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Trafficking and localization of
Golgi-resident N-glycan
processing enzymes in plants
Kai Dünser and Jennifer Schoberer*

Department of Biotechnology and Food Science, Institute of Plant Biotechnology and Cell Biology,
BOKU University, Vienna, Austria
Asparagine (N)-linked glycosylation is a fundamental co- and post-translational

modification of proteins, playing a crucial role in protein folding, stability and

function, protein-protein interactions, biotic and abiotic stress response as well

as glycan-dependent quality control processes in the endoplasmic reticulum

(ER). Protein N-glycosylation is initiated in the ER and continued in the Golgi

apparatus by N-glycan-processing glycosyltransferases and glycosidases, which

are compartmentalized in a highly organized manner reflecting their function in

the sequential modification of glycans. Therefore, the precise localization of

these enzymes is crucial for the optimal functioning of the glycosylation process

and the secretory pathway and hence must be tightly regulated to maintain

protein function, cellular health, and overall organismal development. Here, we

highlight recent developments that contribute to a better understanding of the

localization mechanisms of this important class of Golgi residents and discuss

future directions to move the field forward.
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Introduction

The N-glycosylation pathway begins in the ER, where the oligosaccharyltransferase

complex catalyzes the en bloc transfer of a pre-assembled oligosaccharide precursor

(Glc3Man9GlcNAc2) from the lipid carrier dolichol pyrophosphate to asparagine (Asn or

N) residues within the specific consensus sequence Asn-X-Ser/Thr (X can be any amino

acid except proline) of nascent proteins (Helenius and Aebi, 2001; Moremen et al., 2012;

Strasser, 2016). Subsequently, the two outmost glucose residues are cleaved by a-
glucosidase (GCS) I and GCSII, resulting in the generation of a monoglucosylated N-

glycan. This glycan can interact with the lectins calnexin (CNX) and calreticulin (CRT),

thereby promoting folding. The release from the CNX/CRT interaction depends on the

trimming of the remaining glucose by GCSII. Proteins that fail to attain their final

conformation are subjected to ER-associated degradation (ERAD), a process that

involves the trimming of a specific mannose residue by the class I a-mannosidases

MNS4 and MNS5 (Hüttner et al., 2014). This processing step produces a glycan
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degradation signal on the ERAD substrate, which is recognized by

the lectin OS9 (Clerc et al., 2009; Quan et al., 2008; Strasser,

2018). Proteins that fold correctly, carry the Man9GlcNAc2
oligosaccharide, which is subsequently subjected to further

processing by the class I a-mannosidases ER-a-mannosidase I

(MNS3) and Golgi-a-mannosidase I (MNS1/2; Liebminger et al.,

2009) in the Golgi apparatus (Figure 1). This collective action

results in the removal of four a1,2-linked mannose residues from

the N-glycan. The resulting Man5GlcNAc2 N-glycan is the final

product of early N-glycan processing steps and serves as the

acceptor substrate for N-acetylglucosaminyltransferase I (GNTI),

which adds a single N-acetylglucosamine (GlcNAc) residue, thereby

initiating the formation of hybrid and complex N-glycans in the

Golgi apparatus (Strasser et al., 1999). The product of this reaction

is further processed by Golgi-a-mannosidase II (GMII), N-

acetylglucosaminyltransferase II (GNTII), b1,2-xylosyltransferase
(XYLT) and core a1,3-fucosyltransferase (FUT11/12; Strasser

et al., 2006). The final, mature N-glycans are of the complex type

and are typically characterized by the presence of b1,2-xylose and
a1,3-fucose (GnGnXF), which is considered to be the predominant

plant glycoform (Zeng et al., 2018; Strasser et al., 2021). Variations

thereof may lack terminal GlcNAc on one of the two branches

(GnMXF, MGnXF) and additionally lack xylose and/or fucose

(GnGnF, GnGnX, GnMX, MGnX, GnMF, MGnF, GnGn, GnM,

MGn). Complex N-glycans can be converted into paucimannosidic

N-glycans, which lack the two terminal GlcNAc residues (MM,

MMF, MMX or MMXF) in plants. This processing step occurs in

post-Golgi compartments and is carried out by either the vacuolar

b-N-acetylhexosaminidase 1 (HEXO1) or HEXO3, which mainly

resides in the plasma membrane/apoplast (Strasser et al., 2007a;

Liebminger et al., 2011; Alvisi et al., 2021). The most elaborate

occurring glycoform in plants is the Lewis A structure, which is

generated in the trans-Golgi by b1,3-galactosyltransferase (GALT1)
and a1,4-fucosyltransferase (FUT13) via the modification of

GnGnXF structures (Strasser et al., 2007b). Lewis A N-glycans are

ubiquitously found in plants (Fitchette et al., 1999; Wilson et al.,

2001), but are only present on a few glycoproteins (Beihammer

et al., 2021).

While the initial steps of N-glycosylation in the ER are highly

conserved among eukaryotes, the processing steps in the Golgi show

distinct differences between plants and mammals (Schoberer and

Strasser, 2018). The presence of b1,2-xylose and a1,3-fucose is a

defining feature of plant N-glycosylation, as these sugars are absent

in mammalian systems (Strasser, 2016). This structural difference

may contribute to the antigenicity of some plant proteins and

increase the risk of adverse reactions, such as allergic reactions or

immunological responses, when plant-produced recombinant

glycoproteins with b1,2-xylose and a1,3-fucose are used in

mammals in a therapeutic context (Jenkins et al., 1996; Bardor

et al., 2003; Shaaltiel and Tekoah, 2016).

Our understanding of the role of N-glycans in plants is

primarily derived from the study of mutants deficient in N-glycan

biosynthesis and processing. These studies have demonstrated that

defects in N-glycosylation can result in a range of adverse effects,

including abnormal plant development and/or reduced stress
Frontiers in Plant Science 02
tolerance (Kang et al., 2008; Fanata et al., 2013; Pedersen et al.,

2017; Kaulfürst-Soboll et al., 2021). Mutations in genes encoding

enzymes involved in the biosynthesis and early processing of N-
FIGURE 1

Schematic overview of the N-glycan processing steps in the plant
Golgi apparatus. MNS3, ER-a-mannosidase I; MNS1/2, Golgi-a-
mannosidase I; GNTI, b1,2-N-acetylglucosaminyltransferase I; GMII,
Golgi-a-mannosidase II; GNTII, b1,2-N-acetylglucosaminyltransferase
II; XYLT, b1,2-xylosyltransferase; FUT11/12, core a1,3-fucosyltransferase;
GALT1, b1,3-galactosyltransferase; FUT13, a1,4-fucosyltransferase.
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glycans are embryo lethal (Strasser, 2014), whereas mutants of

enzymes involved in N-glycan processing in the Golgi do not show

any significant morphological phenotypes under normal growth

conditions but may have conditional phenotypes (Strasser, 2022).

This shows that the functions of N-glycans in the ER are essential,

whereas Golgi-derived complex N-glycans are dispensable

for plant survival but may have additional roles under non-

physiological conditions.
The plant Golgi apparatus and its role
in N-glycan processing

The Golgi apparatus is the central biosynthetic organelle in the

secretory pathway and the main site for the modification and

sorting of proteins and lipids, and the biosynthesis of cell wall

polysaccharides in plants (Foresti and Denecke, 2008). The plant

Golgi apparatus has a unique morphology as it comprises numerous

discrete stacks of flattened membrane compartments, classified into

cis-, medial- and trans-Golgi cisternae. Plant Golgi stacks display an

actin-myosin-driven mobility, distributing them throughout the
Frontiers in Plant Science 03
cytoplasm in higher plants (Faso et al., 2009; Hawes et al., 2010).

Golgi cisternae compartmentalize specific populations of resident

proteins that catalyze the step-wise processing of N-glycans (Hawes

and Satiat-Jeunemaitre, 2005; Schoberer and Strasser, 2011) or the

assembly of cell wall polysaccharides (Moore et al., 1991; Oikawa

et al., 2013). Golgi-localized N-glycan processing enzymes are type

II transmembrane proteins comprising an N-terminal cytoplasmic

tail (C), a single transmembrane domain (T) and a luminal stem

region (S), collectively referred to as the CTS domain, which is

linked to the large catalytic domain in the Golgi lumen (Figure 2).

The localization of these enzymes within the Golgi stack is highly

organized and closely linked to their in vivo substrate specificities.

Each enzyme produces the substrate for the next, thereby forming

an assembly line that enables the sequential modification of

glycoproteins (Figure 1). Consequently, an enzyme’s specific role

in the pathway is reflected by its enrichment in distinct regions of

the Golgi stack, rather than by its precise confinement to a single

cisterna (Saint-Jore-Dupas et al., 2006; Staehelin and Kang, 2008;

Schoberer and Strasser, 2011). This results in the formation of a

biochemical gradient across the stack from cis to trans, with

enzymes that act early in the N-glycan processing pathway
FIGURE 2

Schematic illustration of the predicted protein structure and domain organization of N. tabacum GNTI. NtGNTI is used as a representative model of
plant Golgi N-glycan processing enzymes, which have a type II membrane topology, with the N-terminus (NH2) residing in the cytosol. This model is
based on AlphaFold and DeepTMHMM (Hallgren et al., 2022) protein structure predictions.
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residing in cis- and medial-Golgi cisternae, whereas later-acting

enzymes concentrate in medial- and trans-Golgi cisternae or the

trans-Golgi network (TGN). This non-uniform, subcompartment-

specific distribution pattern of Golgi-localised glycosidases and

glycosyltransferases remains constrained despite the constant flux

of cargo molecules and the constant mobility of the Golgi apparatus

(Boevink et al., 1998) and provides a valuable tool for studying

various aspects of Golgi (protein) organization, trafficking and

biogenesis (Hawes et al., 2010; Schoberer et al., 2010).

The initial evidence supporting the subcompartmentation of

glycosidases and glycosyltransferases within the plant Golgi

apparatus was based on the localization of the polysaccharide and

glycoprotein products rather than the enzymes themselves (Moore

et al., 1991; Lynch and Staehelin, 1992; Zhang and Staehelin, 1992).

This was due to the absence of cloned plant Golgi-resident enzymes

at that time. The cloning of the genes encoding plant glycosylation

enzymes, coupled with the advent of fluorescent protein technology

and confocal microscopy, has allowed the definitive determination

of their subcellular localization within plant Golgi stacks (Essl et al.,

1999; Dirnberger et al., 2002; Strasser et al., 2005; Saint-Jore-Dupas

et al., 2006; Strasser et al., 2007b; Liebminger et al., 2009; Schoberer

et al., 2009). The results of several studies have indicated that the

fluorescent signals emitted by distinct co-expressed N-glycan

processing enzymes do not entirely overlap within Golgi stacks,

thereby substantiating the prevailing notion of a non-uniform

distribution of glycosylation enzymes (Figure 3). This observation

prompted extensive research to identify the precise signals and

mechanisms by which this non-uniform Golgi distribution is

established, maintained and regulated. It became evident early on

that in plants the information required for the Golgi targeting and

retention of plant N-glycan processing enzymes is present in their

CTS region. The expression of the fluorescent protein-tagged CTS

region of all plant N-glycan processing enzymes studied so far

showed that the catalytic domain is not required for their targeting

to the Golgi as their Golgi localization remained unchanged

compared to the full-length enzymes (Essl et al., 1999; Dirnberger

et al., 2002; Saint-Jore-Dupas et al., 2006; Schoberer et al., 2009,

2010; Schoberer and Strasser, 2011). This is in agreement with
Frontiers in Plant Science 04
mammalian and yeast studies that localised the necessary signals for

Golgi targeting to the transmembrane domain (TMD) and

neighboring polypeptide regions of the enzymes (Munro, 1991;

Nilsson et al., 1991; Colley, 1997). Furthermore, a fluorescent

protein fusion to the CTS region of the rat a2,6-sialyltransferase
(ST) has become the most commonly used Golgi marker in plants,

with the protein localised to the trans-half of Golgi stacks in leaves

of Nicotiana clevelandii as well as in callus tissue and root tips of

Arabidopsis as demonstrated by electron microscopy (EM)

(Boevink et al., 1998; Wee et al., 1998; Reichardt et al., 2007).

This localization is consistent with the fact that the sialylation of

glycoproteins by ST is a late N-glycan modification event in the

Golgi of mammalian cells and it suggests that, despite the known

differences between the plant and mammalian Golgi apparatus, the

Golgi targeting signals and mechanisms are largely conserved

between plants and mammals. This has been supported by studies

showing that the plant and mammalian GNTIs can complement

each other (Gomez and Chrispeels, 1994; Bakker et al., 1999) and

that Golgi-targeted mammalian glycosyltransferases such as ST are

functional when transiently or stably expressed in plants (Castilho

et al., 2010; Kallolimath et al., 2016).
Models for protein traffic through the
Golgi

Several models have been proposed to elucidate the distinct

localization of glycosylation enzymes within cis-, medial-, and

trans-Golgi cisternae. These models seek to elucidate how

enzymes are sorted, retained or recycled within different Golgi

cisternae, thereby ensuring the optimal functioning of glycosylation

processes. Nevertheless, models that address the sorting and

concentration of glycosylation enzymes fundamentally depend on

the characteristics of protein transport through the Golgi apparatus

(Glick and Nakano, 2009). This highly regulated process can entail

anterograde (forward) movement from cis- to trans-Golgi cisternae

and retrograde (backward) movement between cisternae or from

the Golgi to the ER (Figure 4). Several mechanisms have been put
FIGURE 3

Co-localization of fluorescent protein-labelled N-glycan processing enzymes within the Golgi. Confocal microscopy images show a single, highly
magnified Golgi stack triple-labelled with three different N-glycan processing enzymes with distinct intra-Golgi distributions. The fusion proteins
MNS1-SYFP (CTS region fused to yellow fluorescent protein, in yellow), GMII-GFP (CTS region fused to green fluorescent protein, in green), and ST-
mRFP (CTS region fused to red fluorescent protein, in magenta) were transiently co-expressed in N. benthamiana leaf epidermal cells and imaged
using a Zeiss LSM980 Airyscan 2 confocal microscope. Images were further processed with the ZEN module Airyscan joint deconvolution. The co-
localization profile shows the fluorescence intensities of the fusion proteins, plotted along the white arrow in the overlay image. Note the shifts in
the fluorescence intensity peaks, indicating an enrichment of enzymes in distinct Golgi regions. Scale bar = 1 µm.
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forth to explain the transport of glycosylation enzymes through the

Golgi apparatus.

The vesicular transport model was influential in early

mammalian cell biology and is based on the discovery “of

machinery regulating vesicle traffic, a major transport system in

our cells”, which led to the awarding of the 2013 Nobel Prize in

Physiology or Medicine to James Rothman, Randy Schekman and

Thomas Südhof (Zierath and Lendahl, 2013). It suggests that Golgi

cisternae are stable compartments that house an unchanging set of

Golgi-resident proteins (including glycosylation enzymes).

Anterograde transport vesicles that form in the Golgi arrive at

each cisterna with cargo proteins that are modified by resident

enzymes within the cisterna. New vesicles with cargo proteins bud

from the cisterna and then travel to the next stable cisterna in a cis

to trans direction, where the next set of enzymes further modifies

the cargo (Balch et al., 1984; Rothman andWieland, 1996; Farquhar

and Palade, 1998).

The cisternal maturation model suggests that each Golgi

cisterna matures over time from the cis to the trans face of the

Golgi, rather than being static, reflecting the ongoing process of

protein modification and sorting. Proteins move as passengers

within cisternae through the Golgi stack (Losev et al., 2006;

Matsuura-Tokita et al., 2006; Emr et al., 2009). In this model, a

new cis-Golgi cisterna matures into a medial- and then trans-Golgi

cisterna before breaking apart as modified proteins are packaged for

transport to their final destination, such as the plasma membrane or

secretion outside the cell. Glycosylation enzymes are retained in

specific cisternae by selective retrieval processes; enzymes that are

needed in the earlier stages of glycosylation, are recycled from the

later Golgi compartments back to earlier, younger cisternae by

retrograde transport carriers, rather than being transported from

one cisterna to another, to maintain the proper enzyme
Frontiers in Plant Science 05
composition (Glick et al., 1997; Pelham, 1998). Yeast provided

the most direct evidence via real-time tracking of cisternal markers

and cargo. Meanwhile, algal and mammalian studies highlighted

the model’s applicability to diverse cargo types, including

bulky proteins.

In the rapid partitioningmodel, the Golgi apparatus is considered

a highly dynamic two-phase membrane system, in which secretory

cargo proteins and resident glycosylation enzymes are continuously

and rapidly partitioned into specific lipid domains of optimal

composition, so-called “export domains”, which are enriched in

cargo and “processing domains”, which are enriched in Golgi-

resident enzymes (Patterson et al., 2008). Cargo moves forward by

stochastically exiting from export domains at any cisternae. This

model accounts for the high efficiency of protein sorting and

processing in the Golgi while maintaining its compartmentalized

structure; however, experimental evidence is currently limited to

mammalian cells.

The cisternal progenitor model proposes that new cisternae are

continuously formed at the cis-face as progenitors or “precursors”

of mature cisternae (Pfeffer, 2010). These progenitor cisternae then

gradually mature as they move through the Golgi stack from cis to

trans, where they are eventually disassembled or recycled to form

new cisternae. As the cisternae mature, they progressively acquire

different enzymes that process cargo proteins in stages. RAB

GTPases play a crucial regulatory role in this model by

coordinating the formation, maturation, and function of Golgi

cisternae as they move through the stack. RAB GTPases are a

family of small GTP-binding proteins that act as molecular

switches, switching between active (GTP-bound) and inactive

(GDP-bound) states. Their primary role is to regulate vesicular

trafficking including cargo sorting, vesicle budding, and fusion by

recruiting specific effector proteins (Woollard and Moore, 2008;
FIGURE 4

Protein transport between the ER and the Golgi. At ERES, cargo proteins are recruited and packaged into COPII transport carriers (vesicles and/or
tubules) that bud from and exit the ER. COPII components can coat vesicles and/or decorate the neck of tubules. Carriers arrive at and fuse with
cis-Golgi cisternae, releasing their contents. Cargo proteins move through the Golgi in a cis-to-trans direction in anterograde transport vesicles and/
or via cisternal maturation. Anterograde transport probably involves elements of both models. Secretory proteins exit the Golgi at the trans face in
post-Golgi transport carriers. Golgi residents are returned to earlier Golgi cisternae or the ER in COPI-coated vesicles that bud from Golgi cisternae.
It is still unclear whether the COG complex plays a role in the retrograde intra-Golgi transport of Golgi-resident N-glycan processing enzymes.
Another mystery is the functional role of the ERGIC in ER-Golgi transport. It may serve as an intermediate compartment where anterograde and
retrograde transport pathways to and from the Golgi converge.
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Stenmark, 2009). In the cisternal progenitor model, RABs are

thought to act in a cascade in which one RAB controls the

recruitment of the next RAB, orchestrating the sequential

maturation of cisternae. As a cisterna matures from cis to trans,

another set of RABs takes over to regulate this progression. This

cascade helps maintain the spatial organization of the Golgi and

ensures efficient processing and sorting of proteins. This model

takes into account both the maturation of cisternae and the

dynamic recycling or exchange of membrane material, and it

attempts to explain how the Golgi can maintain its structure and

function while continuously processing large amounts of protein.

This model has experimental support primarily in yeast (Rivera-

Molina and Novick, 2009).

In plants, no experimental evidence has yet been presented to

support the cisternal progenitor or rapid partitioning models.

Instead, experimental evidence collectively favors the cisternal

maturation model. For example, the interference with the

retrograde transport machinery leads to the incorrect localization

of Golgi residents and defects in Golgi stack morphology, which is

consistent with impaired cisternal maturation, as the proper

recycling of resident proteins and maintenance of cisternal

identity are disrupted. Furthermore, large cargo molecules, such

as cell wall polysaccharides, were retained in the cisternae and not

recycled (Hawes and Satiat-Jeunemaitre, 2005; Glick and Nakano,

2009; Hawes et al., 2010; Robinson, 2020; Rui et al., 2022).These

findings suggest that cisternal maturation may be a universal and

evolutionarily conserved mechanism across all eukaryotes.
Models for Golgi enzyme localization

Irrespective of the mechanisms by which Golgi proteins are

transported through the Golgi, several models have been proposed

to explain how the distinct sub-Golgi localization of glycosylation

enzymes is established (Table 1).
Golgi retention via enzyme
oligomerization

In the kin recognition model, Golgi enzymes form multimeric

enzyme complexes that are unable to enter anterograde transport

carriers due to their size, leading to the retention within specific

Golgi cisternae (Nilsson et al., 1993). This complex formation may

also allow for coordinated enzyme activity, ensuring that

glycosylation occurs in the correct sequence as glycoproteins

move through the Golgi. There is ample experimental evidence

that the signals influencing oligomerization reside in the TMD and/

or stem domain; however, the requirements for enzyme

oligomerization vary greatly (Tu and Banfield, 2010). For

example, the stem region of human NAGTI is the primary

determinant for the heteromerization with mannosidase II

(MannII), which is critical for their localization to the medial-
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Golgi in HeLa cells (Nilsson et al., 1994). The oligomerization of the

sialyltransferase ST6Gal1, primarily via its TMD, is critical for its

localization to the trans-Golgi (Chen and Colley, 2000). In plants,

N-glycan processing enzymes such as MNS1, GNTI, GMII and

XYLT have been shown to form in planta homo- and heterodimers

in the cis- and medial-Golgi via their CTS region (Schoberer et al.,

2013). Further biochemical approaches and confocal microscopy in

N. benthamiana have demonstrated the role of the GNTI stem

region in mediating homo- and heteromeric complex formation

(Schoberer et al., 2014). A more recent study showed that a

conserved nine-amino acid sequence motif in the stem was

responsible for the GNTI-GNTI homodimerization, which led to

a block in N-glycan processing increasing oligo-mannosidic

N-glycans upon transient GNTI-CTS overexpression in

N. benthamiana. Schoberer et al., 2023; Figure 5).

Of note, the formation of enzyme complexes is a common

means of localizing enzymes involved in the biosynthesis of cell wall

polysaccharides in the Golgi (Zabotina et al., 2021; Table 1). In

contrast, homo- or heteromerization of N-glycan processing

enzymes does not seem to be required for correct Golgi

localization or catalytic activity.
Golgi retention via transmembrane
domains

The lipid bilayer model suggests that different membrane

thicknesses within the Golgi stack naturally sort glycosylation

enzymes into the appropriate locations based on their TMD

length, preventing them from moving to the wrong compartment.

The thickness of membranes increases progressively from the ER to

the plasma membrane (PM). A mammalian study indicated that

proteins localised in the ER and Golgi tend to have shorter TMDs

than those in the PM, which suggests that shorter TMDs may result

in retention in the Golgi apparatus, whereas longer TMDs facilitate

progression to post-Golgi compartments and the PM (Welch and

Munro, 2019). It has been demonstrated that the length of the TMD

is a significant factor in the targeting of type I transmembrane

proteins in plants (Brandizzi et al., 2002b). Immuno-EM studies

demonstrated that an increase in TMD length from 16 to 23

residues resulted in the translocation of soybean a-mannosidase I

(GmManI) from the cis- to the trans-Golgi (Saint-Jore-Dupas et al.,

2006). Furthermore, the TMD of ER-localised GCSI would direct

the protein to the Golgi, but for ER localization it requires ER

retention signals, such as four arginine residues within its 13-

amino-acids cytoplasmic N-terminus or the 60-amino-acids

luminal C-terminus (Saint-Jore-Dupas et al., 2006; Boulaflous

et al., 2008). However, this model does not consider that the

TMD length of Golgi-resident enzymes varies considerably

(Figure 6A). The trans-Golgi enzymes ST and GALT1, for

example, have a rather short membrane-spanning region with a

length of 17 and 15 amino acids, respectively, which is in a similar

range to the predicted TMD lengths of the cis/medial-located
frontiersin.or
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TABLE 1 Sorting signals of various ER- and Golgi-resident membrane proteins.

Role in localisation Protein Organism Topology Interaction
partner

Reference

ER export via anterograde transport

Arginine/lysine-based cytoplasmic tail motifs

R/K prolyl 4-hydroxylase plants type II Yuasa et al., 2005

KK bZIP28 plants type II SAR1b Srivastava et al., 2012

R/K GNTI, GMII, XYLT plants type II Schoberer et al., 2009

(RK)X(RK) GalT2, GalNAcT, SialT2 mammals type II SAR1 Giraudo and Maccioni, 2003;
Quintero et al., 2010

Hydrophobic residues in the cytoplasmic tail

FVXXXY EMP12 plants multi-TMD Gao et al., 2012

FF ERGIC-53 mammals type I SEC23/SEC24 Kappeler et al., 1997

YYXF Emp47p, Emp46p yeast multi-TMD Schröder et al., 1995; Sato and
Nakano, 2002

YNNSN and LXXME Sed5p yeast type II SEC24 Mossessova et al., 2003

LXXLE plus dibasic R/K motif BET12 plants type II SAR1 Chung et al., 2018

LXXLE Bet1p yeast type II SEC24 Mossessova et al., 2003

Diacidic cytoplasmic tail motifs

(D/E)XE GONST1 plants multi-TMD Hanton et al., 2005

CASP plants type II Hanton et al., 2005

KAT1 plants multi-TMD SEC24A Mikosch et al., 2006; Sieben
et al., 2008

EXXD SYP31 plants type II Chatre et al., 2009

ER retention via retrograde transport

Dilysine-based cytoplasmic tail motifs

KKXX p24 family proteins plants type I b'-COP, ARF1 Contreras et al., 2004; Langhans
et al., 2008; Gao et al., 2014

KKXX Cf-9 plants type I Benghezal et al., 2000

KXKXX FAD3 plants multi-TMD McCartney et al., 2004

KK GPAT8 plants multi-TMD Gidda et al., 2009

Arginine-based cytoplasmic tail motifs

RR, RXR or RXXR (plus
luminal domain)

GCSI plants type II Boulaflous et al., 2008

RRXXXXR M1-SAT-I (ST3GAL5) mammals type II Uemura et al., 2009

Hydrophobic cytoplasmic tail motifs

f-X-X-K/R/D/E-f FAD2 plants multi-TMD McCartney et al., 2004

GPAT9 plants multi-TMD Gidda et al., 2009

Golgi retention

Cytoplasmic tail motifs

LPYS MNS3 plants type II Schoberer et al., 2019b

f-(K/R)-X-L-X-(K/R) GALNT3, GALNT8, C2GNT1 mammals type II b-, d- and z-COP Liu et al., 2018

GALNT6 mammals type II b- and d-COP Liu et al., 2018

(Continued)
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enzymes MNS1 and GNTI, but much shorter than the TMD of

GMII in the medial-Golgi (Figure 6; Saint-Jore-Dupas et al., 2006;

Strasser et al., 2006; Liebminger et al., 2009; Schoberer et al., 2009;

Schoberer and Strasser, 2011). A study investigating the TMDs of

integral membrane proteins in fungi and mammals revealed

organelle-specific variations in the length and composition of

these TMDs (Sharpe et al., 2010). However, the analysis showed

no significant differences in mean residue hydrophobicity or amino

acid volume between cis- and medial-Golgi proteins. Also, the

dataset used to examine specific characteristics of transmembrane

segments was relatively limited, as only a restricted number of

proteins with confirmed sub-Golgi localization were available.

Nevertheless, it is evident that while the TMD is of vital

importance for the anchoring and sorting of glycosylation

enzymes in the Golgi, correct localization is largely dependent on

the presence of additional signals. To illustrate, the cytoplasmic tail

of XYLT is indispensable for its Golgi localization, as its TMD alone

targeted the enzyme to the PM, PM-derived vesicles and the ER

(Dirnberger et al., 2002). Similarly, the TMD of GNTI alone showed

cytoplasmic localization and partial colocalization with the GFP-
Frontiers in Plant Science 08
tagged Golgi marker ER RETENTION DEFECTIVE 2 (ERD2).

However, fusing the cytoplasmic tail of GNTI with the TMD

restored its Golgi localization in N. benthamiana leaf cells

(Schoberer et al., 2009). Furthermore, an N-terminal truncation

of the cytoplasmic tail of GMII, comprising 10 amino acids most

proximal to the TMD, was sufficient for its Golgi localization

(Strasser et al., 2006). For the human GalNAc transferase family

of mucin-type O-glycosylation enzymes, it was shown that a

combination of the cytoplasmic tails and TMDs of GalNAc-T1,

GalNAc-T2 and GalNAc-T7, respectively, and the combined TMD

and luminal stem region of GalNAc-T7 and GalNAc-T10 resulted

in Golgi localization (Becker et al., 2018).

Specific amino acids in the TMD have also been attributed a role

in Golgi retention. For example, a conserved polar glutamine (Q)

residue in the TMD of plant GNTI is crucial for maintaining its cis/

medial-Golgi localization (Schoberer et al., 2019a; Figure 5). In

contrast, the Golgi retention of human b1,4-galactosyltransferase
relies on a cysteine and histidine residue within its TMD, which

confer homodimerization (Aoki et al., 1992; Yamaguchi and

Fukuda, 1995).
TABLE 1 Continued

Role in localisation Protein Organism Topology Interaction
partner

Reference

Golgi retention

WX(n1-6)(W/F) GALNT4 mammals type II b-, d- and z-COP Liu et al., 2018

Adaptor-binding via cytoplasmic tail

(F/L)-(L/I/V)-X-X-(R/K) cis- and medial Golgi mannosyltransferases, e.g.:

Kre2, Och1, Mnn9, Mnn2,
Mnn5, Ktr6

yeast type II Vps74p Tu et al., 2008, 2012

L-X-X-(R/K) glycosphingolipid biosynthetic enzymes, O- and N-glycosylation enzymes, e.g.:

LCS, GD3S, GM3S, Gb3S mammals type II GOLPH3 Rizzo et al., 2021

POMGNT1, GALNT12 mammals type II GOLPH3 Pereira et al., 2014

C1GALT1, GALNT2,
GALNT7, GCNT1,
MGAT1, MGAT2

mammals type II GOLPH3/GOLPH3L Welch et al., 2021

SiaT2 (ST6GAL1) mammals type II GOLPH3/GOLPH3L Eckert et al., 2014; Isaji et al., 2014;
Welch et al., 2021

C2GNTI (GCNT1) mammals type II GOLPH3 Ali et al., 2012; Eckert et al., 2014

Via transmembrane domain

glutamine (Q) GNTI plants type II Schoberer et al., 2014

cysteine (C) and histidine (H) b1,4-GALT mammals type II Aoki et al., 1992

length ManI plants type II Saint-Jore-Dupas et al., 2006

receptor interaction ERManI yeast type II Rer1p Massaad et al., 1999

Via enzyme oligomerisation

heteromerisation via stem NAGTI mammals type II MannII Nilsson et al., 1994

homomerisation via stem GNTI plants type II GNTI Schoberer et al., 2014, 2023

homomerisation via TMD b1,4-GALT mammals type II b1,4-GALT Yamaguchi and Fukuda, 1995
f are hydrophobic amino acid residues, X denotes any amino acid.
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ER export via anterograde transport

There is overwhelming evidence that the N-terminal

cytoplasmic tail of N-glycosylation enzymes contains amino acid

signal motifs that are recognized by the trafficking machinery

(Table 1). The plant N-glycan processing enzymes GNTI, GMII

and XYLT contain several arginine and/or lysine residues in their

cytoplasmic tails, which are essential for ER export and Golgi

localization (Figures 5, 6A). A comparison of the cytoplasmic tails

of plant N-glycan processing enzymes reveals a clear enrichment of

basic, positively charged arginine and lysine residues, which

frequently occur in clusters. Interestingly, protein structure

predictions suggest that the length of the tails varies considerably

and that the majority lack a defined secondary structure. This is

most likely to facilitate the interaction with the sorting and

transport machinery via motifs therein (Figure 6B). Evidence for

COPII-dependent transport was provided when the mutagenesis of

the three basic amino acids in the cytoplasmic tail of GNTI

impaired the recruitment of tobacco SAR1 to ER export sites

(ERES) (Schoberer et al., 2009, Figure 5). SAR1 is a small GTPase

that initiates the formation of coat protein complex II (COPII)

carriers by recruiting coat proteins (SEC23/24, SEC13/31) to the ER

membrane to form the COPII coat. This coat helps to select cargo

proteins for transport to the Golgi apparatus. Upon hydrolysis of
Frontiers in Plant Science 09
GTP to GDP, SAR1 triggers the disassembly of the COPII coat,

allowing the carrier to fuse with the Golgi. In mammals, the

conserved dibasic amino acid motif (R/K)X(R/K) in the N-

terminal cytoplasmic tail of mammalian glycosyltransferases

involved in glycolipid synthesis has been shown to bind directly

to SAR1 (Giraudo and Maccioni, 2003). The same group

demonstrated by cytoplasmic tail swap experiments that the

information for the sub-Golgi concentration of the two glycolipid

glycosyltransferases GalNAcT2 and SialT2 is present in their

cytoplasmic tail (Uliana et al., 2006). Another study found that

several basic amino acids located in the cytoplasmic tail of ST3Gal5,

an enzyme involved in ganglioside synthesis, are important in both

ER export and Golgi retention (Uemura et al., 2015). Replacement

of two arginine residues (R2A/R3A) within the R/K-based motif

localised the mutant not only in the Golgi but also in endosomes,

resulting in the presence of immature N-glycans. This indicated that

the R/K-based motif is essential for Golgi retention, and that

retrograde transport is necessary for N-glycan maturation. The

importance of cytoplasmic basic amino acids for ER export has

also been demonstrated for a tobacco prolyl hydroxylase and the

transcription factor bZIP28, both type II membrane proteins (Yuasa

et al., 2005; Srivastava et al., 2012).

Despite the lack of a discernible function in the localization of

N-glycosylation enzymes in the Golgi, cytoplasmic dihydrophobic
FIGURE 5

Schematic illustration showing the CTS region (cytoplasmic tail, transmembrane domain and stem domain) of NtGNTI. Amino acids and motifs in the
different domains that are involved in the targeting and localization of NtGNTI to the Golgi are marked in red.
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and diacidic signal motifs have also been shown to play a role in

mediating Golgi localization. For example, hydrophobic residues

in combination with a tyrosine residue (FVXXXY) play a role

in the ER export of the Arabidopsis multi-TMD protein

ENDOMEMBRANE PROTEIN 12 (EMP12; Gao et al., 2012). In

yeast, the tyrosine-based motif YYXF found in the cargo receptors

Emp47p and Emp46p, which shuttle between the ER and the cis-

Golgi, is essential for their export from the ER and localization in

the Golgi (Schröder et al., 1995; Sato and Nakano, 2002). Similarly,

two phenylalanines facilitate the binding of the cargo receptor

ERGIC-53, a membrane protein of the ER-Golgi intermediate

compartment (ERGIC), to COPII, thereby enabling its ER exit

and Golgi localization (Kappeler et al., 1997). In plants, diacidic

sequence motifs (D/EXE) have been identified in the N-terminal

cytoplasmic tails of type I multispanning membrane protein

GONST1 (Golgi nucleotide sugar transporter 1) and the type II

Golgi protein CASP (CCAAT-displacement protein alternatively
Frontiers in Plant Science 10
spliced product), both of which rely on diacidic motifs to exit the ER

and reach the Golgi (Hanton et al., 2005). However, even after

mutating this motif in both fusion proteins, they were still partially

localised to the Golgi, suggesting that other factors contributed to

their exit from the ER. When an ER-retained synthetic type I

reporter protein with a 17-amino acid TMD was fused to a segment

of the cytoplasmic region of CASP, it was localised to the Golgi.

Mutation of the DXE motif in this reporter protein resulted in its

complete retention in the ER, further supporting the role of the

DXE motif in ER export. Similarly, ER export and Golgi targeting of

the syntaxin of plants (SYP) 3 family protein SYP31, a type II

soluble N-ethylmaleimide-sensitive fusion protein attachment

protein receptor (SNARE) protein, relies on a diacidic EXXD

motif (MELAD) in its N-terminal cytoplasmic tail (Chatre et al.,

2009). The potassium channel protein KAT1 requires a diacidic

signal for ER exit and subsequent localization to the PM in guard

cells (Mikosch et al., 2006). The motif has been shown to interact
FIGURE 6

Comparison of the cytoplasmic tail and transmembrane domain (TMD) sequences of different plant Golgi-resident N-glycan processing enzymes.
(A) Protein sequences were retrieved from the UniProt database. DeepTMHMM was used to predict the length and topology of the TMDs. Please
note that TMD lengths are generally not determined experimentally and predictions are not always precise and vary depending on the used
algorithm (Davis et al., 2006). Basic amino acids in the tail are shown in bold red. The LPYS Golgi retention motif of MNS3 is shown in bold. Org.:
organism, At: Arabidopsis thaliana, Gm: Glycine max, Nt: Nicotiana tabacum. (B) Predicted 3D structures of the cytoplasmic tail and TMD regions of
selected Golgi N-glycan processing enzymes from Arabidopsis (see panel A) as predicted by DeepTMHMM and AlphaFold. Grey boxes indicate TMD
length and membrane anchoring.
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with SEC24A, a component of the COPII coat (Sieben et al., 2008).

This is consistent with a mammalian study showing a preference of

the SEC24A isoform for binding to DXE motifs (Chatterjee et al.,

2021). SEC24 was also found to bind to an LXX(L/M)E motif in the

cytoplasmic N-termini of the two yeast SNAREs Sed5p and Bet1p

(Mossessova et al., 2003). The same LXXLE motif was identified in

the N-terminus of BET12, the Arabidopsis homologue of Sed5p.

This motif in combination with a dibasic motif near the TMD was

shown to mediate ER export (Chung et al., 2018).
ER retention via retrograde transport

Little is known about the presence and involvement of amino

acid sequence motifs in the retrieval and retention of N-glycan

processing enzymes within the Golgi stack. Mammalian Golgi

glycosyltransferases and glycosidases were thought to be good

examples of retained proteins (Munro, 1991; Nilsson et al., 1991;

Machamer, 1993). However, many, if not all, Golgi proteins cycle

continuously within the Golgi stack and/or between the Golgi and

the ER (Lippincott-Schwartz et al., 2000; Ward and Brandizzi, 2004;

Storrie, 2005; Schoberer et al., 2010). This could occur either by

regular retrograde transport mediated by COPI-coated vesicles that

form at the periphery of Golgi cisternae (Pimpl et al., 2000;

Ritzenthaler et al., 2002), a COPI-independent mechanism

involving tubules, direct transport to the ER, or a combination of

these possibilities (Nichols and Pelham, 1998; Storrie, 2005;

Schoberer et al., 2010). Evidence for the cycling of Golgi residents

comes, for example, from fluorescence recovery after

photobleaching (FRAP) experiments showing the exchange of

GFP-labelled Golgi proteins between Golgi and ER pools (Zaal

et al., 1999; Miles et al., 2001; Brandizzi et al., 2002a; Schoberer et al.,

2010). The predominant means for retrograde transport are COPI

vesicles, whose coat is composed of seven individual coat protein

subunits, a/b/b’/d/e/g/z (Pimpl et al., 2000; Ritzenthaler et al.,

2002). In plants, two types of COPI vesicles have been identified

based on their size. As shown by electron tomography analysis,

COPIa vesicles exclusively bud from cis-Golgi cisternae and reside

at the ER-Golgi interface in Arabidopsis (Donohoe et al., 2007).

COPIb vesicles are present at the medial- and trans-Golgi cisternae

and are most likely responsible for retrograde transport within the

Golgi stack.

The best-characterized COPI binding signals include dilysine

motifs (KKXX and KXKXX) as described for the p24 protein family

and the K/HDEL retrieval signal, which are found on many ER-

resident proteins to direct them back to the ER (Contreras et al.,

2004; Langhans et al., 2008; Gao et al., 2014). The Arabidopsis

glycerol-3-phosphate acyltransferase 8 (GPAT8) and fatty acid

desaturase 3 (FAD3) contain C-terminal KK and KXKXX motifs,

respectively, that differ slightly from the canonical dilysine motif

(McCartney et al., 2004; Gidda et al., 2009). Arginine-based motifs

have also been shown to play a crucial role in mediating ER

localization. For example, the N-terminal cytoplasmic tail of

Arabidopsis GCSI contains four arginine residues that are

constitutive for three di-arginine motifs (RR, RXR or RXXR),
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each of which can confer ER localization most likely through

retrieval from the Golgi as mutating all four arginines shifted

GCSI localization from the ER to the Golgi (Boulaflous et al.,

2008). Fusing the arginine-rich tail of GCSI to the first 35 N-

terminal amino acids of XYLT (encompassing the cytoplasmic tail

and TMD) redirected the enzyme from the Golgi to the ER. In

mammals, the arginine-rich motif RRXXXXR has been

demonstrated to retain the GM3 synthase isoform M1-SAT-I, a

glycosyltransferase involved in ganglioside synthesis, within the ER.

Mutating two of the three arginine residues redirected the enzyme

to the Golgi, where its two homologs M2-SAT-I and M3-SAT-I are

located (Uemura et al., 2009). ER retention can also be conferred by

the hydrophobic pentapeptide motif f-X-X-K/R/D/E-f (where f
denotes a hydrophobic amino acid), which is found in the C-

termini of Arabidopsis GPAT9 and FAD2 (McCartney et al., 2004;

Gidda et al., 2009).
Golgi retention via retrograde
transport

A recent study showed that certain mammalian cis-Golgi

glycosyltransferases are capable of directly binding to COPI

subunits via the specific amino acid motif f-(K/R)-X-L-X-(K/R)
in their N-terminal cytoplasmic tails. This interaction is critical for

maintaining their correct steady-state location in the cis-Golgi (Liu

et al., 2018). The same study also showed that d-COP can bind to

the N-terminal tail of GALNT4 via a WX(n1-6)(W/F) motif, which

is an evolutionarily conserved d-COP m-homology domain (MHD)-

interacting motif (Suckling et al., 2015). Notably, most medial and

trans-Golgi enzymes did not bind to COPI subunits. This suggests

that this mechanism may be unique to cis-Golgi proteins that

require recycling from late Golgi compartments to maintain their

steady-state distribution.

Furthermore, glycosyltransferases may interact with COPI via an

adaptor-mediated mechanism. In yeast, the peripheral membrane

protein Vps74p has been shown to facilitate the sorting and recycling

of multiple Golgi-localised glycosyltransferases by binding to a semi-

conserved FLS-like motif (F/L-L/I/V-X-X-R/K) present in their

cytoplasmic tail and the COPI coat (Tu et al., 2008, 2012). Vps74p

thus functions as an adapter linking these enzymes to the COPI

machinery, which facilitates the transport of glycosylation enzymes

back to earlier Golgi cisternae, thereby enabling their dynamic

localization in the Golgi (Schmitz et al., 2008; Tu et al., 2008). For

example, the mutation of one or two residues within this motif

resulted in the mislocalization of the mannosyltransferase Kre2p to

the vacuole (Tu et al., 2008). Golgi phosphoprotein 3 (GOLPH3), the

mammalian homologue of Vps74p, has been demonstrated to

perform a comparable function (Ali et al., 2012; Eckert et al., 2014;

Pereira et al., 2014). Although mammalian glycosyltransferases lack

the yeast consensus motif, the two isoforms GOLPH3 and GOLPH3L

have been demonstrated to partially compensate for the Vps74p

mutant phenotypes (Tu et al., 2008). The amino acid sequence LxxR

has been identified in the cytoplasmic tails of potential GOLPH3

binding partners that are involved in glycosphingolipid biosynthesis
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(Rizzo et al., 2021). For example, GOLPH3 was shown to bind to the

N-terminal cytoplasmic tail of the lactosylceramide synthase (LCS)

that contains an LPRR motif, which led to its retention at the trans-

Golgi, where it is sorted into retrograde transport vesicles (Rizzo et al.,

2021). Knockdown of GOLPH3 led to its mislocalization to the TGN

and then lysosome for its degradation. It has been put forth that

TMD- and GOLPH3-dependent sorting occurs primarily in the late

Golgi, whereas direct interactions with COPI are observed

predominantly in the early Golgi (Welch and Munro, 2019). The

human mannosidase ERManI has two di-basic arginine motifs

(RRXX) in its N-terminal cytoplasmic tail that are critical for

binding to g-COP, the gamma subunit of COPI (Pan et al., 2013),

but has also been proposed to interact with GOLPH3 (Welch et al.,

2021). Despite the important function of Vps74p/GOLPH3 in the

retrieval and retention of Golgi-resident glycosylation enzymes in

yeast and mammals, respectively, no homologues of Vps74p/

GOLPH3 have been identified in plants. The only study suggesting

adaptor-mediated retrieval of Golgi-resident N-glycan processing

enzymes in plants is that of the cis/medial- enzyme GNTI

(Schoberer et al., 2019a). When a conserved polar glutamine (Q)

residue in the TMD of AtGNTI or NtGNTI was replaced, the

fluorescent fusion protein was mislocalized to the vacuole and N-

glycan processing was impaired in vivo, indicating a TMD-based

sorting mechanism. The glutamine residue may facilitate an

interaction with an unknown Golgi-resident adaptor protein/

complex or may be crucial for a specific protein-lipid interaction to

partition GNTI into a specific lipid/membrane domain, which is

likely to promote COPI-mediated retrograde transport and thereby

maintain the steady-state localization of GNTI in the cis/medial Golgi

of plants. The newly identified mechanism, which is active in both

Arabidopsis and Nicotiana, differs from previous models such as the

bilayer thickness model, kin recognition and the more recent

cytoplasmic tail-dependent sorting (Tu and Banfield, 2010).

Further support for the involvement of the COPI machinery in

the steady-state localization of Golgi-resident glycosylation

enzymes comes from the study of the Arabidopsis cis-Golgi

resident ER-a-mannosidase I (MNS3; Schoberer et al., 2019b).

MNS3-GFP was partially translocated to the vacuole when

coexpressed with RNAi constructs that silence endogenous d-
COP and e-COP, the delta and epsilon subunits of COPI, in N.

benthamiana leaves (Schoberer et al., 2019b). These results

suggested the involvement of COPI-mediated recycling from

trans- to cis-Golgi cisternae as proposed by the cisternal

maturation model, while the trafficking pathway from the Golgi

to the vacuole may highlight the default degradation pathway for

glycosyltransferases that are no longer needed in a plant cell. A

similar shift to the vacuole was shown for GNTI-mRFP upon

knockdown of endogenous d-COP and e-COP (Schoberer et al.,

2019a). Although the cytoplasmic tails of MNS3 and GNTI contain

numerous basic amino acids that are essential residues

of the binding motifs in the cytoplasmic tails of Golgi

glycosyltransferases and glycosidases, there is no recognizable

canonical COPI binding motif present that could account for the

observed mislocalization (Figure 6A). This is in contrast to a study
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of the mammalian MNS3 ortholog, human ERManI, which

contains two di-basic arginine motifs (RRXX) required for

binding to g-COP (Pan et al., 2013). Interestingly, the ER

localization of the yeast MNS3 ortholog ER a1,2-mannosidase I

relies on the interaction of its TMD with retention in endoplasmic

reticulum sorting receptor 1 (RER1), a Golgi-localised retrieval

receptor that cycles the protein from the Golgi back to the ER

(Massaad et al., 1999). Arabidopsis possesses three RER1 family

members that can complement the mislocaliation of cargo proteins

in the yeast mutant Drer1. A role for RER1 in intra-Golgi transport

or the presence of RER1-interacting proteins has yet to be described

in plants.
Golgi retention via hydrophobic
residues

A Golgi retention motif containing an important leucine

residue (LPYS) was identified in the cytoplasmic tail of

Arabidopsis MNS3 (Schoberer et al., 2019b). Despite its high level

of conservation among plant ER-a-mannosidases, this motif does

not appear to be related to any of the Golgi localization signals that

have been described thus far in yeast, mammals, and plants. When

MNS3-GFP was treated with brefeldin A (BFA), a secretory

inhibitor, or tagged with the ER-retrieval signal HDEL, which

both commonly result in the relocation of Golgi enzymes to the

ER, the fluorescent fusion protein remained on dispersed punctate

structures resembling Golgi remnants. However, the deletion of the

LPYS motif or the exchange of the leucine residue for alanine in the

full-length cytoplasmic tail of MNS3 resulted in the relocation of the

protein to the ER. This Golgi-to-ER shift may indicate a

malfunction in the Golgi retention mechanism, potentially due to

the disruption of the binding interaction between the cytoplasmic

motif and hitherto unidentified determinants within the Golgi

apparatus. Only recently, a conserved di-leucine motif (LXL) near

the cytoplasmic C-terminus of the Arabidopsis K/HDEL receptor

ERD2 was identified as a crucial determinant of its Golgi residency

and biological function, mediating ER retention of soluble ligands

(Silva-Alvim et al., 2018). Replacement of the leucine residues

resulted in a significant relocation of AtERD2 to the ER.

Subsequently, it was demonstrated that the LXL motif functions

as a Golgi retention signal, preventing its recycling to the ER, and is

required to inhibit COPI-mediated receptor recycling (Alvim

et al., 2023).
Golgi retention via COG-mediated
retrograde transport

An important role in the intra-Golgi retrograde trafficking of

Golgi-resident N-glycan processing enzymes in mammalian and

yeast cells has been attributed to the COG complex (Conserved

Oligomeric Golgi complex). This multi-protein tethering complex
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consists of eight subunits, named COG1 to COG8, that are

organized into two subcomplexes, lobe A and lobe B. The COG

complex is essential for tethering retrograde vesicles within the

Golgi, helping to ensure that enzymes and other proteins remain in

the correct Golgi compartments and thereby maintaining Golgi

homeostasis (Smith and Lupashin, 2008; Blackburn et al., 2019).

Live-cell super-resolution microscopy has recently shown that lobe

A is preferentially Golgi-bound, whereas lobe B is mainly found on

vesicles (Willet et al., 2016). This localization facilitates association

between vesicles and target membranes, allowing SNARE complex

formation and vesicle fusion. Disruptions in the COG complex can

lead to severe diseases known as congenital disorders of

glycosylation (COG-CDG), which result from the mislocalisation

of N-glycosylation enzymes, affecting glycosylation patterns and

leading to improperly glycosylated proteins. Although Arabidopsis

homologs of all eight COG subunits have been identified in plants

(Latijnhouwers et al., 2005), only COG3, COG6, COG7 and COG8

have been functionally studied in Arabidopsis. Studies of cog3, cog6,

cog7 and cog8 mutants suggest that the Arabidopsis COG complex

plays an important role in maintaining the structural and functional

integrity of the Golgi apparatus during pollen tube tip growth

(Ishikawa et al., 2008; Tan et al., 2016; Rui et al., 2020). This seems

reasonable since pollen tube growth relies on the targeted secretion

of vesicles containing cell wall components, such as pectins and

hemicelluloses, which are synthesized in the Golgi. Mislocalisation

of Golgi-resident enzymes, which are involved in the synthesis of

these cell wall polysaccharides, and a defective Golgi stack

morphology result in their incorrect deposition, leading to

weakened cell walls and impaired pollen tube elongation (Tan

et al., 2016). Interestingly, mutations in other proteins involved in

vesicle tethering, such as the Golgi-resident Qa-SNARES SYP31

and SYP32 or the RAB GTPases RABD2b and RABD2c, also result

in defects in pollen development and pollen tube growth (Peng

et al., 2011; Rui et al., 2021). Rui and colleagues recently showed that

SYP31 and SYP32 interact with COG6 and are responsible for its

Golgi localization in Arabidopsis (Rui et al., 2021).

In summary, the CTS region is essential for the correct

localization of N-glycosylation enzymes in yeast, mammals and

plants (Tu and Banfield, 2010; Schoberer and Strasser, 2011).

However, the determinants required for proper Golgi targeting and

retention are highly variable, as reflected by the lack of sequence

similarity between different glycosylation enzymes (Figure 6).
Significance of N-glycan processing
enzyme localization in plant
glycoengineering

Glycoengineering is the process of manipulating the

glycosylation pathways of organisms to create tailored

glycoproteins with precise glycan modifications. This is

particularly important for the production of glycoproteins used in

a therapeutic context, where specific glycan profiles can influence

their efficacy, stability, and immunogenicity. For example,
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protective glycan residues, such as sialic acid, can prolong the

half-life of glycoproteins, which is critical for creating stable,

long-lasting therapeutic proteins, making them more effective in

clinical applications. Plants are an attractive platform for

glycoengineering and are increasingly being used as biofactories

for the production of therapeutic proteins (Tekoah et al., 2015;

Hager et al., 2022; Whaley and Zeitlin, 2022; Zahmanova et al.,

2023), because they are scalable, cost-effective, and can be grown in

large quantities. However, control of the glycosylation process is

essential for the use of plants as commercial platforms for the

production of non-plant glycoproteins due to differences in plant-

specific glycan structures and their potential incompatibility with

human applications. Plants add b1,2-xylose and core a1,3-fucose to
complex N-glycans, which are absent in humans and potentially

immunogenic, limiting the therapeutic use of plant-produced

glycoproteins. For example, antibodies used in monoclonal

antibody therapy require fucose-depleted glycans to enhance

antibody-dependent cell-mediated cytotoxicity, a mechanism

that helps the immune system kill target cells. Therefore,

glycoengineering efforts have focused on inhibiting the activity of

b1,2-xylosyltransferase and core a1,3-fucosyltransferase through

knock-down/knock-out strategies, resulting in the generation of

plant species that synthesize complex N-glycans composed of the

GnGn oligosaccharide devoid of plant-specific glycan residues

(Castilho and Steinkellner, 2012).

By removing plant-specific glycosylation enzymes, introducing

human or mammalian glycosylation enzymes that plants naturally

lack, into the appropriate Golgi cisternae and manipulating the

localization of resident enzymes within the Golgi stack, scientists

can control the sequence of glycan processing, thereby ‘humanizing’

the glycosylation pathways in plants to produce therapeutic

proteins that meet regulatory standards for use in humans

without the need for costly downstream processing to alter the

glycan structures. Knowledge of the critical determinants of Golgi

enzyme localization is essential as the mislocalisation of enzymes

could result in incomplete or incorrect glycosylation, leading to

undesired protein properties. To illustrate, human b1,4-
galactosyltransferase (b1,4-GALT), which is absent in plants, is

targeted to a distinct Golgi compartment in plants, where it inhibits

biantennary complex N-glycan formation, resulting in augmented

N-glycan heterogeneity (Bakker et al., 2001; Strasser et al., 2009).

The previous chapters established that the localization of N-glycan

processing enzymes in the plant Golgi is controlled by the CTS

region and that the catalytic domain is responsible for glycan

processing activity. Swapping the CTS regions and catalytic

domains between enzymes has shown considerable potential for

gaining more precise control over glycosylation pathways and for

adding additional functions to plant pathways. This is exemplified

by the successful generation of branched and galactosylated

structures (Castilho et al., 2011; Nagels et al., 2011; Castilho and

Steinkellner, 2012). Furthermore, the expression of a chimeric

protein comprising the CTS region of ST and the catalytic

domain of human b1,4-GALT led to the efficient production of

di-galactosylated N-glycan structures in N. benthamiana (Strasser

et al., 2009). In contrast, the CTS region of XYLT fused to the
frontiersin.org

https://doi.org/10.3389/fpls.2025.1624949
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dünser and Schoberer 10.3389/fpls.2025.1624949
catalytic domain of b1,4-GALT resulted in predominantly mono-

galactosylated and hybrid N-glycan structures (Bakker et al., 2006).

Since galactosylation of N-glycans prevents further processing by

GMII and GNTII, this incomplete processing of N-glycans suggests

that the ST-CTS region, in contrast to the XYLT-CTS region, directs

targeting to a later Golgi compartment. In addition, the transient

expression of the GNTI-CTS region led to a block in N-glycan

processing on a co-expressed glycoprotein in N. benthamiana

(Schoberer et al., 2023). The identified sequence motif in the

GNTI stem region acts as a dominant-negative sequence motif

that can be used in transient glycoengineering approaches for the

recombinant production of oligo-mannosidic N-glycans.

In addition to mimicking human glycosylation, glycoengineering

can create novel glycan structures that do not occur naturally in

plants or humans (Kallolimath et al., 2016; König-Beihammer et al.,

2021), allowing the synthesis of novel glycoforms with specific

biological properties that can be exploited for therapeutic or

industrial applications.
Challenges and future directions

Studying the trafficking of Golgi-resident N-glycan processing

enzymes in plants is a complex task due to the unique challenges

posed by plant cellular architecture and the dynamic nature of the

Golgi apparatus. The plant Golgi apparatus is highly dynamic and

spatially complex compared to its mammalian and yeast

counterparts. It consists of numerous mobile Golgi stacks that

move along the actin cytoskeleton, often interacting with the

rapidly remodeling ER. Golgi-localised N-glycan processing

enzymes are also not static, constantly cycling between the ER

and the Golgi and within the Golgi. This makes it difficult to

capture, track and quantify protein dynamics and determine the

specific Golgi compartments where N-glycan processing takes

place. While mammalian and yeast systems have well-established

tools for studying and visualizing protein trafficking, plant-specific

tools are still being developed. For example, high-resolution

imaging techniques are essential for studying the fine details of

enzyme trafficking. However, many fluorescence-based imaging

techniques have limitations when applied to plant cells due to the

presence of a cell wall that limits the penetration of fluorescent

probes, autofluorescence in chlorophyll-containing leaves, a large

vacuole that reduces the density of target structures, the thickness of

plant tissues, and the rapid movement of organelles. Numerous

super-resolution imaging techniques, such as stochastic optical

reconstruction microscopy (STORM), photoactivated localization

microscopy (PALM) and stimulated emission depletion microscopy

(STED) have increased spatial resolution, but are limited at the level

of temporal resolution as they necessitate prolonged acquisition

times and are therefore incompatible with the imaging of mobile

phenomena, such as the rapid remodeling of the ER and movement

of Golgi stacks in plants.

A tool that was missing in plants until very recently was the

RUSH (Retention Using Selective Hooks) system, which has been

used inmammalian cells to study and quantify protein trafficking and
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dynamics in living cells by allowing researchers to control the

retention, release and movement of cargo proteins from a donor

compartment within cells in real-time (Boncompain and Perez,

2012). Using the RUSH system in combination with real-time

high-resolution imaging, it has been shown that ERES expand into

a tubular network connected to the ER, containing secretory cargo

but no COPII components. COPII components do not accompany

departing cargo containers but instead remain on ERES by decorating

the neck of tubules, which form an interwoven network connected to

the ER (Westrate et al., 2020; Shomron et al., 2021; Weigel et al.,

2021). This suggests that vesicles are not the only means of

anterograde transport and is consistent with a recent study

performed in N. tabacum leaves, which found that ER tubules are

often associated with punctate structures where ERES and Golgi

markers are co-localised (McGinness et al., 2022). The immobile

nature of the mammalian ER and Golgi apparatus is a major

advantage when monitoring fluorescent proteins in real time at

high resolution. Recently, a version of the RUSH system has been

established in plants (Fougère et al., 2025). Utilizing the RUSH

system and high-resolution microscopy, the authors have identified

a highly dynamic, Golgi-independent cis-Golgi tubulo-vesicular

network in Arabidopsis, which was proposed to constitute an early

station of the ERGIC in plants (Figure 4). This study significantly

updates previous models of the plant secretory pathway. The

existence of a plant ERGIC has been widely debated (Robinson

et al., 2015), and this study raises the question of whether the

proposed plant ERGIC acts as a new sorting hub for both

anterograde and retrograde traffic, as is the case in mammalian

cells (Appenzeller-Herzog and Hauri, 2006). This finding certainly

introduces additional layers of regulation and complexity to the

localization mechanisms of Golgi-resident N-glycan processing

enzymes by introducing extra steps of sorting, retention, and

retrieval steps that could affect the distribution or trafficking

dynamics of enzymes. The ERGIC could facilitate more precise

spatial and temporal control over the entry of enzymes into the

Golgi, potentially impacting the overall accuracy of glycan processing.

The presence of multiple isoforms for glycosylation enzymes

and a variety of components of the trafficking machinery, such as

RABs, SNAREs, COPI and COPII proteins, adds another layer of

complexity in plants. This redundancy makes it difficult to study the

function and trafficking of a single enzyme, as knocking out or

disrupting one protein of interest may be compensated for by

another. This may also explain why knockouts of single proteins

in plants are neither lethal nor result in specific phenotypes. The

significance of multiple copies for proteins involved in trafficking is

unknown but may be related to specificity for a particular type

of cargo.

Future research may focus on gaining a mechanistic

understanding of the sub-Golgi targeting and protein retrieval

and retention mechanisms by studying how specific motifs and

domains in N-glycan processing enzymes are recognized by the

plant Golgi trafficking machinery. To date, little is known about

how N-glycan processing enzymes are recycled and positioned in

the cisternae where they function. The precise role of the COG

complex within the plant Golgi is not well understood. Notably, a
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cog7 mutant with an amino acid substitution in the conserved

domain of the protein displays a highly accelerated dark-induced

senescence phenotype (compared to wildtype) that is accompanied

by enhanced protein N-glycosylation, thereby linking COG

function to both N-glycosylation and plant stress responses (Choi

et al., 2023). Also, unlike in mammals and yeast, plants lack certain

sorting factors (e.g. Vps74p/GOLPH3), and the motifs responsible

for COPI-mediated retrieval are not conserved. These findings

suggest the existence of unique or as-yet-undiscovered plant-

specific mechanisms for Golgi enzyme localization and retention.

Similarly, the impact of variations in the lipid environment

within Golgi membranes on the localization and function of

glycosylation enzymes in plants remains relatively unexplored.

Lipids are active participants in the sorting of membrane proteins

in the Golgi, rather than passive components. They create

specialized membrane environments, regulate vesicle formation,

and interact with proteins to ensure the accurate delivery of cargo

throughout the cell. Inhibition of glucosylceramide biosynthesis was

linked to decreased protein secretion and perturbations of Golgi

structure, although the localization of the trans-Golgi marker ST

remained unaffected (Melser et al., 2010). Only recently, it was

reported that the maturation of ERGICs into Golgi cisternae

depended on C24-ceramide sphingolipids (Fougere et al., 2025).

Even small changes in the localization of N-glycan processing

enzymes can lead to abnormal glycosylation, which can have

significant effects on protein folding, stability, and function. These

changes may not be readily observable, especially in the early stages

of mislocalisation, making it difficult to link trafficking defects to

physiological effects. Molecular or proteomic studies using mutants

with glycosylation and/or trafficking defects will help to elucidate

the regulatory mechanisms that control enzyme localization.
Concluding remarks

The trafficking and precise localization of Golgi-resident N-

glycan processing enzymes and the precise control of these

processes in plants are vital for maintaining proper glycoprotein

biosynthesis and function. Understanding these mechanisms is

crucial for manipulating glycosylation processes in plants, which

can be important for producing glycoproteins for pharmaceutical

purposes. Studying the trafficking of Golgi-resident N-glycan

processing enzymes in plants is challenging due to the dynamic

and complex organization of the plant Golgi, the difficulty of

distinguishing between distinct compartments within the Golgi

stack at the nanoscale and the redundancy of the key components

of the protein trafficking machinery. Advanced imaging techniques

that combine high-resolution and real-time imaging, tools like the

RUSH system, and genetic/proteomic screens of mutants with

aberrant glycosylation will provide a deeper understanding of

plant-specific trafficking pathways and help overcome these

challenges to unravel the precise mechanisms governing the
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localization and function of glycosylation enzymes in plants,

which in turn will expand our understanding of plant cell biology.
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