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Molecular interactions and control strategies for Botrytis cinerea in
crop production
Botrytis cinerea is a well-known fungal phytopathogen that is responsible for gray mold

in a wide variety of crops – from economically important tomatoes and grapes to widely

adopted plant models such as Arabidopsis thaliana (Chen et al., 2023). It has been

estimated that the economic losses associated with the adverse action of B. cinerea are

approximately 100 billion USD per year globally (Dean et al., 2012). Paradoxically, under

very distinct environmental conditions, this infamous pathogen can significantly increase

the value of agricultural produce: this is the case of grape berries that undergo the so-called

noble rot, enabling the production of Sauternes wines. Nonetheless, B. cinerea is a typical

necrotrophic phytopathogenic fungus (Van Baarlen et al., 2007) that causes massive host

cell death to facilitate colonization (Bi et al., 2023).

Over the past two decades, B. cinerea has become a model organism for studying fungal

necrotrophs. In fact, it has been listed as the most scientifically and economically significant

fungus of its kind (Dean et al., 2012). B. cinerea has benefited from recent advances in

metabolomics, genomics, and transcriptomics — including the availability of multiple

sequenced genomes, an exquisitely sequenced reference genome (Van Kan et al., 2017), and

advanced tools for molecular visualization and genetic modification (Schumacher, 2012;

Leisen et al., 2020)— providing exhaustive insights into the molecular interactions with its

hosts. Despite these advances, the mechanisms of fungal virulence and defense responses

orchestrated by the plant remain far from being fully deciphered. Understanding these

mechanisms might contribute to devising strategies to enhance plant defenses or

circumvent fungal virulence. In this Research Topic, readers will find articles

investigating the molecular and physiological mechanisms underlying the interaction of

B. cinerea with different host plants. These articles highlight the environmental and genetic/

epigenetic context in which this interaction occurs.

By harnessing beneficial microbes and employing Solanum lycopersicum as a plant host,

Ajijah et al. explored several beneficial bacteria as natural biocontrol antagonists.
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Pseudomonas protegens ML15 exhibits a direct antifungal activity,

secretes a battery of secondary metabolites, and stimulates host

defense responses in tomatoes. Notably, bacterial culture

supernatants were able to significantly decrease the infection. This

study illustrates the promising work being carried out today by

different groups (Olivares-Yañez et al., 2025) to understand the

biocontrol capabilities of different microorganisms, with the

ultimate goal of creating new tools for the sustainable protection

of different crops.

While beneficial microbes can directly enhance host protection

(Ajijah et al.), the plant genetic architecture can either amplify or

diminish defenses. Plant innate immunity triggered by microbial

and plant-derived elicitors is one of the most important lines of

defense against pathogens. Chitin-triggered immunity induces

resistance to subsequent infection with B. cinerea (Giovannoni

et al., 2021). In Arabidopsis, the CHITIN ELICITOR RECEPTOR

KINASE 1 (CERK1) protein and related proteins mediate the

perception and signalling of chitin oligosaccharides (Miya et al.,

2007; Wan et al., 2008; Liu et al., 2012). CERK1 in turn

phosphorylates downstream receptor-like cytoplasmic kinases to

regulate immune responses (Zhang et al., 2010; Yamada et al., 2016;

Liu et al., 2018). Despite our detailed knowledge of chitin

perception and transduction, downstream signaling elements

involved in chitin-mediated resistance to B. cinerea are only

partially characterized. Chen et al. found that the Arabidopsis

leucine-rich repeat receptor-like kinase ZYGOTIC ARREST 1

(ZAR1) interacts with dephosphorylated CERK1 and negatively

contributes to resistance against B. cinerea independent of early

chitin-triggered responses such as MAP kinase activation and

reactive oxygen species accumulation.

Activation of Pattern-Triggered Immunity (PTI) is the first tier of

the plant’s innate immune system. Upon pathogen entry, PTI can

activate multilayered defense responses with varied effectiveness

against B. cinerea. However, the outcome of the interaction between

the fungus and its host varies greatly, depending on their genotypes

and the environmental conditions. One striking example of this

variability is the “noble rot” phenomenon, which is a latent form of

infection that occurs in grape berries under peculiar microclimatic

conditions characterized by dry and sunny days and humid nights

(Ribéreau-Gayon et al., 1980; Magyar, 2011; Vannini and Chilosi,

2013). Noble rot results in the rapid withering of the grape berry,

which is required to produce famous sweet white Sauternes wines. In

sharp contrast, under continuous mild wet weather (typically the same

laboratory conditions used to study B. cinerea virulence), the infection

results in gray rot and the loss of the berry (Williamson et al., 2007). A

transcriptomic analysis revealed that the so-called noble rot phase

exhibits significant differences from the other two stages (Váczy et al.).

This study shows that the initial stages of infection reflect a virulent

fungus-plant interaction, regardless of whether the outcome is gray

or noble rot. However, paradoxically, expression of host defense-

related genes is suppressed during the noble rot stage, suggesting

that the plant is not actively defending itself against B. cinerea and

that the host and the fungus have reached an equilibrium.

Rounding out the picture portrayed in this Research Topic,

emerging evidence indicates that epigenetic mechanisms also
Frontiers in Plant Science 02
dictate how strongly plants resist pathogens. Epigenetic control of

gene expression is crucial for all aspects of plant biology, including

host-microbe interactions (Hannan Parker et al., 2022). However,

few studies have focused on the epigenetic regulation of host

responses to B. cinerea infection. The same is valid for regulating

fungal virulence responses (Miao et al., 2022). For example,

chromatin modifications appear to modulate the expression of the

tomato transcription factor SlyWRKY75, which in turn regulates

the defense-related jasmonate (JA)-dependent pathway (López-

Galiano et al., 2018). Liang et al. reported on the characterization

of watermelon ClMBD2, ClMBD3, and ClMBD5 proteins, which

encode Methyl-CpG-Binding Domain (MBD) proteins, which in

turn are known to act as transcriptional repressors associated with

methylated DNA. Their overexpression in Arabidopsis reduces

resistance against B. cinerea and downregulates the expression of

AtPDF1.2, suggesting that they negatively regulate JA responses. In

contrast, the overexpression of ClMBD5 led to increased resistance

against Pseudomonas syringae.

As the quest for plant targets that can be modified by gene

editing to create varieties resistant to B. cinerea continues, this

Research Topic also exemplifies a seldom observed dimension to

our understanding of how plants fine-tune immunity: some genes

that may be essential for developmental processes can incidentally

or simultaneously downregulate defense. As indicated here, these

targets must be carefully evaluated since it is possible to generate

difficult-to-anticipate effects, including diminished resistance or

increased defense, depending on the pathogen.
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