wetland

in this region serves as the ecological restoration project area for the

coastal mangrove wetlands of Leqing City, encompassing an area of

approximately 28.96 hectares for mangrove planting and 4.57

hectares for introduced mangrove maintenance (Hao et al., 2024).

The plant species in this area is the Kandelia obovata. The location

of the study area and sample distribution are shown in Figure 4.

Landsat 8 remote sensing image data (with a spatial resolution of 30

m) from August 2022 are used in this study to map the mangrove

biomass. The 21 features, including band information, vegetation

indexes, texture features, and elevation features, are extracted from

Landsat 8 remote sensing images. In addition, DEM data are

derived from Aster GDEM with a resolution of 30 m, which is

used to extract the altitude index (i.e., topographic factor). All 22

input features are presented in Table 2.

The biomass equation (Equation 15) based on the stem

diameter of the near-ground branches at the base of Kandelia

candel is used to calculate the biomass:

y = 3:614� D1:446(R2 = 1:801,P < 0:01) (15)

where y is the total biomass of kandelia samples and D is the

branch trunk diameter near the ground of kandelia.

3.1.2 Parameter setting
The network structure and parameters of SSDFRN are listed in

Table 3, whereW is the length of the shuffle window; V1, V2, and V3

are convolution kernel size of small-, medium-, and large-view

branches, respectively; S1, S2, and S3 represent different sliding

strides; K refers to the number of convolution kernels; PW and

PS are the pooling window and the pooling stride, respectively; N is

the number of neurons; and Vde and Sde are decoder convolution

kernel size and convolution stride, respectively.
3.2 Experimental result

In this study, a total of 58 samples are considered in the

experiment, where 70% of the samples are used for training and

the remaining 30% of the samples are used for testing. Details about

the dataset are presented in Table 4. The training process of

SSDFRN is shown in Figure 5. It is clear that with the increase in
TABLE 1 Training process of SSDFRN.

Training of SSDFRN

Input: x: 22 features extracted from Landsat 8 remote sensing image and DEM
elevation data;

y: actual mangrove biomass value.

Init parameters of SSDFRN.

Stage 1: DFRSSL

For each training epoch:

Randomly selectW features from x and record the position P by Equation 1;

Generate auxiliary data ~x by Equation 2;

Combine remaining features as the residual data xres by Equation 3;

Obtain the hidden representation OMVCNN from xres by Equations 4–8;

Combine auxiliary data ~x and hidden representation OMVCNN by Equation 9;

Obtain reconstructed feature x̂ by Equations 10, 11.

Compute loss of SSDFRN in the stage of DFRSSL by Equation 13;

Update parameters of SSDFRN.

End

Stage 2: Fine-tuning

For each training epoch:

Obtain deep features by MVCNN optimized in stage 1;

Obtain estimated mangrove biomass by Equation 12;

Compute mangrove biomass estimation error by Equation 14;

Update parameters of mangrove biomass estimator.

End
SSDFRN, self-supervised disturbing feature reconstruction network; DFRSSL, disturbing
feature reconstruction-based self-supervised learning; MVCNN, multi-view convolutional
neural network.
TABLE 2 Details about all 22 input features.

Data type Feature description Detailed features

Landsat 8 remote
sensing data

Band
Coastal band, super blue infrared, sum green index, red band, near-infrared wave, short-wave infrared 1, short-wave

infrared 2

Vegetation indexes
Normalized difference vegetation index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), soil-

adjusted vegetation index (SAVI), enhanced vegetation index (EVI), green normalized difference vegetation
index (GNDVI)

Texture features
Variance (VAR), homogeneity (HOM), contrast (CON), heterogeneity (HET), entropy (ENT), angular second

moment (ASM), correlation (COR), mean (MEA)

Digital elevation
model data

Altitude index Topographic factor (TOF)
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training epochs, the DFRSSL loss and mangrove biomass estimation

loss are decreasing. When the training epoch reaches 1,000, all

losses are nearly zero, which means that SSDFRN exhibits excellent

biomass estimation performance on the training set. The mangrove

biomass estimation results on the testing set are shown in Figure 6.

The detailed estimation results are presented in Table 5, where AE,

MAE, and RMSE denote the absolute error, mean absolute error,

and root mean square error, respectively. It is obvious that the

estimated mangrove biomass values are close to the actual

mangrove biomass values, which indicates the outperformance of
Frontiers in Plant Science 07
SSDFRN on deep feature learning and mangrove biomass

estimation with limited samples.

In order to verify the effectiveness of DFRSSL, the original input

features, disturbed features, and the corresponding reconstructed

features obtained by DFRSSL are visualized in this study, as shown

in Figure 7. It can be found that parts with original input features are

shuffled and drowned by strong noise (gray parts) after the feature

disturbance. After DFRSSL, noise features are greatly reconstructed by

SSDFRN, which demonstrates the generalizability of SSDFRN under

external interference. It indicates that SSDFRN is good at deep feature

learning from limited samples based on DFRSSL.
3.3 Ablation study

In this section, the ablation study is implemented to verify the

effectiveness of DFRSSL and MVCNN. The description of different

tasks is given in Table 6, where “√” and “X” denote that the

corresponding module is included and excluded in the task,

respectively. The testing results are shown in the last two columns

of Table 6. It is clear that the mangrove biomass estimation errors

(i.e., MAE and RMSE) increase significantly when DFRSSL or

MVCNN is removed from SSDFRN. It indicates that DFRSSL

and MVCNN greatly enhance the feature learning and mangrove

biomass estimation performance of SSDFRN.
FIGURE 4

The specific location and distribution of the study area (Hao et al., 2024).
TABLE 3 Detailed structure and parameters of SSDFRN.

Module Structure Parameters

Input – –

Feature
disturbing

– W = 4

MVCNN

MVCCM 1
V1 = 2, V2 = 3, V3 = 4, S1 = 1,

S2 = 2, S3 = 3, K = 16

Pooling 1 PW = 2, PS = 2

MVCCM 2
V1 = 2, V2 = 3, V3 = 4, S1 = 1,

S2 = 2, S3 = 3, K = 32

Pooling 2 PW = 2, PS = 2

Flatten Fully connected layer N = 928 − 18

Simplified
decoder

Convolution 1 K = 16, Vde = 3, Sde = 1

Pooling 1 PW = 2, PS = 2

Convolution 2 K = 32, Vde = 3, Sde = 1

Pooling 2 PW = 2, PS = 2

Biomass
estimator

Fully connected layer N = 200 − 1

Batch size = 20, learning rate = 0.0001
SSDFRN, self-supervised disturbing feature reconstruction network; MVCCM, multi-view
cascaded convolution module.
TABLE 4 Detailed information about the mangrove biomass dataset.

Samples
Sample
number

Geographical
position

Data
shape

Total
samples

58

(28° 21′ N, 121° 10′ E) [1×22]
Training 40

Testing 18
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3.4 Result comparison and discussion

In this section, the feature learning and mangrove biomass

estimation performance of SSDFRN are compared with that of
Frontiers in Plant Science 08
state-of-the-art methods [i.e., SVR (Luo et al., 2024), CNN

(Nakajima et al., 2023), RNN (Song and Wang, 2023), BiLSTM

(Zhang et al., 2024), ResNet (Liu et al., 2024), multi-branch

convolutional neural network (MBCNN) (Zhao et al., 2021), and
FIGURE 5

The training process of SSDFRN. SSDFRN, self-supervised disturbing feature reconstruction network.
FIGURE 6

The SSDFRN-based mangrove biomass estimation results of testing samples. SSDFRN, self-supervised disturbing feature reconstruction network.
TABLE 5 Detailed testing results.

Biomass
Sample Num.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Actual 23.314 13.628 14.103 10.036 20.418 12.205 12.006 12.796 10.568 14.34 28.298 20.841 22.841 19.479 28.834 20.671 21.057 28.526

Estimation 25.475 14.01 15.244 12.005 22.799 14.859 12.537 12.546 11.705 13.724 27.128 21.265 23.081 19.353 26.593 21.758 21.673 29.987

AE 2.161 0.382 1.141 1.969 2.381 2.654 0.531 0.25 1.137 0.616 1.17 0.424 0.24 0.126 2.241 1.087 0.616 1.461

MAE 1.145

RMSE 1.396
frontier
AE, absolute error; MAE, mean absolute error; RMSE, root mean square error.
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densely connected convolutional network (DenseNet) (Huang et al.,

2017)]. As presented in Figure 8, fivefold cross-validation is used for

data separation, where 80% of the original samples are used for

training and the remaining 20% of the samples are used for testing.

The computational efficiency analysis is implemented for different

DNNs, and the comparison results are listed in Table 7. It is evident

that the running time of SSDFRN is a little higher than that of other

methods, and the parameter complexity and memory occupation

are comparable to those of most methods, which is satisfactory for

practical applications. The comparison results based on the fivefold

cross-validation method are shown in Table 8. Taking fold-5 as an

example, the mangrove biomass estimation results are given in
TABLE 6 Different tasks in ablation study.

Task no.
Modules Results

DFRSSL MVCCM MAE RMSE

T1 ✓ ✓ 1.145 1.396

T2 ✓ X 1.367 1.660

T3 X ✓ 1.250 1.626
DFRSSL, disturbing feature reconstruction-based self-supervised learning; MVCCM, multi-
view cascaded convolution module; MAE, mean absolute error; RMSE, root mean
square error.
FIGURE 7

The visualization of input features, disturbed features, and reconstructed features.
FIGURE 8

Data separation for different folds.
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Figure 9, and the estimation errors are shown in Figure 10. It is

obvious that the mangrove biomass values estimated by SSDFRN

are closer to the actual values compared with those of other

methods. In particular, the mangrove biomass estimation error of

SSDFRN on samples 6 and 10 is significantly smaller than that of

other methods, which demonstrates the outperformance of

SSDFRN on deep feature learning and mangrove biomass

estimation with limited samples.
Frontiers in Plant Science 10
4 Conclusions

In this study, a novel DNN, i.e., SSDFRN, is developed for

mangrove biomass estimation with limited data. DFRSSL is

implemented by random feature shuffle and disturbing feature

reconstruction, which effectively solves the key problem of data

scarcity. In particular, the shuffle window is masked on partial input

features randomly for generating sufficient auxiliary data and residual
TABLE 7 Computational efficiency comparison of different DNNs.

Model Runtime (s)
Parameter complexity (Mega Floating-Point

Operations Per Second (MFLOPs))

Memory
footprint

(MB)

GPU utili-
zation (%)

SSDFRN 8.71 10.54 2,242.58 31.55

CNN 6.89 6.72 2,203.80 10.50

RNN 6.62 4.09 1,403.93 14.36

LSTM 7.27 10.75 1,424.23 18.84

MBCNN 7.36 10.17 2,209.74 20.33

ResNet 7.33 7.17 2,211.09 21.87

DenseNet 7.35 10.97 2,204.02 17.00
DNNs, deep neural networks; SSDFRN, self-supervised disturbing feature reconstruction network; CNN, convolutional neural network; RNN, recurrent neural network; LSTM, long short-term
memory; MBCNN, multi-branch convolutional neural network; ResNet, residual neural network; DenseNet, densely connected convolutional network.
FIGURE 9

Mangrove biomass estimation results of different methods.
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data. The network is pre-trained by disturbing feature reconstruction

for deep feature learning using sufficient auxiliary data and residual

data. In addition, a novel feature extractor, i.e., MVCNN, is constructed

by stacking several MVCCMs, which effectively enhances the feature

learning performance and improves the mangrove biomass estimation

accuracy. The outperformance of SSDFRN is verified on the mangrove
Frontiers in Plant Science 11
biomass dataset obtained from Ximen Island (28° 21′ N, 121° 10′ E).
The testing results illustrate that SSDFRN can effectively perform deep

feature learning and mangrove biomass estimation with limited data.

However, the hyperparameters of SSDFRN are determinedmanually in

this study, which is inconvenient and needs to be improved in the

future. Moreover, the length of the masking window in SSDFRN is
TABLE 8 Fivefold cross-validation-based comparison results.

Method
Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Avg

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SSDFRN 1.236 1.535 1.231 1.632 1.007 1.201 1.281 1.487 1.123 1.467 1.176 1.464

SVM 2.146 2.323 2.83 3.675 2.233 2.86 2.32 2.905 2.574 3.571 2.421 3.067

CNN 1.352 1.776 1.599 1.878 1.6 1.889 1.667 1.997 1.921 2.391 1.628 1.986

RNN 1.753 1.863 2.204 2.832 1.352 1.518 1.877 2.368 2.281 2.997 1.893 2.316

LSTM 1.345 1.572 1.716 2.208 1.643 1.872 1.55 1.766 1.53 2 1.557 1.884

MBCNN 1.663 1.958 1.911 2.298 1.124 1.353 1.659 1.956 2.302 2.916 1.732 2.096

ResNet 1.459 1.677 1.745 2.185 1.092 1.330 1.497 1.637 1.666 2.117 1.492 1.789

DenseNet 1.321 1.605 1.706 2.037 1.468 1.782 1.528 1.738 1.430 1.766 1.491 1.786
front
MAE, mean absolute error; RMSE, root mean square error; SSDFRN, self-supervised disturbing feature reconstruction network; SVM, support vector machine; RNN, recurrent neural network;
LSTM, long short-term memory; MBCNN, multi-branch convolutional neural network; ResNet, residual neural network; DenseNet, densely connected convolutional network.
FIGURE 10

Mangrove biomass estimation errors.
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fixed, which may result in the excessive destruction of key features and

may increase the difficulty of feature learning. Concurrently, the

contribution of non-key features to the masking operation is

inefficient, which requires further study. The future work will strive

to collect more data from different study areas to underpin subsequent

research and focus on improving the generalization performance of

SSDFRN for different mangrove species and geographical

positions simultaneously.
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