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Plant diseases pose a significant threat to agriculture, impacting food security and

public health. Most existing plant disease recognition methods operate within

closed-set settings, where disease categories are fixed during training, making

them ineffective against novel diseases. This study extends plant disease

recognition to an open-set scenario, enabling the identification of both known

and unknown classes for real-world applicability. We first benchmark the

anomaly detection performance of three major visual frameworks—

convolutional neural networks (CNNs), vision transformers (ViTs), and vision-

language models (VLMs)—under varying fine-tuning strategies. To address the

limitations of individual models, we propose a knowledge-ensemble-based

method that integrates the general knowledge from pre-trained models with

domain-specific knowledge from fine-tuned models in the logit and feature

spaces. Our method significantly improves over existing baselines. For example,

on vision-language models with 16-shot per class, our approach reduces the

FPR@TPR95 from 43.88% to 7.05%; in the all-shot setting, it reduces the

FPR@TPR95 from 15.38% to 0.71%. Extensive experiments confirm the

robustness and generalizability of our approach across diverse model

architectures and training paradigms. We will release the code soon at https://

github.com/JiuqingDong/Enhancing_Anomaly_Detection.
KEYWORDS

anomaly detection, plant disease recognition, few-shot learning, knowledge fusion,
transfer learning
1 Introduction

Protecting crops from plant diseases plays a significant role in meeting the growing

demands for food quality and quantity. Direct yield losses caused by pathogens, pests, and

weeds result in a total loss of 20% to 40% of global agricultural productivity Oerke (2006).

In reality, this value does not fully reflect the true cost to consumers, public health, and
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farmers caused by crop losses. This is because plant diseases often

come with a decline in crop quality, including nutrients, taste, and

appearance defects, among other additional costs Savary et al.

(2012). To mitigate these impacts, early detection of plant

diseases and taking remedial measures are effective in current

crop protection Sarkar et al. (2023); Xu et al. (2024); Dong

et al. (2022).

By leveraging advanced deep neural network frameworks Chai

et al. (2021) and transfer learning techniques Iman et al. (2023),

plant disease recognition performance has significantly improved.

However, existing methods assume that the categories in the test

datasets are entirely consistent with those in the training sets, which

is unrealistic in real-world plant disease recognition scenarios.

Given the variability and complexity of plant diseases, it is

impractical to collect samples of all possible disease classes

beforehand to train a neural network Meng et al. (2023). In this

paper, we refer to classes not included in the training set as

unknown or anomalous classes. Existing methods often treat

these unknown instances as belonging to known categories, which

increases the risk of incorrect decisions in the system. This decision

risk is illustrated in Figure 1. For example, in the figure, blue

question marks are mistakenly classified under K1, and yellow

question marks under K4. An ideal boundary should exclude

these unknown instances while correctly classifying those within

known categories. Such a decision mechanism can effectively alert

humans to potentially risky examples within the system. Therefore,

it is essential to develop plant disease recognition systems capable of

identifying unknown disease types, ensuring robust and reliable

performance in real-world applications Dong et al. (2023,

2024b, 2025).

Recognizing and rejecting unknown samples is commonly

referred to as anomaly detection Cui and Wang (2022); Dong

et al. (2023), out-of-distribution(OOD) detection Cui and Wang
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(2022); Dong et al. (2024c), or open set recognition(OSR) Mahdavi

and Carvalho (2021). The term ‘anomaly detection’ is more widely

used in applied fields, while ‘out-of-distribution detection’ is

typically adopted in theoretical studies. Hence, we uniformly use

‘anomaly detection’ to align with our theme. In this paper, classes

present in the training dataset are referred to as ‘known classes’,

while those that appear in the test dataset but are absent from the

training dataset are referred to as ‘unknown classes’. Both known

and unknown classes are included in the test dataset, and our

objective is to enable the model to identify and reject these

unknown samples.

Recent advances have explored a variety of anomaly detection

techniques specifically for agriculture, ranging from CNN-based

classifiers on field-acquired images to multimodal integration

frameworks. For instance, Mendoza-Bernal et al. proposed a

CNN-based pipeline for anomaly detection in weed and crop

images under both field and aerial settings, achieving high

accuracy across multiple datasets while tackling common issues

such as class imbalance and limited generalizability Mendoza-

Bernal et al. (2024). Similarly, generative and contrastive

approaches, such as f-AnoGAN Schlegl et al. (2019) and AACLIP

Ma et al. (2025), have demonstrated strong performance by

modeling anomalies beyond closed-set assumptions. Notably,

Leygonie et al. explicitly addressed open-set challenges in plant

disease detection, highlighting the critical need for systems that can

recognize unknown diseases without prior exposure to their

categories Leygonie et al. (2024). However, many of these

methods rely on architectural modifications, additional modules,

or reconstruction-based learning objectives, which are often task-

specific and require retraining the entire model from scratch.

Additionally, post-hoc anomaly detection methods have gained

popularity due to their advantage of not requiring modifications to

existing training objectives or pipelines. However, their effectiveness
FIGURE 1

The decision risk in closed-set learning. Algorithms based on closed-set learning will produce a risky decision boundary that may misclassify certain
unknown instances as belonging to known classes. Feature 1 and Feature 2 are abstract axes representing two dimensions in the feature space. They
do not correspond to specific semantic features.
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in the specific context of plant disease anomaly detection remains

underexplored. To address this gap, our study proposes a readily

deployable knowledge integration method aimed at enhancing the

anomaly detection capabilities of existing models in agricultural

settings. Specifically, we begin by investigating how different

training architectures affect the performance of state-of-the-art

post-hoc anomaly detection algorithms, and we establish a

comprehensive benchmark using the PlantVillage dataset Hughes

and Salathé (2015). To this end, we apply advanced post-hoc

detection techniques across three distinct training paradigms:

convolutional neural networks (CNNs)Liu et al. (2022), vision

transformers (ViTs)Dosovitskiy et al. (2020), and vision-language

models (VLMs) Radford et al. (2021). The first two have become

standard in recent visual recognition tasks, while the third

represents a novel multimodal framework that has gained

attention in the past two years.

Fine-tuning strategies also play a critical role in anomaly detection

performance. Therefore, we further investigate the impact of different

fine-tuning paradigms on anomaly detection. Specifically, for the

convolutional neural network and vision transformer models, we

implement full fine-tuning, visual adapter tuning Liu and Rajati

(2020), and visual prompt fine-tuning Jia et al. (2022). For vision-

language models, we examine contextual prompt fine-tuning Zhou

et al. (2022b, 2022a), visual prompt fine-tuning Bahng et al. (2022), and

dual-modality fine-tuning Zang et al. (2022). Additionally, we explore

the performance differences of these anomaly detection methods under

limited sample scenarios, referred to as few-shot anomaly detection.

Our findings reveal that the performance of the same anomaly

detection method varies significantly across different training

architectures, fine-tuning paradigms, and sample configurations.

Moreover, current state-of-the-art anomaly detection methods based

on vision-language models perform poorly on plant disease detection

tasks. We attribute this to the weak contextual representation of plant

diseases in the text branch of these models.

To address these challenges, we propose a knowledge ensemble

method that enhances the anomaly detection performance of

baseline methods. Our approach reduces performance

discrepancies across different training architectures and fine-

tuning paradigms, providing a more robust solution for plant

disease anomaly detection. Overall, our main contributions are

as follows:
Fron
• We establish an anomaly detection benchmark on the Plant

Village dataset, and evaluate the performance of classical

post-hoc detection methods across different training

architectures, fine-tuning paradigms, and sample scales.

To the best of our knowledge, this is the most

comprehensive benchmark for anomaly detection in plant

diseases to date.

• We propose a knowledge integration method that combines

the general knowledge of pre-trained models with the domain-

specific knowledge of fine-tunedmodels in the logit space. This

method significantly improves baseline methods and reduces

performance discrepancies across different fine-tuning

paradigms and training framework configurations.
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• Our method demonstrates outstanding performance across

various training architectures, fine-tuning paradigms, and

sample scales. Even under limited-sample settings, our

method achieves results comparable to those obtained

when training on the full dataset.

• Using the vision transformer architecture as an example, we

validate the effectiveness of the proposed enhancement

method under different data partitioning strategies on

additional plant disease recognition datasets.
2 Preliminary

2.1 Problem statement

In this section, we define the anomaly detection problem. The

training set is represented as shown in Equation 1:

Dtrain = (xi, yi)f gNi=1, i ∈ N, (1)

where x, y, andN denote the input sample, its label, and the total

number of images, respectively. The set of known classes is denoted

by K = {c1, c2, c3,…,ck}, where yi ∈ K. In few-shot settings, the

training set is defined in Equation 2:

Dtrain = (xi, yi)f gM·k
i=1 , (2)

whereM is the number of samples per known class and k is the number

of known classes. Few-shot scenarios typically involveM ∈ {2, 4, 8, 16}.

We further assume the existence of a set of unknown classes, as

shown in Equation 3:

U = ct+1, ct+2,…, ct+uf g, (3)

which do not appear during training but may emerge during

inference. To ensure open-set conditions, the known and unknown

classes must be disjoint, as required in Equation 4:

K ∩​ U = ∅ : (4)

Under this formulation, anomaly detection is modeled as a

binary classification task.

Decisionl(xi) =
Unknown  Class S(xi) > l

Known  Class S(xi) ≤ l
,

(
(5)

where S(xi) represents the uncertainty score for a sample xi. A

higher score indicates greater uncertainty, and samples with S(xi) >

l are classified as belonging to unknown classes.
2.2 Classic post-hoc anomaly detection

During testing, we utilize various scoring functions to classify

images as either known or unknown. For CNN and ViT frameworks,

we apply the maximum logits Basart et al. (2022) and energy-based Liu

et al. (2020) scoring methods. For vision-language pre-trained models,

we use the MCM score Ming et al. (2022).
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Max Logits Basart et al. (2022). The max logits score utilizes the

logits of the classification head. The uncertainty score calculated by

max logits (SML) can be formalized as Equation 6:

SML = −max 
zi=T

oK
i=1zi=T

 !
, (6)

where zi denotes the logits for class i, K is the number of known

classes, and T is the temperature scaling factor.

Energy Liu et al. (2020). Similar to the max logit method, the

energy-based approach is less susceptible to the issue of

overconfidence, thus enabling a more flexible utilization of the

classifier to assess the uncertainty of samples. The uncertainty score

calculated by energy (Senergy) can be formalized as follows:

Senergy = −log(oK
i=1e

zi=T), (7)

where T = 1 is used as the default temperature scaling factor.

MCM score Ming et al. (2022); Ming and Li (2024). The MCM

score utilizes the softmax score of global image features f and text

features g. The uncertainty score calculated by MCM Ming et al.

(2022) (SMCM) can be formalized as follows:

SMCM = −max (
e(similarity(f ,gi)=T)

oK
i=1e

(similarity(f ,gi)=T)
), (8)

where gi denotes the text feature of known class i. K denotes the

number of known classes. The rationale is that, for known samples,

the image features f of known classes should be closer to the text

features gi, and vice versa.
2.3 Evaluation metrics

FPR@TPR95 Du et al. (2022): This metric computes the false

positive rate when the true positive rate reaches 95%. It is defined

based on Equation 9:

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

, (9)

where TP, FN, FP, and TN represent true positives, false

negatives, false positives, and true negatives, respectively.

AUROCMuschelli (2020): This metric treats known data as positive

and unknown data as negative, generating various TPRs and FPRs at

different thresholds to calculate the area under the receiver operating

characteristic curve. This metric in anomaly detection tasks indicates the

probability that the uncertainty score for unknown data is higher than

that for known data. In our formulation, any unknown sample predicted

as a known class is considered a misclassification, and vice versa.

Accuracy: We assess the accuracy of the known classes,

following the method described by Krizhevsky et al. (2012).
3 Methodology

In this section, we first establish a benchmark on the Plant

Village dataset, covering three training frameworks and classical
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anomaly detection methods. Furthermore, we propose a novel

enhancement method that improves the performance of the

original anomaly detection methods from the perspective of

feature similarity.
3.1 Benchmark of plant disease anomaly
detection

Our motivation for constructing a benchmark for plant disease

anomaly detection is based on the following points: First, current

anomaly detection methods are primarily developed by training on

the entire dataset. However, obtaining large amounts of labeled data

is sometimes impractical. Secondly, these methods are often not

validated across all frameworks during development; some use

CNN frameworks for training, while others employ ViT or VLM.

Third, in the context of plant disease anomaly detection, there has

been no research analyzing the impact of different training

frameworks on anomaly detection performance. To fill this gap,

we first need to establish a comprehensive benchmark. Our

benchmark incorporates different training frameworks, fine-

tuning paradigms, sample scales, and anomaly detection methods.

3.1.1 CNN and ViT frameworks
In deep learning, it has been probed that using a pre-trained

model can broadly improve performance in downstream tasks, due

to its strong generalization capabilities. We first investigate using

single-modal visual pre-trained models, such as CNN and ViT, for

anomaly detection in plant diseases. Specifically, we explore fully

fine-tuning (FFT), visual adapter tuning (VAT), and visual prompt

tuning (VPT) in visual models, which are typical fine-tuning

methods. The schematic diagrams of these fine-tuning paradigms

are shown in Figures 2A–F. A brief review of these three techniques

is as follows:

Fully fine-tuning refers to the process where all the parameters

of a pre-trained neural network are updated during the training

phase. This approach assumes that while the pre-trained model has

learned general knowledge from its initial training, further

adjustments to all of the weights can help the model better adapt

to the nuances of the new data or task. However, fully fine-tuning

can be computationally expensive and prone to overfitting,

especially if the new dataset is small.

Visual adapter tuning is a more parameter-efficient fine-tuning

(PEFT) method where instead of updating all the parameters, small

adapter modules are inserted into the pre-trained model. Only the

parameters of these adapters are updated, while the original

network parameters remain frozen, which helps the model to

learn task-specific features without overwriting the general

knowledge learned during pre-training. This approach is less

resource-intensive compared to fully fine-tuning and reduces the

risk of overfitting. This study uses a basic multilayer perceptron

(MLP) module with a residual connection in Transformer layers, as

suggested by Houlsby et al. (2019); Pfeiffer et al. (2020).

Visual prompt tuning is a novel PEFT approach inspired by

advances in natural language processing. For visual tasks, prompt
frontiersin.org
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tuning involves modifying either the input data or the model

architecture by adding a set of trainable parameters (the prompts)

while keeping the rest of the model fixed. The idea is to “prompt”

the model to apply its pre-trained knowledge in a way that’s useful

for the new task. This method is useful for adapting large models to

new tasks without the need for extensive re-training. This study

follows Jia et al. (2022) approach, inserting ten learnable prompt

tokens in each Transformer layer.

3.1.2 Vision-language model
Vision-language models (VLM) are replacing traditional

supervised pre-training models [e.g., based on ImageNet Deng et al.

(2009)] as the new generation of foundational models for vision tasks.

For instance, in early 2021, OpenAI released CLIP Radford et al.

(2021), a large-scale multi-modal model designed for aligning images

and text. It was pre-trained on 400 million internet image-text pairs,

acquiring rich visual-linguistic knowledge through contrastive learning.

By using text features as classification weights during the inference

phase, CLIP enables zero-shot predictions and can be applied to a

variety of downstream tasks in a zero-shot manner. However, CLIP

primarily excels in general domain datasets like ImageNet and often

underperforms when processing data from certain fine-grained

domains Dong et al. (2024a). Therefore, it is necessary to fine-tune

the model using specific data from downstream tasks.

Fine-tuning based on textual prompts is a classic approach to

addressing the issue of small sample generalization in large

language models. Thus, consistent with Ming and Li (2024), we
Frontiers in Plant Science 05
first investigated two representative works, CoOp Zhou et al.

(2022b) and CoCoOp Zhou et al. (2022a). CoOp is the first to

incorporate the idea of prompt learning into the adaptation of

downstream tasks for multimodal pre-trained foundational models.

It uses learnable word embeddings to automatically construct

contextual prompts instead of manually designing prompt

templates for each task. Subsequently, Zhou et al. (2022a)

introduced visual features to guide the context optimization,

proposing Conditional Contextual Optimization (CoCoOp).

CoCoOp constructs a meta-network to learn features from

images. These features are then combined with prompt vectors to

enhance CoOp’s generalization performance for new category data.

Both CoOp Zhou et al. (2022b) and CoCoOp Zhou et al. (2022a)

methods only fine-tune the textual side of CLIP. However, a multi-

modal model where both visual and textual aspects are equally

important. By incorporating visual information as a condition for

text optimization, CoCoOp achieved significant improvements.

Hence, we argue that visual information may be more effective

for plant disease anomaly recognition than textual information. We

further investigated the visual side fine-tuning method of CLIP. For

visual prompt tuning Jia et al. (2022), we use ‘This is a photo of a

[CLS]’ as the textual prompt. For vision-language prompt tuning

Zang et al. (2022), we use unified prompt tokens to adapt

downstream tasks. Overall, we re-implemented these fine-tuning

paradigms for plant disease anomaly detection, including CoOp

Zhou et al. (2022b), CoCoOp Zhou et al. (2022a), VPT-CLIP Bahng

et al. (2022), and VLPT Zang et al. (2022). The schematic diagrams
FIGURE 2

Overview of different training frameworks with fine-tuning paradigms. Subfigures (A–H) illustrate sketches of different fine-tuning techniques, while
Subfigure (I) depicts the process of post-hoc anomaly detection methods.
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of these fine-tuning paradigms are shown in Figures 2G–I. To

ensure a fair comparison, we set the same number of learnable text

prompt tokens, with a length of 16.
3.2 Uncertainty score based on knowledge
ensemble

Fine-tuning models on more training samples can acquire more

domain-specific knowledge, but inevitably, the model will lose some

of the more general knowledge from the original pre-trained model

Wortsman et al. (2022). In other words, fine-tuning pre-trained

models using specific domain data often comes at the cost of model

robustness and generalization in exchange for significant

performance improvements on the target domain distribution.

Although strategies like freezing the backbone, as in the PEFT

method, are effective in preserving general knowledge, the learnable

adapters and prompts trained from scratch, cannot encompass all

general knowledge in the output features. Therefore, we propose an

uncertainty score-based ensemble method. It integrates the

uncertainty distribution of category predictions, domain-specific

knowledge, and general knowledge to balance general and domain-

specific knowledge. Figure 3 shows the pipeline of our method.
3.2.1 Uncertainty score based on category
prediction distribution

For CNN and ViT frameworks, we estimate the uncertainty

score of test samples using the distribution of logits from the output

categories of the fine-tuned model’s classification head. We refer to

this branch as the uncertainty score based on category prediction

distribution, denoted by SCPD, as shown in Figure 3. Please note that
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we allow for further processing of the logits, as is done in methods

based on energy Liu et al. (2020). Take the max-logits Basart et al.

(2022) as an example, for a test sample xi, the uncertainty score

based on category prediction distribution is formalized as:

SCPD(xi) = Norm( −max (
zi=T

oK
i=1zi=T

)), (10)

where zidenotes the logits of known class i, and T denotes the

temperature scaling factor. Energy-based and MCM-based

uncertainty scores are illustrated in Equations 7, 8.

3.2.2 Uncertainty score based on domain-specific
knowledge

The classification head retains only information directly

relevant to making the classification decision, ignoring other

information. In contrast, the final layer of the feature extractor

typically contains a highly abstract and compressed representation

of the original data, preserving more visual information. To

effectively utilize the visual information in the feature extractor,

we draw on the concept-matching approach and propose visual

information matching. Specifically, given the fine-tuned model Mft,

we compute the featuresMft(Xt) for all training set samples Xt. For a

test sample xi, we compute the featureMft(xi). Then, we normalize gi
and ft and calculate the maximum similarity, taking the negative

value as the uncertainty score. Finally, the uncertainty scores for all

samples are normalized to the [0,1] interval. Since fine-tuned

models generally focus better on the domain-specific knowledge

of downstream tasks, we refer to this as the uncertainty score based

on domain-specific knowledge, denoted by SDSK(as shown in

Figure 3). For a test sample xi, the uncertainty score based on

domain-specific knowledge can be formalized as:
FIGURE 3

Overview of our ensemble method for anomaly detection in plant disease recognition. The method is applicable to three types of models: CNNs,
ViTs, and VLMs. We leverage domain-specific scores SCPDfrom fine-tuned models and generalizable scores SGKfrom original (frozen) image encoders
to perform score-level integration. This strategy enables our method to combine discriminative power with generalization, improving robustness in
open-set and few-shot scenarios.
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SDSK (xi) = Norm( −max (similarity(Mft(Xt),Mft(xi)))) : (11)
3.2.3 Uncertainty score based on general
knowledge

We argue that the general knowledge extracted through the

original pre-trained model can enhance anomaly detection

performance. Therefore, given the original pre-trained model Mpt,

we compute the featuresMpt(Xt) for all training set samples Xt. For a

test sample xi, we compute the feature Mpt(xi). Then, we normalize

Mpt(xi) and Mpt(Xt) and calculate the maximum similarity, taking

the negative value as the uncertainty score. In this study, we use

cosine similarity to compute feature similarity. Similar to the

domain-specific feature-matching process, the uncertainty scores

for all samples are normalized to the [0,1] interval. For a test sample

xi, the uncertainty score based on general knowledge can be

formalized as:

SGK(xi) = Norm( −max(similarity(Mpt(Xt),Mpt(xi)))), (12)

Finally, given a text sample xi, the final ensemble uncertainty

scores can be formalized as Equation 13:

S(xi) =
(SCPD(xi) + SDSK (xi) + SGK (xi))=3 for  CNNs   or  ViTs

(SDSK (xi) + SGK (xi))=2 for  VLMs
:

(

(13)

We use three types of knowledge integration for purely visual

frameworks like CNN and ViT. For VLM, we only utilize feature

similarity scores from the visual branch for evaluation. The detailed

implementation of this method can be found in Algorithm 1.
Fron
Input: training set Xtrain, test set Xtest, fine-tuned

model Mft, pre-trained model Mpt, logits zifrom Mft,

temperature T

Output: uncertainty score S(xi)

for each test sample xifor each test sample xi∈ Xtest do

1. Compute SCPD(xi):

For CNN or ViT, use the output logits from the linear

classification head after the image encoder.

For VLM, use the similarity score between the image and

textual embeddings.

2. Compute SDSK(xi):

Extract features fi= Mft(xi) and Ft= Mft(X
train). Note that

the “features” here refer exclusively to those
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extracted by the image encoder, excluding features

from the text encoder.

Normalize extracted features, then compute

cosine similarity

Compute SDSK(xi) according to Equation 11

3. Compute SGK(xi):

Extract features Mpt(xi) and Mpt(X
train). Note that the

“features” here refer exclusively to those extracted by

the image encoder, excluding features from the

text encoder.

Normalize extracted features, then compute

cosine similarity

Compute SGK(xi) according to Equation 12

4. Final Uncertainty Score:

Fuse scores according to Equation 13 to obtain S(xi)

end for
Algorithm 1. Knowledge-Ensemble-Based uncertainty scoring.
4 Experiments

4.1 Implementation details

For the convolutional neural network and vision transformer

frameworks, we used ConvNeXt-base Liu et al. (2022) and ViT-

base-patch16–224 Dosovitskiy et al. (2020) as backbone networks.

These models have nearly equivalent parameters (87.57M in

ConvNeXt-base vs. 85.80M in ViT-base-patch16-224) and were

both pre-trained on the ImageNet-21k dataset Deng et al. (2009).

For the vision-language model framework, we adopted CLIP

Radford et al. (2021) with the CLIP-ViT-B/16 backbone.

For each architecture (CNN, ViT, and VLM), we fine-tune a

backbone model using supervision from known classes only.

Specifically, for CNN and ViT models, we adopt a standard linear

classifier head and optimize using cross-entropy loss. For vision-

language models (VLMs) such as CoCoOp, we fine-tune the

learnable text prompts while keeping the vision encoder frozen,

and the model is trained using a contrastive loss between image and

text embeddings, following the CLIP training paradigm.

Additionally, for the fine-tuning methods related to CNN and

ViT architectures, we adopted the publicly available codebase

provided by Jia et al. (2022) at https://github.com/KMnP/vpt,

which includes implementations of adapter tuning and prompt-
TABLE 1 Training and testing splits for the Plant Village dataset.

Dataset split

Known classes Unknown classes

Classes Images Classes Images

Training 12 12062 – –

Testing 12 3021 26 39220

Known Class Names
Cherry healthy leaf, Tomato healthy leaf, Grape healthy leaf, Raspberry healthy leaf, Apple healthy leaf, Blueberry healthy leaf, Soybean healthy
leaf, Strawberry healthy leaf, Peach healthy leaf, Potato healthy leaf, Corn healthy leaf, Bell Pepper healthy leaf
The 12 known classes are selected from 12 healthy categories in the Plant Village dataset, such as healthy apple leaves.
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based tuning. For the VLM-related fine-tuning methods, we utilized

the codebase released by Shen et al. (2024) at https://github.com/

sIncerass/MVLPT/tree/main.

All models were optimized using the AdamW optimizer with a

weight decay of 0.01. The initial learning rate was set to 0.0001 for

full fine-tuning (FFT) and 0.001 for parameter-efficient tuning

methods (e.g., VPT, VAT). The learning rate was linearly warmed

up over the first 10 epochs and then decayed using a cosine

scheduler. Training was performed for 100 epochs with a batch

size of 128, and early stopping was applied based on the best

validation accuracy. All experiments were conducted using PyTorch

v1.10.0 on a single Nvidia RTX 4090 GPU.

After fine-tuning, we evaluate test samples using three score-

level uncertainty measures: SCPD (category prediction distribution

from classification logits), SDSK (domain-specific knowledge via

feature similarity from the fine-tuned model), and SGK (general

knowledge via feature similarity from the frozen pre-trained

model). The final anomaly score is computed as a non-parametric

ensemble of these three components (see Equation 13). The final

decision on whether a sample belongs to a known or unknown class

is made based on a thresholding strategy applied to the ensemble

score, as described in Equation 5.

Our enhancement method does not require additional training

as long as pre-trained and fine-tuned models are available. The

classification stage uses cross-entropy loss, while cosine similarity
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loss is used for the similarity-based scoring components, depending

on the specific configuration.
4.2 Dataset splits

We utilize the Plant Village dataset Hughes and Salathé (2015)

to construct a few-shot anomaly detection benchmark. Then, we

proposed an enhancement method based on this benchmark. Plant

Village Dataset Hughes and Salathé (2015) is a plant disease dataset

containing 54,309 images, covering a total of 38 categories of both

healthy and diseased leaf samples. Among these 38 categories, there

are samples of 12 species of healthy leaves and 26 diseased leaves.

The disease types include fungi, bacteria, oomycetes, viruses, and

mites. In our study, we use the images of 12 types of healthy leaves

as known categories to build the training dataset, and the remaining

26 disease categories are considered as unknown classes, included in

the test dataset. We validated our method’s effectiveness using this

partitioning strategy The dataset split information of the Plant

Village dataset is shown in Table 1.

We extended our method to more datasets to verify its

effectiveness, including: Cotton Disease Dataset Dhamodharan

(2023). This dataset contains approximately 4,800 images

covering six categories: five cotton leaf disease types and one

healthy category. The dataset maintains a balanced distribution
TABLE 2 Division of known and unknown classes for other four dataset.

Class id
Cotton

classes name
Mango

classes name
Strawberry

classes name
Tomato

classes name

1 Healthy Healthy Healthy Healthy

2 Powdery mildew Sooty mould Powdery mildew leaf Early blight

3 Target spot Anthracnose Anthracnose fruit rot Leaf mold

4 Aphids Powdery mildew Leaf spot Spider mites

5 Bacterial blight Bacterial canker Powdery mildew fruit Septoria leaf spot

6 Army worm DieBack Blossom blight Mosaic virus

7 – Cutting weevil Angular leaf spot Bacterial spot

8 – Gall midge Gray mold Late blight

9 – – – Yellow leaf curl virus

10 – – – Target spot

Below is the division of known (K) and unknown (U) classes for each dataset.

Exp. no. Cotton (K/U) Mango (K/U) Strawberry (K/U) Tomato (K/U)

1 1,2/5,6 1,2/7,8 1,2/7,8 1,2/8,9,10

2 1,2,3/5,6 1,2,3/7,8 1,2,3/7,8 123/8,9,10

3 1,2,3,4/5,6 1,2,3,4/7,8 1,2,3,4/78 1,2,3,4/8,9,10

4 – 1,2,3,4,5/7,8 1,2,3,4,5/7,8 1,2,3,4,5/8,9,10

5 – 1,2,3,4,5,6/7,8 1,2,3,4,5,6/7,8 1,2,3,4,5,6/8,9,10

6 – – – 1,2,3,4,5,6,7/8,9,10
K denotes known classes, and U denotes unknown classes.
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with around 800 images per category. In our experiments, we

construct different settings with 2–4 known classes and 2

unknown classes.

Mango Leaf Disease Dataset Ahmed et al. (2023). This dataset

comprises 4,000 images of mango leaves across eight categories: seven

disease types and one healthy category. The images evenly distributed

with approximately 500 images per category. We use different splits

with 2–6 known categories and 2 unknown categories for evaluation.

Strawberry Disease Dataset Afzaal et al. (2021). This dataset

includes 2,500 images representing various stages of strawberry leaf

diseases and healthy leaves. To ensure consistency across benchmarks,

images of healthy strawberry leaves from the PlantVillage dataset

Hughes and Salathé (2015) are added. This updated dataset

comprises 2,974 images of strawberry leaves across eight categories:

seven disease types and one healthy category. We configure 2–6

categories as known and 2 categories as unknown for anomaly

detection evaluation.

Tomato Disease Dataset Hughes and Salathé (2015). A subset of

the PlantVillage dataset, this collection focuses on tomato leaf

conditions, containing 10 categories in total — 9 disease types

and 1 healthy category. It exhibits class imbalance, with per-class

image counts ranging from 300 to over 5,000. In our settings, we

select 2–7 categories as known and 3 categories as unknown. More

detailed category assignment can be found in Table 2.

To enhance reproducibility and clarity, we have added details

regarding how the class splits are configured. For example, in the

first experiment on the Tomato dataset, categories 1 and 2 are

assigned as known classes, while categories 8, 9, and 10 are treated

as unknown classes. Specifically, Healthy and Early Blight are

treated as known categories, whereas Late Blight, Yellow Leaf

Curl Virus, and Target Spot are treated as unknown. The model

is required to perform classification among the known categories,

and the classification accuracy on these is evaluated using standard

accuracy metrics. During inference, when encountering samples

from the three unknown categories, the model should ideally reject

these samples. If the model classifies Early Blight as unknown, or

misclassifies Late Blight as Early Blight, these are considered

incorrect predictions. Such misclassifications negatively impact

the AUROC score and increase the FPR@TPR95 score.
4.3 Main results

In this section, we present the main results of our study, as

summarized in Tables 3, 4. The results are analyzed from three

perspectives: training frameworks, fine-tuning paradigms, sample

sizes, and anomaly detection methods. Note that “Ours” in Tables 3,

4 refers to the deployment of our proposed method. When using

our approach, each model requires both a fine-tuned and a frozen

version. In contrast, the other methods rely solely on the fine-

tuned model.

4.3.1 Training frameworks
The benchmark includes three types of training frameworks:

CNN-based, ViT-based, and VLM-based. For CNN-based models,
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the baseline methods demonstrated decent performance under all-

shot settings, with AUROC values of 96.72% for FFTEnergy and

95.89% for V ATMax–Logits. However, these methods struggled in

low-shot settings, such as 2-shot, where AUROC scores dropped to

56.54% and 44.91%, respectively. In contrast, our enhanced

methods significantly improved performance. For example,

FFTEnergy(Ours) achieved an AUROC of 83.30% in the 2-shot

setting, a remarkable improvement of nearly 27% over the

baseline. Similarly, V ATEnergy(Ours) improved the 2-shot

AUROC from 44.86% to 91.50%. Across all-shot settings, our

enhancements consistently achieved near-perfect AUROC scores,

such as 99.72% for FFTEnergy(Ours).

For ViT-based models, baseline methods exhibited weaker

performance under low-shot settings. For instance, FFTEnergy

achieved an AUROC of 78.32% in the 2-shot setting. However,

our enhanced method FFTEnergy(Ours) dramatically improved this

to 93.13%, an improvement of over 14%. Similarly, V ATEnergy

(Ours) outperformed its baseline counterpart in the 2-shot setting,

achieving an AUROC of 94.60% compared to 84.35%. This trend

was consistent across different shot counts, with the enhancements

narrowing the performance gap between low-shot and all-

shot settings.

The VLM-based models showed the most dramatic

improvements with our enhancements. For example, in the 2-shot

setting, the baseline CoOpMCM achieved an AUROC of only 54.40%,

while our enhanced CoOpMCM(Ours) reached 91.64%, an

improvement of over 37%. Similarly, V LPTMCM(Ours) achieved

93.81% in the 2-shot setting, compared to just 72.00% for the

baseline. These results underscore the ability of our method to

effectively leverage multi-modal architectures for anomaly detection.

4.3.2 Sample sizes
The evaluation across different sample sizes (2-shot, 4-shot, 8-

shot, 16-shot, and all-shot) revealed consistent trends.

In the 2-shot setting, baseline methods generally struggled. For

example, FFTEnergy in the CNN-based framework achieved an

AUROC of 56.54%, while our enhanced method FFTEnergy(Ours)

improved this to 83.30%. Similarly, for the VLM-based framework,

V LPTMCM achieved 72.00%, whereas V LPTMCM(Ours) reached an

impressive 93.81%.

As the sample size increased, both baseline and enhanced

methods showed improved performance. For instance, in the

CNN-based framework, FFTEnergy(Ours) achieved an AUROC of

95.77% at 4shot and 99.72% at all-shot, maintaining robust

performance throughout. In the VLM-based framework, V

LPTMCM(Ours) achieved 98.16% with only 8-shot, demonstrating

capability in few-shot learning. When all available data is used for

training, our method attains almost perfect AUROC scores close to

or exceeding 99.5%, which indicates that the model can correctly

detect almost all anomalous samples.

As for the accuracy of known classes, increasing the number of

training samples per class leads to substantial improvements in

classification accuracy across all models. As shown in Table 4, most

frameworks reach over 95% accuracy by the 8-shot setting and

converge to nearly 100% in the all-shot configuration. This pattern
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TABLE 3 Plant disease anomaly detection benchmark and our enhanced method.

Methods FPR@TPR95↓/AUROC↑ at different shots

CNN-based Promots 2-shot 4-shot 8-shot 16-shot All-shot

FFTEnergy – 89.59/56.54 74.86/75.70 50.20/88.22 68.37/74.24 7.91/96.72

FFTEnergy(Ours) – 53.24/83.30 23.60/95.77 10.71/97.47 21.83/94.02 1.21/99.72

FFTMax−Logits – 89.23/56.53 75.40/75.66 51.70/88.19 67.92/74.37 7.91/96.72

FFTMax−Logits(Ours) – 53.05/83.29 23.87/95.73 11.09/97.44 21.51/94.14 1.21/99.72

VATEnergy – 98.11/44.86 84.97/66.97 92.00/53.84 68.49/71.99 16.20/95.86

VATEnergy(Ours) – 38.71/91.50 24.31/95.28 10.10/97.75 10.81/97.66 1.75/99.60

VATMax−Logits – 98.03/44.91 85.21/66.59 91.62/54.79 68.63/72.11 16.08/95.89

VATMax−Logits(Ours) – 38.80/91.50 24.33/95.29 10.01/97.74 10.78/97.66 1.74/99.60

VPTEnergy – 89.59/56.54 74.86/75.70 50.20/88.22 68.37/74.24 7.91/96.72

VPTEnergy(Ours) – 26.27/94.83 27.42/93.75 20.64/94.18 10.67/97.55 1.78/99.64

VPTMax−Logits – 89.23/56.53 75.40/75.66 51.70/88.19 67.92/74.37 7.91/96.72

VPTMax−Logits(Ours) – 26.27/94.83 27.42/93.75 20.57/94.20 10.67/97.55 1.70/99.66

ViT-based Promots 2-shot 4-shot 8-shot 16-shot All-shot

FFTEnergy – 72.42/78.32 68.10/83.26 26.47/94.93 21.87/95.65 6.14/98.62

FFTEnergy(Ours) – 34.39/93.13 27.11/95.40 10.36/98.06 7.84/98.33 1.68/99.62

FFTMax−Logits – 72.59/78.20 65.58/83.60 28.62/94.70 21.78/95.59 6.13/98.61

FFTMax−Logits(Ours) – 34.82/92.87 28.07/95.33 10.91/97.99 7.96/98.30 1.66/99.62

VATEnergy – 48.31/84.35 70.39/83.50 49.80/86.80 43.43/90.32 6.25/98.44

VATEnergy(Ours) – 26.06/94.60 36.15/93.34 13.68/96.94 16.69/96.36 2.28/99.55

VATMax−Logits – 53.93/83.04 73.57/83.21 49.58/86.79 44.10/90.35 6.25/98.44

VATMax−Logits(Ours) – 26.25/94.38 37.77/93.16 13.79/96.97 17.90/96.31 2.25/99.56

VPTEnergy – 54.74/88.62 61.26/87.89 22.49/95.91 25.81/94.78 8.82/98.36

VPTEnergy(Ours) – 30.73/94.41 29.23/94.37 11.06/97.96 13.30/97.23 2.11/99.54

VPTMax−Logits – 58.75/87.55 56.10/88.46 24.34/95.68 26.44/94.64 8.81/98.35

VPTMax−Logits(Ours) – 29.79/94.12 29.43/94.31 11.90/97.85 13.36/97.20 1.99/99.57

VLM-based Promots 2-shot 4-shot 8-shot 16-shot All-shot

CoOpMCM LP + [CLS] 93.50/54.40 86.93/56.91 89.32/60.09 81.94/66.87 68.97/75.28

CoOpMCM(Ours) LP + [CLS] 41.51/91.64 35.16/92.62 29.36/94.34 23.50/95.63 9.77/98.29

CoCoOpMCM LP + [CLS] 91.81/60.92 85.39/63.99 77.37/76.63 64.89/81.20 40.08/88.61

CoCoOpMCM(Ours) LP + [CLS] 41.51/91.64 35.16/92.62 29.36/94.34 23.50/95.63 9.77/98.29

VPTMCM FP + [CLS] 85.01/68.24 72.90/73.66 61.74/84.61 51.55/84.20 15.67/96.23

VPTMCM(Ours) FP + [CLS] 38.17/91.13 21.68/94.94 15.12/97.01 9.36/97.83 0.53/99.87

VLPTMCM LP + [CLS] 80.60/72.00 73.48/72.64 63.88/80.34 43.88/87.77 15.38/96.50

VLPTMCM(Ours) LP + [CLS] 27.98/93.81 16.17/96.16 9.05/98.16 7.05/98.41 0.71/99.85
F
rontiers in Plant Scien
ce
 10
LP and FP denote a learnable prompt and fixed prompt where the fixed prompt is ‘This is a photo of a ‘. [CLS] denotes known class names. We present the results of deploying our method across
various training frameworks, fine-tuning paradigms, shots, and anomaly detection methods.
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confirms that the models are capable of quickly learning the known

class decision boundaries with relatively few examples. It also

provides reassurance that errors observed in anomaly detection

are not due to poor discrimination among known categories, but

rather the inherent difficulty of detecting unknowns.

While the overall trend aligns with the expectation that

performance improves with more data, minor inconsistencies—

such as 8-shot occasionally outperforming 16-shot in CNN-based

settings—can be observed. We attribute these fluctuations to the

randomness of few-shot data splits and the instability of training

CNNs under low-data regimes. These variations are within the

expected range in few-shot learning scenarios and do not

undermine the overall upward trend.

4.3.3 Anomaly detection methods
We evaluated multiple anomaly detection approaches,

including energy-based and max-logits-based methods. In general,

energy-based methods achieved results comparable to their max-

logits counterparts. For example, in the CNN-based framework,

FFTEnergy achieved an AUROC of 96.72% in the all-shot setting,

identical to that of FFTMax–Logits. Similarly, in the ViT-based

framework under the 2-shot setting, FFTEnergy(Ours) reached

93.13% AUROC, while FFTMax–Logits(Ours) achieved 92.87%.

Across CNN-, ViT-, and VLM-based frameworks, our

enhanced multi-modal methods consistently demonstrated

substantial improvements. For instance, CoOpMCM(Ours) achieved

an AUROC of 91.64% in the 2-shot setting, significantly

outperforming the baseline CoOpMCM at 54.40%. Similarly, V

LPTMCM(Ours) reached 99.85% in the all-shot setting, surpassing

the baseline score of 96.50%.

Overall, our proposed method consistently improved the

performance of baseline anomaly detection approaches across

different model architectures, fine-tuning paradigms, and few-shot
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configurations. These results indicate that our method generalizes

effectively and enhances robustness in low-shot scenarios, providing

a solid foundation for advancing anomaly detection in plant disease

recognition tasks.
4.4 Ablation study

We present the results of our ablation experiments in Figure 4,

which evaluate the contributions of different components of our

method under various training frameworks, fine-tuning paradigms,

and shot configurations. The results demonstrate that integrating

general knowledge from pre-trained models and combining it with

domain-specific knowledge significantly improves anomaly

detection performance, particularly in few-shot settings.

The baseline method, represented by the green line, shows limited

performance across all frameworks, especially in low-shot scenarios.

For instance, in the fully fine-tuned CNN-based framework, the

AUROC starts at 56.53% in the 2-shot setting and only reaches

96.72% in the all-shot setting, highlighting the model’s inability to

generalize with limited data. By integrating general knowledge (blue

line), the performance improves substantially, with AUROC increasing

to 93.69% in the Vision Transformer framework (2-shot, visual adapter

tuning) and 93.81% in the VLM-based VLPT model (2-shot). This

demonstrates the importance of leveraging the pre-trained model’s

general knowledge to handle few-shot scenarios effectively.

Further, the ensemble of general and domain-specific knowledge

(red line) achieves the most significant improvements, consistently

outperforming the baseline and general knowledge integration across

all frameworks and fine-tuning paradigms. For example, in the Vision

Transformer framework with fully fine-tuned models, the AUROC

improves from 78.20% (baseline) to 94.95% (ensemble) in the 2-shot

setting. Similarly, in the VLM-based VLPTmodel, the AUROC reaches
TABLE 4 Accuracy of known classes in Plant disease anomaly detection Benchmark.

Methods Prompts Accuracy of known classes ↑ at different shots

CNN-based 2-shot 4-shot 8-shot 16-shot All-shot

FFT – 77.99 90.50 96.13 98.51 100.00

VAT – 45.55 42.20 59.68 84.57 100.00

VPT – 88.58 96.13 97.91 99.01 100.00

ViT-based 2-shot 4-shot 8-shot 16-shot All-shot

FFT – 81.76 89.57 93.15 95.70 100.00

VAT – 73.55 87.32 97.29 97.48 100.00

VPT – 91.56 95.27 98.41 98.64 100.00

VLM-based 2-shot 4-shot 8-shot 16-shot All-shot

CoOp learnable prompt + [CLS] 78.07 85.83 92.73 96.33 99.20

CoCoOp learnable prompt + [CLS] 74.13 79.60 92.03 95.83 99.20

VPT This is a photo of a + [CLS] 86.90 92.93 95.77 98.60 100.00

VLPT learnable prompt + [CLS] 84.23 90.87 96.00 98.07 99.99
[CLS] denotes known class names. We present the results of deploying our method across various training frameworks, fine-tuning paradigms, and shots.
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99.85% in the all-shot setting, demonstrating near-perfect performance.

Importantly, our method reduces the discrepancies in detection

performance across fine-tuning paradigms. For instance, in the

CNN-based framework, visual adapter tuning achieves an AUROC

of 97.14% in the all-shot setting, closely aligning with the fully fine-

tuned paradigm at 99.72%.

Although the paradigm of parameter-efficient fine-tuning has

preserved most of the general knowledge in the original pre-trained

model, the explicit integration of this general knowledge can still

further enhance anomaly detection performance. For instance, in

VLM cases, we observe a slight performance improvement. In

summary, the ablation study highlights that our method not only

improves performance in few-shot settings but also ensures

consistent and robust results across different training frameworks

and fine-tuning paradigms.
4.5 Generalizability

To assess the generalization capability of our method beyond

clean benchmark datasets, we conducted additional experiments on

a real-world Cotton Disease dataset, which was collected under
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diverse field conditions, including natural illumination variations,

complex backgrounds, and non-uniform image quality. This dataset

presents a more challenging scenario compared to studio-collected

datasets such as PlantVillage.

As shown in Table 5, our method consistently improves the

performance of baseline methods across various fine-tuning types

(FFT, VAT, VPT) and few-shot settings (from 2-shot to all-shot).

The improvements are particularly pronounced under limited-

sample conditions. For example, in the 4-shot setting, VATMax-

Logits(Ours) reduces the FPR@TPR95 from 81.71% to 58.87%.

Moreover, as the number of samples increases, the model’s ability

to distinguish unknown samples improves significantly. Under the

VPT prompt, for instance, our method (VPTMax-Logits(Ours))

achieves an FPR@TPR95 of 12.24% and AUROC of 97.15% in

the all-shot setting, which is highly competitive given the variability

of field-acquired imagery. Similarly, in both FFT and VAT settings,

our method achieves the best or second-best performance in the 8-

shot and all-shot settings, demonstrating robustness in data-

scarce scenarios.

These results demonstrate that our approach not only performs

well on standard benchmarks but also generalizes effectively to

complex real-world agricultural data. However, we also observed
FIGURE 4

Ablation results on the Plant Village dataset under different training frameworks, fine-tuning paradigms, shots, and anomaly detection methods.
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that complex scenarios introduce significant challenges for anomaly

detection. Under fow-shot settings, this may lead to performance

degradation. For example, on the clean PlantVillage dataset, using

just 2-shots can reduce FPR@TPR95 to 20%-30%(lower is better),

whereas on the Cotton dataset, the same metric remains above 70%

in all few-shot configurations. This limitation suggests that our

method may require additional enhancement before being reliably

deployed in practical agricultural systems.
4.6 Visualization of uncertainty distribution

To provide intuitive insight into how our knowledge integration

method improves anomaly detection performance, we visualize the

distributions of uncertainty scores for known and unknown

samples across various training frameworks, fine-tuning

paradigms, and ensemble configurations, as shown in Figure 5.

These visualizations allow us to analyze how effectively different

models separate known and unknown samples.

We use 12 healthy classes from the PlantVillage dataset as

known categories and 26 diseased classes as unknowns. For zero-

shot settings, vision-language models (VLMs) rely solely on text

prompts constructed from class names. For CoOp and CoCoOp, we

adopt their standard prompting strategies, appending class names

to learnable tokens. In addition to zero-shot inference, we present

comparisons under 2-shot and all-shot settings to examine

performance across varying supervision levels.

The distributions reveal three important patterns:
Fron
1. Poor separability in zero-shot and baseline settings. Zero-

shot CLIP achieves an AUROC of only 58.47%, indicating

severe overlap between known and unknown distributions.
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Although CoCoOp adds prompt adaptability, it remains

suboptimal in the 2-shot setting with an AUROC of

60.92%, suggesting difficulty in modeling fine-grained

visual differences in plant diseases without stronger

visual grounding.

2. Effectiveness of our knowledge integration method. When

our method is applied (rightmost columns), the

distributions exhibit significantly improved separability.

For instance, under visual prompt tuning in the 2-shot

setting, our method improves AUROC from 87.55% to

94.12% and reduces FPR@TPR95 from 58.75% to 29.79%.

In the all-shot setting, the improvement is even more

dramatic, achieving an AUROC of 99.57% and reducing

FPR@TPR95 to 1.99%, clearly outperforming all baselines.

3. Empirical validation of the integration mechanism. Our

method works by combining three complementary

uncertainty perspectives: prediction confidence (SCPD),

domain-specific feature similarity (SDSK), and general

knowledge feature similarity (SGK). As seen in Figure 5,

this multi-view fusion leads to tighter distributions for

known classes and a wider margin between known and

unknown distributions. This suggests that general

knowledge from frozen models plays a critical role in

calibrating over-confident predictions made by fine-tuned

models, especially in low-shot settings.
In summary, the results validate the critical importance of

preserving and effectively utilizing the general knowledge

embedded in pre-trained models. While lightweight fine-tuning

paradigms like visual prompt tuning partially retain this knowledge,

our knowledge integration method amplifies it, leading to superior

separability between known and unknown categories.
TABLE 5 Generalization results.

Methods Prompts FPR@TPR95↓/AUROC↑ at different shots

ViT-based 2-shot 4-shot 8-shot 16-shot All-shot

FFTEnergy 81.71/77.04 73.73/77.65 77.58/81.53 65.34/88.81 24.76/95.52

FFTEnergy(Ours) 76.34/79.08 69.92/81.88 61.21/86.12 51.44/89.83 16.23/97.55

FFTMax−Logits 80.47/75.74 73.59/76.65 77.27/81.55 65.75/88.66 24.48/95.54

FFTMax−Logits(Ours) 73.63/78.41 70.45/78.36 67.54/85.03 52.68/89.08 15.27/97.59

VATEnergy 91.06/70.01 81.98/78.02 66.99/78.13 63.41/83.64 14.72/97.51

VATEnergy(Ours) 83.49/76.99 64.51/80.05 57.22/83.59 51.44/86.93 12.52/97.72

VATMax−Logits 90.78/69.94 81.71/78.14 64.10/78.60 63.55/84.10 13.20/97.69

VATMax−Logits(Ours) 77.99/77.54 58.87/80.12 59.70/83.80 53.65/87.15 12.38/97.77

VPTEnergy 96.29/60.13 79.78/76.67 68.23/80.24 51.44/85.51 13.76/96.77

VPTEnergy(Ours) 77.30/77.52 62.31/82.72 67.40/81.40 51.17/87.65 12.24/96.98

VPTMax−Logits 94.77/61.61 85.01/77.95 66.16/81.06 51.86/85.71 13.20/96.83

VPTMax−Logits(Ours) 72.63/77.66 63.41/82.72 64.10/81.99 50.48/87.71 12.24/97.15
We evaluate the generalization capability of our method using the third experimental group on the Cotton dataset (refer to Table 2) with the standard ViT-base-patch16–224 model.
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5 Discussion

5.1 Effect of ensemble strategies on VLMs

Recent research has shown that zero-shot language prompts in

vision tasks and other lightweight fine-tuning methods have

demonstrated potential for improving anomaly detection

performance in natural language processing Ming et al. (2022); Ming

and Li (2024). MCM Ming et al. (2022) matches the conceptual

information of known categories with the visual features of test

samples. However, designing effective language prompts for plant

disease detection has proven to be more complex Dong et al.
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(2024a). For instance, using CoCoOp to generate adaptive context

prompts for plant diseases reduced the FPR@TPR95 score to 40.08% in

the all-shot setting, which is still much lower than expected. In

comparison, we found that a single-modal visual pre-trained model

achieved an FPR as low as 28.62% (max-logits in the ViT framework)

in the 8-shot setting. Therefore, we argue that the visual symptoms of

plant diseases are critical for distinguishing between known and

unknown class samples. For fine-grained plant disease anomaly

detection, a naive application of concept matching may introduce

side effects, resulting in suboptimal performance.

To understand why performance is so much lower than

expected, we visualize the distribution of uncertainty scores and
FIGURE 5

Comparing the uncertainty distributions among different frameworks, fine-tuning paradigms, and the deployment of the ensemble method. We fine-
tuned on the Plant Village dataset in a 2-shot and all-shot settings and visualized these uncertainty distributions. For CoCoOp, we used the
maximum concept matching to measure uncertainty. We calculated uncertainty using the maximum logits value for the single-modal visual pre-
trained model.
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the predicted category distribution in Figure 6. We first tested

CLIP’s zero-shot anomaly detection performance using diseased

peach leaves as unknown classes. For all the diseased peach leaf

samples, approximately 50% were classified as healthy cherry leaves,

and about 25% were classified as healthy peach leaves, which

indicates the shortcoming of zero-shot CLIP in plant-related

tasks. From the perspective of uncertainty scores, the distribution

is concentrated around 0.9, suggesting that the model was fairly

uncertain about both known and unknown classes. When we tested

the model’s anomaly detection performance in a 16-shot setting

using diseased peach leaves and orange leaves as unknown classes,

CoCoOp significantly reduced the uncertainty of known class

samples, which is shown in Figure 6. However, when testing the

model with diseased peach leaves affected, the model confidently

classifies most diseased peach leaves (more than 90% in CoCoOp)

as healthy peach leaves. When testing with diseased orange leaves,

the model still shows great uncertainty because the known classes

do not include orange leaves. Therefore, we believe that vision-

language models focus more on matching nouns and image

features, neglecting adjectives, which severely impacts the VLMs’

performance in fine-grained identification tasks like plant disease

anomaly detection.

Finally, we attempted to integrate MCMwith our method, as we

did with the CNN and ViT frameworks. However, while

performance improved, it did not surpass the results obtained by

directly using feature similarity to identify anomaly samples.

Relevant results are provided in Table 6. Consequently, for VLM,

we did not integrate category prediction distribution scores.

Notably, our approach achieved an AUROC score of 91.64% in

the 2-shot setting, significantly outperforming the baseline method

[CoCoOp Ming et al. (2022)] fine-tuned on the entire dataset
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(88.61%). Furthermore, for visual prompt tuning and unified

vision-language prompt tuning, we reduced the FPR@TPR95 to

0.53% and 0.71%, respectively, in the all-shot setting, which

is remarkable.
5.2 Validation of our method in open-set
settings

In the Plant Village dataset, we selected healthy leaves as the

known class and treated diseased leaves as anomaly samples to

evaluate the anomaly detection performance of our method. In fact,

open-set tasks can also be viewed as another application of anomaly

detection. In this case, some disease categories within the same

plant species are considered known, while others are treated as

anomalies due to the assumption that they have not yet been

collected. To further validate the effectiveness of our method, we

conducted experiments on four commonly used plant disease

datasets: cotton, mango, strawberry, and tomato. The results are

summarized in Figure 7. Note that the results in Figure 7 are

averaged over different experiment numbers based on various splits

within the specific dataset. Please refer to Table 2 for the

corresponding experiment numbers. For example, for the Cotton

dataset, we calculated the average results across three experiments.

The results demonstrate significant improvements in both

FPR@TPR95 and AUROC scores when incorporating general

knowledge (GK) and domain-specific knowledge (DSK). The

baseline method, represented by the green bars, exhibits higher

FPR@TPR95 across all datasets and frameworks, indicating a higher

rate of false alarms. For instance, in the FFT framework, FPR@

TPR95 for cotton starts at 29.78% but is reduced to 8.22% when
FIGURE 6

Visualization of predictions and uncertainty scores. We trained CLIP-ViT-B/16 on the Plant Village dataset and visualized the prediction results as well
as the uncertainty distribution. Note that the uncertainty score is calculated by MCM.
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combining GK and DSK. Similarly, in the VAT framework, FPR@

TPR95 on strawberry decreases from 48.83% to 14.02%, and in the

VPT framework, FPR@TPR95 on mango is reduced from 31.51% to

4.27%. These reductions highlight the effectiveness of our method in

lowering false positive rates, particularly for challenging datasets

like strawberry and tomato.

In terms of AUROC, our method achieves near-perfect scores

when integrating GK and DSK. For example, in the FFT framework,

AUROC on cotton improves from 92.33% to 98.85%, while in the

VAT framework, AUROC on mango increases from 90.87% to

98.44%. The VPT framework demonstrates similar gains, with

AUROC on tomato rising from 94.86% to 99.47%. These results

underscore the robustness and adaptability of our approach across

different datasets and frameworks. By explicitly integrating GK and

DSK, our method enhances performance in open-set settings and

ensures consistent improvements, making it highly practical for

real-world anomaly detection tasks in plant disease datasets.
5.3 Complexity

We conduct a systematic comparison of model complexity in

terms of trainable parameters, inference parameters, and inference time

per image, across different architectures and fine-tuning paradigms, as

shown in Table 7. Our method introduces a minimal number of

additional trainable parameters—approximately 6K to 12K—across all

training paradigms. This overhead is negligible compared to the total

model size (ranging from tens to hundreds of millions of parameters),

making our approach lightweight and easy to integrate. This evaluation

helps quantify the trade-offs between computational cost and anomaly

detection performance, especially when deploying our knowledge

integration method.

In terms of inference, our method approximately doubles the

number of parameters involved in score computation, leading to a
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0.5x to 1x increase in inference-time parameters. Consequently, the

per-image inference latency increases by about 1–2 ms. This time-

increase remains acceptable for real-time or near real-time

applications, especially considering the substantial performance

gains demonstrated in previous sections. However, the total

inference time remains within 1–4 ms per image, which is

sufficiently fast for most practical and industrial applications,

including large-scale plant disease monitoring systems.

Overall, across all training frameworks, our method introduces

only minimal additional trainable parameters (0.006M −0.012M).

The inference cost primarily stems from computing two

independent logits and integrating them in score space, not from

modifying the backbone itself. This design ensures that the

proposed knowledge integration method is model-agnostic and

readily deployable across various architectures without extensive

retraining. Importantly, these moderate complexity increases yield

significant improvements in anomaly detection performance,

justifying the trade-off for real-world applications.
5.4 Limitations and future direction

5.4.1 Limitations
While our study proposes a standardized benchmark and a

practical knowledge integration strategy for anomaly detection in

plant disease recognition, it has several limitations.

First, although our method is architecture-agnostic and

demonstrates consistent improvements across CNNs, ViTs, and

VLMs, it does not introduce a novel backbone or feature extractor.

Our goal is not to outperform highly specialized state-of-the-art

(SOTA) models designed for fine-grained classification [e.g.,

DetailCLIP Monsefi et al. (2024); Mendoza-Bernal et al. (2024)],

but rather to offer a general and lightweight enhancement strategy

that can be readily applied across model families. We acknowledge
TABLE 6 Results of the different ensemble strategies for the VLM framework.

Methods Prompts FPR@TPR95↓/AUROC↑ at different shots

CoCoOp 2-shot 4-shot 8-shot 16-shot All-shot

MCM LP + [CLS] 91.81/60.92 85.39/63.99 77.37/76.63 64.89/81.20 40.08/88.61

MCM +GK +DSK LP + [CLS] 47.95/85.44 39.09/88.35 30.15/92.73 23.11/94.72 7.94/98.25

GK +DSK(Ours) LP + [CLS] 41.51/91.64 35.16/92.62 29.36/94.34 23.50/95.63 9.77/98.29

VPT 2-shot 4-shot 8-shot 16-shot All-shot

MCM FP + [CLS] 85.01/68.24 72.90/73.66 61.74/84.61 51.55/84.20 15.67/96.23

MCM +GK +DSK FP + [CLS] 58.79/82.86 42.19/88.99 31.71/92.96 23.12/94.15 2.26/99.56

GK +DSK(Ours) FP + [CLS] 38.17/91.13 21.68/94.94 15.12/97.01 9.36/97.83 0.53/99.87

VLPT 2-shot 4-shot 8-shot 16-shot All-shot

MCM LP + [CLS] 80.60/72.00 73.48/72.64 63.88/80.34 43.88/87.77 15.38/96.50

MCM +GK +DSK LP + [CLS] 38.51/89.83 30.21/91.46 20.41/95.20 13.22/96.80 1.79/99.64

GK +DSK(Ours) LP + [CLS] 27.98/93.81 16.17/96.16 9.05/98.16 7.05/98.41 0.71/99.85
LP and FP denote a learnable and fixed prompt where the fixed prompt is ‘This is a photo of a ‘. [CLS] denotes known class names. We present the results of deploying our method across various
training frameworks, fine-tuning paradigms, and shots.
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that integrating our approach into more complex backbones may

yield higher accuracy, but this lies beyond the current scope and

would require considerable computational resources.

Second, although our evaluation includes datasets collected

under real-world agricultural conditions—with varying

illumination, complex backgrounds, and image quality—we do

not explicitly analyze how each visual factor impacts detection
Frontiers in Plant Science 17
performance. A detailed investigation into the role of

environmental variability is an important avenue for future work.

Third, our approach requires computing logits from both the

pre-trained and fine-tuned branches, which nearly doubles the

inference-time parameters and memory footprint. We

acknowledge that this could pose challenges in edge-computing

environments such as drones or mobile devices. Future research
FIGURE 7

Results on four plant disease dataset in open-set settings. Dataset splits are provided in Table 2. The report is based on CLIP-ViT-B/16 model. Green
represents baseline. The blue and red denote ensemble with different knowledge.
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could explore model compression techniques, such as knowledge

distillation or pruning, to reduce resource demands and enable

more efficient deployment.

5.4.2 Future direction
Despite these limitations, we believe our work provides a

valuable and extensible foundation for advancing anomaly

detection under few-shot and open-set conditions in plant disease

recognition. A promising direction for future research is to move

beyond anomaly rejection and toward a more unified open-world

learning framework. Specifically, we aim to integrate open-set

recognition, novel class discovery, and incremental learning into a

single system. Such a system would be capable of (1) detecting

unknown instances, (2) discovering and grouping new categories,

and (3) continuously updating the model to recognize them. In our

recent work Dong et al. (2025), we explored this direction by using

prototype guided representation to discover novel plant species and

diseases. We envision that combining this approach with our

current method could lead to robust, real-time plant health
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monitoring systems that adapt to continuously evolving

agricultural environments.
6 Conclusion

Identifying and rejecting anomalous disease categories is critical

for ensuring the reliability of plant disease recognition systems. This

study systematically explored the performance of different training

frameworks, including CNN, ViT, and VLM, in the context of plant

disease anomaly detection. Among these, the naive concept

matching approach in VLM showed the poorest performance,

especially when compared to using max-logits in CNN and ViT

frameworks. Additionally, we examined the impact of various fine-

tuning strategies on model performance and established a

benchmark using the Plant Village dataset. To address the

limitations of baseline methods, we proposed a general knowledge

integration method to enhance anomaly detection performance.

Experimental results demonstrated that our approach consistently
TABLE 7 Comparison of parameters between baseline and our method.

Architecture Trainable parameters Inference parameters Inference
memory

Inference
time/Image

CNN-based
ConvNext-base

87.57 M

FFT
FFT(Ours)

87.57 M + 0.012 M
87.57 M + 0.024 M

87.57 M + 0.012 M
87.57 M * 2 + 0.024 M

3.0 G
5.9 G

1.09 ms
1.98 ms

VAT
VAT(Ours)

11.92 M + 0.012 M
11.92 M + 0.024 M

87.57 M + 11.92 M + 0.012 M
87.57 M * 2 + 11.92 M +
0.024 M

3.3 G
6.4 G

1.26 ms
2.15 ms

VPT 0.028 M + 0.012 M 87.57 M + 0.028 M + 0.012 M 3.0 G 1.10 ms

VPT(Ours) 0.028 M + 0.024 M 87.57 M * 2 + 0.028 M +
0.024 M

5.9 G 1.99 ms

ViT-based vit-base-
patch16-224
85.80 M

FFT
FFT(Ours)

85.80 M + 0.009 M
85.80 M + 0.018 M

85.80 M + 85.80 M + 0.009 M
85.80 M * 2 + 85.80 M +
0.018 M

2.8 G
5.5 G

1.08 ms
1.98 ms

VAT
VAT(Ours)

0.12 M + 0.009 M
0.12 M + 0.018 M

85.80 M + 0.12 M + 0.009 M
85.80 M * 2 + 0.12 M +
0.018 M

2.8 G
5.5 G

1.11 ms
1.99 ms

VPT 0.092 M + 0.009 M 85.80 M + 0.092 M + 0.009 M 3.1 G 1.10 ms

VPT(Ours) 0.092 M + 0.018 M 85.80 M * 2 + 0.092 M +
0.018 M

6.0 G 1.99 ms

VLM-based
CLIP-ViT-B/16
63.4 M + 86.2 M

CoOp
CoOp(Ours)

0.008 M + 0.006 M
0.008 M + 0.012 M

149.6 M + 0.008 M + 0.006 M
149.6 M + 86.2 M + 0.008 M +
0.012 M

5.3 G
9.1 G

2.09 ms
3.23 ms

CoCoOp
CoCoOp(Ours)

0.035 M + 0.006 M
0.035 M + 0.012 M

149.6 M + 0.035 M + 0.006 M
149.6 M + 86.2 M + 0.035 M +
0.012 M

5.6 G
9.7 G

2.37 ms
3.52 ms

VPT
VPT(Ours)

0.147 M + 0.006 M
0.147 M + 0.012 M

149.6 M + 0.147 M + 0.006 M
149.6 M + 86.2 M + 0.147 M +
0.012 M

5.4 G
9.3 G

2.26 ms
3.42 ms

VLPT 0.156 M + 0.006 M 149.6 M + 0.156 M + 0.006 M 5.6 G 2.41 ms

VLPT(Ours) 0.156 M + 0.012 M 149.6 M + 86.2 M + 0.156 M +
0.012 M

9.8 G 3.56 ms
We didn’t introduce any extra trainable parameters in our methods. The report is based on the Plant Village dataset with a batch size of 128.
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improved performance across different training frameworks, fine-

tuning strategies, sample scales, and baseline methods. Importantly,

our findings highlight the critical role of selecting appropriate fine-

tuning methods and pre-trained models, which can directly

enhance anomaly detection without requiring additional

computational resources.

In summary, this study opens a new pathway for addressing the

challenge of anomaly detection in plant diseases. Our work provides a

foundation for future research in developing robust and efficient plant

disease detection and classification systems. We encourage researchers

to further explore these methods, contributing to the advancement of

reliable and scalable solutions in agricultural technology.
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