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Introduction


Maize is a cornerstone of global agriculture, essential for ensuring food security, driving economic development, and meeting growing food demands. Yet, how to achieve optimal yield remains a multifaceted challenge influenced by biotic, environmental, and genetic factors whose comprehensive understanding is still evolving.







Methods


QTL mapping of eight essential yield traits was conducted across four environments — Sanya (SY) in 2021, and Yangling (YaL), Yulin (YuL), and Weinan (WN) in 2022 — using two types of populations: a KA105/KB024 recombinant inbred line (RIL) population and two immortalized backcross populations (IB1 and IB2) derived from the RILs by crossing with their respective parents. Key candidate genes were identified through the integration of RNA-seq data, gene-based association analysis and classic yield-related genes network dataset.







Results


Greater phenotypic variation was observed in RIL population than that in the IB1 and IB2 populations, while similar phenotype variations between IB1 and IB2 populations. A total of 121 QTLs were identified, including 10 QTLs that regulate multiple traits and 41 QTLs shared among these populations. Notably, 59.5% of the 42 QTLs identified in the IBL population (combined mapping using populations IB1, IB2, and RIL) exhibited an overdominance effect through the simultaneous calculation of additive and dominant effects. Through integrated transcriptome data and interaction networks, 20 genes located in these QTLs were investigated as candidate genes. Among them, Zm00001d005740 (ZmbHLH138) was significantly associated with ear diameter in the association mapping panel AM508.







Conclusion


These findings illuminate the genetic mechanisms underpinning maize yield formation, providing a robust foundation for advancing high-yielding variety development through targeted field breeding strategies.
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Introduction


Maize (Zea mays L.) is one of the most important crops worldwide for its extensive cultivation, high grain yield, and widespread use of hybrid varieties. As a crop with combined value for food, feed, and industrial use, maize plays a vital role in ensuring food security, supporting livestock development, and supplying raw materials for industry, thereby contributing positively to improving household income and living standards. The latest forecast indicates that global maize production is expected to increase by 3.8% in 2025, with a projected 6.0% rise in the United States (FAO, 2025). In China, maize is cultivated over an area of 44.74 million hectares, with a total output of 294.92 million tonnes, accounting for 41.7% of the country’s total grain production (National Bureau of Statistics of China, 2025). The yield of maize is mainly determined by the ear number per unit area, the number of kernels per ear and hundred kernel weight (HKW). Among them, the HKW is related to the process of kernel filling and kernel traits, while the number of kernels per ear is related to the ear traits. Kernel traits mainly include kernel thickness (KT), kernel length (KL), kernel width (KW), and HKW. The ear traits mainly include ear length (EL), diameter (ED), ear row number (ERN), kernel number per row (KNR), etc (Dong et al., 2023).All of these traits are associated with yield, with broad-sense heritability (H²) ranging from 0.61 to 0.83 (Zeng et al., 2022).


Numerous studies have focused on investigating the complexities of yield and its associated traits (Ma and Cao, 2021; Luo et al., 2022; Qian et al., 2023). Phenotypic and genetic correlation analyses show that component traits EL, ED, ERN, KNR, KL, KW, grain yield per plant (GYP), and HKW are associated with yield (Shi et al., 2017). Notably, KL, KW, HKW, EL, KNR, and ear weight (EW) show positive correlations with individual plant yield (Li et al., 2013; Yang et al., 2016; Xiao et al., 2022). Meanwhile, the relationship between yield-associated traits in maize must also be considered. One study identified a significant positive correlation between ED and ERN, and a slight negative correlation between KNR and HKW (Zhang et al., 2020). Another study demonstrated that HKW, KL, KW, and KT had a significant positive correlation, while KT exhibited a strongly negative correlation with KL (Lan et al., 2018). More recent work has also shown that yield is positively correlated with plant height and ear height under various environmental conditions. Interestingly, while the interval between flowering and silk emergence showed no correlation with yield under irrigation conditions, it was significantly negatively correlated under drought stress conditions (Xue et al., 2013). These studies collectively indicate that yield is influenced by multiple interconnected component traits, highlighting the importance of exploring relationships among different traits, identifying functional loci and genes, and elucidating regulatory mechanisms to improve yield.


Over the years, researchers have developed a variety of populations to dissecting the genetic architecture of yield-related traits, such as recombinant inbred line (RIL), F2 population, doubled haploid (DH) population, backcross (BC) population, and immortalized backcross (IB) populations (Wu et al., 2016; Aakanksha et al., 2021; Mei et al., 2021; Chen et al., 2024; Han et al., 2025). RIL is a type of permanent mapping population developed by repeated selfing from an F2 generation, typically for more than six generations (Takuno et al., 2012). As a result, each line becomes nearly homozygous, yet carries a unique combination of recombined parental alleles. Due to their genetic stability, RILs can be repeatedly phenotyped across different environments and years, making them highly suitable for dissecting the genetic basis of complex traits such as yield (Hu et al., 2020). Although RIL populations offer many advantages for dissecting the genetic architecture of yield-related traits, they are limited to detecting additive effects. However, dominance effects also play a critical role in understanding the inheritance of these traits. IB populations are a type of specialized genetic population developed by backcrossing a segregating population, such as RIL, to both parental lines, resulting in hybrid progeny suitable for dominant effect analysis (Huo et al., 2023). Therefore, the combination of RIL and IB populations is particularly useful for detecting both additive and dominant genetic effects, making them powerful tools for dissecting the genetic architecture of yield-related traits.


Yield-related traits in maize are usually complex quantitative traits. To dissect their genetic architecture, linkage mapping using various bi-parent mapping populations has identified a handful of quantitative trait loci (QTL) for both ear traits and kernel traits (Wang et al., 2019; Ning et al., 2021; Li et al., 2023). For instance, a F2:3 populations from parents Zong-3 and 87–1 was utilized to identify 29 QTLs related to yield, including kernel number per row (KNR), hundred kernel weight (HKW), and ear row number (ERN) (Yan et al., 2006). Similarly, Huo et al. detected 39 QTLs associated with maize ear traits (Huo et al., 2016), and Liu et al. identified 33 QTLs for the ERN (Liu et al., 2015). Zhou et al. revealed 14 QTLs for EL using an F2:3 population derived from Zheng58 × Chang7–2 and a four-cross population (Zhou et al., 2018). Three QTLs were reported for EL and ERN in an F2 population derived from Chang7-2 × 787 (Chen et al., 2014b), and another 6 ear trait loci were identified in a mapping study with KA105 × KB020 F5:6 families (Yang et al., 2021). These findings indicate that yield-related traits are mainly controlled by rare major QTLs and many minor QTLs.


In recent years, significant progress has been made in the molecular cloning of genes that influence maize yield, particularly those influencing ear and kernel development (Li et al., 2021; An et al., 2022; Chen et al., 2023). For instance, Zm00001d022088 (ZMM28), a MADS-box transcription factor, has been found to positively influence growth, photosynthetic efficiency, and ultimately yield when overexpressed (Wu et al., 2019). Similarly, Zm00001d027877 (ZmBG1H1), a member of the BG1 family, is associated with increased ERN and grain yield. However, its overexpression results in a reduction in grain size (Simmons et al., 2020). Another notable gene is Zm00001d002641 (KRN2), which encodes a WD40 family protein and plays a role in determining maize ear row number (Chen et al., 2022). Knocking out KRN2 increases ERN without compromising other agronomic traits, resulting in a notable 10% increase in maize yield. Additionally, Zm00001d017570 EAD1, an aluminum-activated malic acid transporter, has been linked to enhanced EL and KNR (Pei et al., 2022). Furthermore, genes like ZmGW2, which encodes a RING-type E3 ubiquitin ligase, have been found to influence KW and HKW (Li et al., 2010). These advancements in understanding and manipulating key genes such as ZmM28, ZmBG1H1, KRN2, EAD1, and ZmGW2, along with the potential discovery of new genes, hold significant promise for further enhancing maize yield through targeted genetic interventions.


Yield-related traits belong to complex quantitative traits, controlled by multiple minor genes and significantly influenced by environmental factors. Although traditional breeding has led to the development of many high-yielding varieties, its detailed genetic mechanism still not clear, which limited improved it by molecular biochemical technology. Understanding the genetic basis of yield-related traits is therefore essential to accelerate genetic improvement. To address this challenge, we employed a RIL population and two immortalized backcross populations (heterozygosis population) to dissect the genetic architecture of eight key yield-related traits. By leveraging multiple populations across diverse environments, we enhanced the robustness and generalizability of our findings while capturing a broader spectrum of genetic variation. The integration of both additive and dominant genetic models enabled a more comprehensive understanding of trait inheritance and facilitated the identification of QTLs and candidate genes. Nevertheless, potential environmental interactions may not have been fully accounted for, and further functional validation of candidate genes is still required.







Materials and methods






Plant materials


A RIL population with 183 lines was developed from two inbred lines KA105 and KB024 to detect QTLs for yield-related traits. In May 2021, KA105, KB024, and the 183 RILs were cultivated at the Yangling maize base of Northwest A&F University. Subsequently, each of the 183 RILs was backcrossed with their parents KA105 and KB024, respectively, to develop two IB populations, each consisting of 183 BC1 progeny (Yang et al., 2024). The IB population derived from backcrossing with KA105 was designated as the IB1 population, while the counterpart obtained from backcrossing with KB024 was labeled as the IB2 population, the entirety population including IB1, IB2, and RIL is named IBL (Zhang et al., 2022).







Plant growth and trait measurements


The experiment was conducted across four environments: Sanya (SY) in November 2021, Yangling (YaL) and Yulin (YuL) in May 2022, and Weinan (WN) in June 2022. It utilized a randomized block design with a row spacing of 0.6 meters, a single row with 4 meters for row length and 0.22 meters for plants interval. Field management practices strictly adhered to local protocols. At maturity, all ears within the experimental plots were harvested, and five representative ears were selected for comprehensive trait analysis, including ED, EL, ERN, and KNR. These chosen ears were subsequently sun-dried naturally and threshed, followed by weighing to determine GYP. Additionally, 100 seeds were randomly sampled and weighed, with this procedure replicated thrice for precision. Lastly, KL and KW were assessed using a multifunctional digital corn seed testing machine (iMaize, Phenotrait).







Phenotypic data analysis


R package “psych” (https://cran.r-project.org/web/packages/psych/) was used for basic descriptive statistics (Revelle and Revelle, 2015). R package “corrplot” (https://cran.r-project.org/web/packages/corrplot/) was used to calculate the correlation coefficient between traits (Wei et al., 2017). R package “lme4” (https://cran.r-project.org/web/packages/lme4/) calculated broad sense heritability (H2
) using this formula (Bates et al., 2015):
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Linkage map construction


In total, 183 leaf samples from RILs and parental lines were collected from the field for genomic DNA extraction and subsequent genotype detection (Yang et al., 2024). DNA extraction followed an improved CTAB method known for its efficacy in yielding high-quality samples. The extracted DNA was genotyped using the Maize 6H-60k SNP chip developed at Beidahuang Kenfeng Seed Co., Ltd., using the maize inbred line B73 version 3 (AGPv3) genome as a reference from the Maize Research Center of Beijing Academy of Agriculture and Forestry Sciences. The genetic map construction involved the following steps: 1) Screening SNP markers for polymorphism in both KA105 and KB024. 2) Using the QTL IciMapping (v4.2) software’s “BIN” function to identify effective markers. 3) Marker selection criteria included a missing rate ≤10% and a distortion value P ≥ 0.0001. 4) Generating a genetic map using the “MAP” function with threshold value = 0.3 and window size = 5.







QTL mapping


QTL mapping for each trait was conducted in the inclusive composite interval mapping (ICIM) mode on the “QHP” function of GAHP (v1.0) (Zhang et al., 2022). The LOD value was determined using 1000 permutations, which were 3.58, 3.59, 3.62, and 3.95 for RIL, IB1, IB2, and IBL, respectively. The type I error rate set to 0.05 and a PIN threshold of 0.001. This software enables simultaneous QTL mapping across the RIL population, IB1 and IB2 (two permanent backcross populations), and IBL (integrated RIL and backcross populations). QTL detection in the RIL population calculates additive effects (a). In IB1 and IB2 populations, it calculates a-d and a+d effect, respectively, where d represents dominant effects. QTL detection in the IBL population distinguishes both additive (a) and dominant (d) effects simultaneously (Huo et al., 2023). QTLs in the IBL population were categorized based on their degree of dominance d/a as follows: additive effects (A) range from 0.00 to 0.20, partial dominance (PD) from 0.21 to 0.80, dominance (D) from 0.81 to 1.20, and overdominance (OD) above 1.20 (Edwards et al., 1987). Consistency in QTL intervals and effects identifies a single QTL. A QTL explaining over 10% of phenotypic variance (PVE) is classified as a major QTL.







Yield-associated candidate gene analysis


QTLs with PVE > 10% that co-locate across different environments, populations, or traits are classified as major QTLs. All genes within the QTL interval are identified according to the B73 reference genome. Integrated network datasets and two public transcriptome datasets of B73 were downloaded from the National Center for Biotechnology Information, including kernel (embryo, endosperm, and whole seed) and cob (immature and pre-pollination stages) at various time points (accession numbers: PRJNA171684, PRJEB10574, PRJNA226757, PRJNA244661, PRJNA323555, PRJNA369690, and SRP037559) (Chen et al., 2014a; Hoopes et al., 2019; Feng et al., 2023; Han et al., 2023). Genes with FPKM > 5 were considered highly expressed genes of interest. Genes expressed in kernel and cob were compared with QTLs associated with kernel and cob to determine candidate genes. Gene-based association analysis was performed to further identify key gene in a classical association mapping panel consisting of 508 diverse maize inbred lines (Yang et al., 2014). The genotypes and phenotypes were downloaded from the Maizego website (www.maizego.org), where the genotypes included polymorphic loci spanning gene region and 2 kb upstream and downstream, the phenotype was the Best Linear Unbiased Estimate (BLUE) value. Association mapping and linkage disequilibrium were performed using TASSEL (v5.0) and LDBlockShow (Bradbury et al., 2007; Dong et al., 2021). Moreover, the co-expression network between the key gene and the known yield trait-associated genes was constructed, which was visualized with Gephi (V0.9.2) (Bastian et al., 2009). Gene Ontology (GO) analysis was performed using the agriGO web server (http://bioinfo.cau.edu.cn/agriGO/index.php) with a p-value ≤ 0.01 and false discovery rate (FDR)< 0.05 (Tian et al., 2017).








Results






Phenotypic variation in yield-related traits


Here, eight yield-related traits (ED, EL, ERN, KNR, KL, KW, GYP, HKW) were investigated for RIL, IB1, IB2, as well as the two parents (KA105, KB024) and the related F1 (
Supplementary Figure S1
). Except for ERN, the BLUE values of all traits in KA105 were significantly higher than those in KB024 (
Figure 1A
; 
Supplementary Table S1
). Both the RIL and the two backcross (IB1 and IB2) populations displayed abundant phenotypic variation across all four environments, where the coefficient of variation (CV) varied ranging from 4% to 55%. Generally, the CV for each trait in the RIL population was higher compared to the IB1 and IB2 populations, with no significant difference observed between IB1 and IB2. This might be due to the existence of heterozygous genotypes in the backcross population, which reduced the phenotypic variation.


[image: Panel A displays eight density plots comparing various plant traits (such as ED, EL, ERN, KNR, KL, KW, GYP, HKW) across three groups with different colors. Panels B, C, and D are correlation matrices showing scatterplots and correlation coefficients for these traits.]
Figure 1 | 
Analysis of phenotype and correlations in different populations. (A) Distribution of best linear unbiased estimation (BLUE) for the eight yield traits in the RIL, IB1, and IB2 populations. (B) Correlations in the RIL population. (C) Correlations in the IB1 population. (D) Correlations in the IB2 population. ***, **, and * refer to significant at 0.001,0.01,and 0.05 level, respectively.




Additionally, H2
 of all traits were calculated (Equation 1), which were ranged from 0.55 to 0.73 in the RIL population, 0.51 to 0.89 in IB1, and 0.71 to 0.88 in IB2. Most traits in IB1 and IB2 populations showed slightly higher H2
 values than those in the RIL population. Overall, the high heritability illustrated that all studied traits were influenced by genotype. Correlation analysis revealed highly significant correlations among most traits within each of the three populations, suggesting potential synergistic regulation (
Figures 1B–D
).







Genetic linkage map and QTL mapping


A total of 4,555 high-quality SNPs were used for construction the genetic linkage map with an average of 1.04 cM interval, which have been described in previous study (Yang et al., 2024). Each chromosome containing at least 248 and at most 775 markers (
Supplementary Table S2
). There was high degree of collinearity between the genetic linkage map and the B73 (AGPv3) reference physical map, except for several inversions, especially on the short arm of chromosome 9 (
Figure 2
). Based on the genetic linkage map and phenotype, QTL mapping of eight yield-related traits was performed in RIL, IB1, IB2, and IBL populations. In total, 121 unique yield-related QTLs were identified (
Figure 3
).


[image: Bar chart comparing physical and genetic distances across ten chromosomes. Physical distance in megabases (Mb) is shown in orange bars, while genetic distance in centimorgans (cM) is displayed in green bars. Blue shading connects the bars, indicating relationships between the two measurements. Chromosomes are numbered one to ten on the x-axis, with length on the y-axis.]
Figure 2 | 
Collinearity between the genetic map of the RIL population and the physical map of the B73 (AGPv3) genome.




[image: QTL density plot shows the distribution positions of QTLs for the traits ED, EL, ERN, GYP, HKW, KL, KNR, and KW, along with population information. Each trait is represented by a different color. Rows represent chromosomes, and columns represent different populations.]
Figure 3 | 
Distribution of QTLs associated with the eight yield traits across different populations. ED, ear diameter; EL, Ear length; ERN, Ear row number; GYP, Grain yield per plant; HKW, hundred kernel weight; KL, Kernel length; KNR, Kernel number per row; KW, Kernel width. Each black vertical line represents a QTL position on the maize genome, grouped by population type and trait. The histogram at the bottom illustrates the overall QTL density across the maize genome.




In the RIL population, 61 QTLs were identified with a single QTL explaining 1.73% to 25.30% of phenotypic variation, and 11 QTLs of them with PVE greater than 10% (
Supplementary Table S3
). Among these 61 QTLs, 37 (60.66%) of the favorite alleles, associated with an improved phenotype were originated from KA105 (
Figure 4A
). Additionally, four QTLs (qHKW2-3, qKW5-3, qERN5-3, and qERN6-1) were consistently detected across different environments, indicating their environmental stability.


[image: The diagram summarizes the quantitative trait loci (QTL) analysis results for various traits. Panel A shows a Sankey diagram connecting the QTLs of different traits to the parental lines KA105 and KB024. Panel B is a pie chart showing the distribution percentages of D, OD, PD, and A. Panel C is a bar chart displaying the number of QTLs for each trait, with a color legend for A, D, OD, and PD. Panel D displays a Venn diagram comparing the QTL counts of four populations: RIL, IB1, IB2, and IBL, with overlapping and distinct QTL counts.]
Figure 4 | 
Analysis of QTLs from the RIL, IB1, IB2 and IBL populations. (A) Distribution of additive QTLs in the RIL population. (B) Proportions of QTLs exhibiting different effects in the IBL population. OD: over-dominance effect, D: dominance effect, PD: partial dominance effect, A: additive effect. (C) Numbers of QTLs exhibiting the PD, OD, D, and A effects for different yield traits in the IBL population. (D) Co-localization of QTLs detected across different populations.




In the IB1 population, 33 QTLs were detected with 2.57% to 15.65% PVE for each QTL, and eight of them can explain more than 10% PVE (
Supplementary Table S3
). Among these, qED1–1 was considered as environmentally-stable QTLs, which can be identified in two or more data sets. In the IB2 population, 26 QTLs were detected with 4.30% to 13.23% PVE. Notably, 17 QTLs were concentrated on chromosome 1 (
Supplementary Table S3
), of which, six were major QTLs and two QTLs (qEL1–1 and qKL9-2) were environmentally stable.


In IBL, a total of 42 QTLs were detected with 0.43% to 6.11% PVE. qHKW1–1 can be detected in two environments. In addition, several sets of QTLs colocalized to the same interval: qGYP1–1 and qED1-1; qHKW2–3 and qKW2-2; and qKW2–1 and qERN2-1 (
Supplementary Table S3
). Furthermore, genetic effect analysis revealed that 25 of those QTLs identified in IBL exhibited OD effect, 3 QTLs showed D effect, 5 QTLs showed PD effect, and 9 QTLs displayed A effect (
Figure 4B
). Twenty-four OD effect QTLs were detected for ED, EL, ERN, GYP, HKW and KL (
Figure 4C
), indicating that the OD effect mainly affects these yield-related traits.


Comparison of the QTL results across all populations revealed 41 QTLs were identified in at least two populations. Specifically, 19 QTLs were common to the IB1 and IBL populations, 7 to the IB2 and IBL populations, 12 to the RIL and IBL populations, 1 to the RIL and IB1 populations, three to the IB1 and IB2 populations. (
Figure 4D
). 21 out of these 41 QTLs showed OD effect. Notably, among the QTLs common to the RIL and IBL populations, nine exhibited additive effects and three were partially dominant (
Figure 5
).


[image: Sankey diagram depicting quantitative traits across four populations: RIL, IB1, IB2, and IBL. Colored flows represent different traits, with associated labels and connections. Data points are marked with circles or stars, indicating specific attributes.]
Figure 5 | 
Co-localization of QTLs identified from different populations. Circle represents the QTL with phenotypic variance explained (PVE)>10% in at least one environment. Pentagon refers to stable QTL, which was identified in at least two environments.









Identification of candidate genes for yield-related traits


Twenty QTLs with PVE > 10% and consistently detected across different environments, populations, or traits were considered key QTLs (
Supplementary Table S3
). All genes located in these key QTL intervals were extracted and compared with two transcriptome datasets, classical yield genes, and their interacting genes. Then, 20 common genes including 18 unique related to ear traits, one unique related to kernel traits, and one shared in ear and kernel traits were saved as candidate genes (
Figures 6A–C
; 
Supplementary Table S4
).


[image: A series of visuals showcase complex genomic data analysis. Panels A, B, and C are Venn diagrams with sections labeled Transcriptome 1, Transcriptome 2, QTL, and Classic Gene, depicting intersection counts for gene groups. Panel D includes a genomic visualization of a -log P value plot with blue dots, gene structure annotations below, and a heatmap showing linkage disequilibrium. Panel E presents a box plot comparing ear diameter between two haplotypes, Hap 1_A and Hap 1_C, with a significant difference indicated by asterisks. Panel F shows a heatmap labeled ZmbHL138, displaying color-coded expression levels across different tissues.]
Figure 6 | 
Mining and functional analysis of candidate genes. (A) Candidate genes identified for QTLs associated with ear traits. (B) Candidate genes identified for QTLs associated with kernel traits. (C) Candidate genes identified for QTLs associated with both ear and kernel traits. (D) Gene-based association analysis of the candidate gene Zm00001d005740. (E) Gene Ontology (GO) terms enriched in genes that interact with Zm00001d005740. (F) The expression abundant of Zm00001d005740 in different tissues.




To further validate these candidate genes, we performed a gene-based association analysis using 508 high-density genotypic variations and yield trait phenotypes from the traditional association mapping population AM508, which was downloaded from www.maizego.org. For the candidate gene Zm00001d005740 annotated as bHLH-transcription factor 138 (ZmbHLH138), 4 out of the 849 polymorphic loci were significantly associated with ED, with a peak P-value (P = 1.88E - 04) located in the 5’UTR (
Figure 6D
). Notably, ZmbHLH138 was most highly expressed in cob (
Figure 6F
), and this supported the association results. Furthermore, the interacting network for ZmbHLH138 were investigated and 203 interacted genes were identified (
Supplementary Figure S2
; 
Supplementary Table S5
). By GO enrichment analysis, we identified 205 significant GO terms, with 185 related to ‘biological process’, 10 to ‘molecular function’, and 10 to ‘cellular component’. The main GO terms included cell division, microtubule-based process, regulation of DNA replication, cytoskeletal protein binding, microtubule motor activity, ATP-dependent microtubule motor activity, tubulin binding, and protein binding, etc (
Figure 6E
; 
Supplementary Table S6
). Based on the above analysis, ZmbHLH138 emerges as a promising candidate gene implicated in the regulation of maize yield traits, particularly in ED. These results warrant further investigation into the functional role of ZmbHLH138 and its potential applications in breeding programs.








Discussion






Overdominance is common in grain yield component trait QTL


For QTL mapping, the traditional genetic population types are F2, RIL, backcross population, immortalized F2, nested association mapping and doubled haploid population, each of them has some advantage and disadvantage due to detected genetic effects, development time and genetic stability. Also, there were some novel populations developed to address some of the limitations of traditional mapping populations, such as multi-parent advanced generation inter-crossing (MAGIC), complete-diallel plus unbalanced breeding-derived inter-cross (CUBIC) and tested population derived by crossing the RILs with no-parental inbred line (Pascual et al., 2015; Xiao et al., 2021; He et al., 2023). All of these have the common advantage of higher genetic diversity. Our IBL population is named using RIL population and IB population, which is developed by crossing RILs with their respective parents. Traditional RIL populations primarily detect QTLs with additive effects, whereas fixed backcross populations (IB1 and IB2) are capable of identifying QTLs with a-d and a+d effect. Integrated analyses of RIL and fixed backcross populations allow for a more comprehensive assessment of QTL effects in hybrids, facilitating the understanding of their mode of action. Furthermore, the IB1 and IB2 populations offer the advantage of repeatability across multiple environments, which enhances the accuracy of QTL identification (Huo et al., 2023).


Here, we conducted a comprehensive evaluation of yield-related traits using the RIL, IB1, IB2 and combined population IBL in four environments. We detect 121 unique yield-related QTLs. Among them, 42 QTLs were detected in the IBL population and four QTLs are unique to the IBL population, including qHKW1-7, qED3-2, qED3–3 and qKL4-1. Additionally, we found OD is the main effect for ED, GYP, HKW and KL. There is a complex genetic basis for EL and ERN due to D, OD, PD and A effects. We detected the most QTLs for ED, with a total of 12 QTLs, while KNR had the lowest detection efficiency, with only one QTL. In general, The IBL is a powerful population for dissecting the genetic structure of yield-related traits.


Historically, exploiting heterosis has been crucial for achieving high crop yields (Guo et al., 2014; Labroo et al., 2021). Maize, which is widely utilized in agriculture through single crosses, exhibits yield traits that are predominantly determined by heterosis. By exploring QTLs associated with these traits and deciphering their mechanisms of action, we can significantly enhance maize yield through genetic improvement. In our analysis of the eight yield traits within the IBL population, we found that most QTLs exhibit OD effects. This finding highlights the significant role of OD effects in F1 yield and underscores the robust heterosis between parental lines. Exploring additional yield-related QTLs and employing molecular markers to stabilize heterosis loci represent effective strategies for enhancing yield traits and developing high-yield maize varieties.







Pleiotropic QTLs were common in the component of grain yield


Maize yield is influenced by the complex interplay of multiple traits, such as EL, ED, ERN, KNR, KL, KW, GYP, and HKW. As components of grain yield, there were high positive correlation between most traits. The heritability (H2
) of each trait ranged from 0.51 to 0.89 across the RIL, IB1, and IB2 populations, highlighting variability among traits and populations (
Supplementary Table S1
). Despite these differences, QTL mapping across multiple environments identified only 18 stable QTLs (
Supplementary Table S3
), implying that population background and environmental factors substantially influence yield traits. However, the consistent high heritability observed across populations underscores a predominant genetic control over yield. Therefore, investigation into yield-related loci and their genetic mechanisms remains crucial for enhancing maize yield.


In this study, 121 unique QTLs were distributed across all chromosomes, with chromosome 1 harboring the highest number of QTL and chromosome 10 the fewest (
Figure 3
). However, the distribution of QTLs varies by trait. For instance, QTLs influencing GYP and HKW are predominantly located on chromosome 1, whereas QTLs affecting ERN are mainly found on chromosome 5. Additionally, some QTLs are closely clustered; For example, qED2–1 and qED2–2 are within a 0.63 Mb interval on chromosome 2. Similarly, the QTLs such as qERN3-3, qERN3-4, and qERN3–5 tightly clustered between 213.47-229.39 Mb on chromosome 3, whereas qHKW1-4, qHKW1-5, and qHKW1–6 are concentrated between 262.78-269.09 Mb on chromosome 1. These QTL clusters suggest that there may be QTL hotspot regions for yield traits on the chromosomes. However, further fine mapping and functional validation are needed to distinguish possibility. Notably, 26 QTLs with PVE greater than 10% were detected in the RIL, IB1, and IB2 populations, respectively. But, the highest PVE observed among QTLs in the IBL population was only 6.11%, which could be due to the combined genetic background affecting trait variance, although other factors such as environmental interactions or statistical power may also play a role.


By compared those QTLs across different populations, we identified 41 QTLs shared in different groups (
Figure 4D
). Specifically, 38 QTLs from those QTLs identified in the IBL population were shared that in the RIL, IB1, and IB2 populations. These co-localized QTLs across populations are potential candidates for future functional gene cloning and molecular marker development due to their stability. Furthermore, qGYP1–1 and qED1–1 are both located at 8.94-15.81 Mb on chromosome 1, while qGYP1–7 and qERN1–3 are both located at 294.82-296.09 Mb on chromosome 1. Additionally, qGYP1-4, qED1-3, and qEL1–1 are all located on chromosome 1 at 224.14-224.98 Mb (
Supplementary Table S3
). The co-localization of these QTLs suggests the possibility of pleiotropic or tightly linked genes influencing multiple traits.


When comparing QTL results with those from previous studies, we observed several notable overlaps. For instance, qERN5–2 and qERN5–3 were located within the qERN5–2 interval previously identified from the F5:6 RIL population derived from KA105 and KB020, showing positive additive effects from KA105 (Yang et al., 2021). Similarly, qED1-1, characterized by an overdominance effect in our study, coincides with the previously detected qED1–1 in a RIL population (Chen et al., 2016). In addition, we found that the candidate gene Zm00001eb217930 for ERN is located within qERN5-1 (Shen et al., 2019).The Zm00001eb061800 that affects kernel weight is located within qGYP1-5, and these genes may be functional genes within these QTLs (Wang et al., 2022).








ZmbHLH138 participated in regulating the component of grain yield


The basic helix-loop-helix (bHLH) transcription factors are widely distributed among eukaryotes and constitute the second-largest family of transcription factors in plants, following the MYB family (Feller et al., 2011; Gyoja, 2017). These factors play roles in various processes, such as plant growth, secondary metabolite metabolism, and responses to abiotic stress (Penfield et al., 2005; Seo et al., 2011; Ohno et al., 2013; Liu et al., 2014; Qi et al., 2014). In maize, ZmbHLH55 improves salt tolerance by increasing the accumulation of ascorbic acid (Yu et al., 2021), while Opaque11 regulates endosperm development and affects starch and protein content (Feng et al., 2018). In this study, Zm00001d005740 was identified within the qERN2–3 intervals from both the IB1 and IBL populations. Additionally, gene-based association analysis revealed 4 polymorphic loci that are significantly associated with ED (
Figure 6D
). Moreover, Zm00001d005740 shows high expression in ears, and its interacting gene has been identified as a candidate gene related to yield. These findings suggest that Zm00001d005740 potentially improves yield by influencing ED.








Conclusion


In this study, QTL mapping was conducted for yield-related traits across various populations, and 121 unique QTLs were identified. The majority of QTLs (59.5%) in the IBL population exhibited overdominance, which suggested the yield-related traits in this population were mainly regulated by overdominance. By combining the public transcriptome data, twenty genes were considered as candidate genes for yield-related traits, among which Zm00001d005740 was significantly correlated with ear diameter. The annotation of the interacted genes with Zm00001d005740 showed that this gene may regulate yield through the cell division biological pathway. These research not only advances our understanding of maize yield but also provides a gene source for future work in functional gene cloning and the development of high-yield maize varieties through selective breeding.









Data availability statement


The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/
Supplementary Material
.







Author contributions


SX: Writing – review & editing. HZ: Investigation, Writing – original draft, Data curation, Formal analysis, Software. TL: Formal analysis, Methodology, Project administration, Writing – original draft. ZZ: Resources, Writing – original draft. JW: Supervision, Writing – original draft. HY: Resources, Data curation, Writing – original draft. JL: Formal analysis, Writing – original draft. WZ: Writing – review & editing. JX: Writing – review & editing.








Funding


The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by the Key Research and Development Program of Shaanxi Province (2024ZY-CGZY-17) and China Agriculture Research System (CARS-02-77).







Conflict of interest


The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.







Generative AI statement


The author(s) declare that no Generative AI was used in the creation of this manuscript.


Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.







Supplementary material


The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2025.1624954/full#supplementary-material































References

	

 Aakanksha, Yadava S. K., Yadav B. G., Gupta V., Mukhopadhyay A., Pental D., et al. (2021). Genetic analysis of heterosis for yield influencing traits in Brassica juncea using a doubled haploid population and its backcross progenies. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.721631, PMID: 34603351



	

 An Y., Chen L., Li Y. X., Li C., Shi Y., Zhang D., et al. (2022). Fine mapping qKRN5.04 provides a functional gene negatively regulating maize kernel row number. Theor. Appl. Genet. 135, 1997–2007. doi: 10.1007/s00122-022-04089-w, PMID: 35385977



	

 Bastian M., Heymann S., Jacomy M. (2009). Gephi: An open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media (San Jose, California, USA: ICWSM). 3(1), 361–362. doi: 10.1609/icwsm.v3i1.13937




	

 Bates D., Maechler M., Bolker B., Walker S., Christensen R. H. B., Singmann H., et al. (2015). Package ‘lme4’. Convergence 12, 2.



	

 Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y., Buckler E. S. (2007). TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. doi: 10.1093/bioinformatics/btm308, PMID: 17586829



	

 Chen W., Chen L., Zhang X., Yang N., Guo J., Wang M., et al. (2022). Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, eabg7985. doi: 10.1126/science.abg7985, PMID: 35324310



	

 Chen B., He Y., Tang Y., Lin Z., Wang J., Zhang J., et al. (2024). QTL analysis in the Mianmai 902×Taichang 29 RIL population reveals the genetic basis for the high-yield of wheat cultivars Mianmai 902 in terms of spike and plant architecture. BMC Plant Biol. 24, 1181. doi: 10.1186/s12870-024-05885-w, PMID: 39695407



	

 Chen L., Li C., Li Y., Song Y., Zhang D., Wang T., et al. (2016). Quantitative trait loci mapping of yield and related traits using a high-density genetic map of maize. Mol. Breed. 36, 134. doi: 10.1007/s11032-016-0545-0




	

 Chen Z., Wang B., Dong X., Liu H., Ren L., Chen J., et al. (2014b). An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15, 433. doi: 10.1186/1471-2164-15-433, PMID: 24898122



	

 Chen E., Yu H., He J., Peng D., Zhu P., Pan S., et al. (2023). The transcription factors ZmNAC128 and ZmNAC130 coordinate with Opaque2 to promote endosperm filling in maize. Plant Cell 35, 4066–4090. doi: 10.1093/plcell/koad215, PMID: 37542515



	

 Chen J., Zeng B., Zhang M., Xie S., Wang G., Hauck A., et al. (2014a). Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiol. 166, 252–264. doi: 10.1104/pp.114.240689, PMID: 25037214



	

 Dong S. S., He W. M., Ji J. J., Zhang C., Guo Y., Yang T. L. (2021). LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief Bioinform. 22, bbaa227. doi: 10.1093/bib/bbaa227, PMID: 33126247



	

 Dong Z., Wang Y., Bao J., Li Y., Yin Z., Long Y., et al. (2023). The genetic structures and molecular mechanisms underlying ear traits in maize (Zea mays L.). Cells 12, 1900. doi: 10.3390/cells12141900, PMID: 37508564



	

 Edwards M., Stuber C., Wendel J. (1987). Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116, 113–125. doi: 10.1093/genetics/116.1.113, PMID: 3596228



	

 FAO
 (2025). “Food Outlook – Biannual report on global food markets,” in Food Outlook (Rome: Food and Agriculture Organization of the United Nations).



	

 Feller A., Machemer K., Braun E. L., Grotewold E. (2011). Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J. 66, 94–116. doi: 10.1111/j.1365-313X.2010.04459.x, PMID: 21443626



	

 Feng J. W., Han L., Liu H., Xie W. Z., Liu H., Li L., et al. (2023). MaizeNetome: A multi-omics network database for functional genomics in maize. Mol. Plant 16, 1229–1231. doi: 10.1016/j.molp.2023.08.002, PMID: 37553832



	

 Feng F., Qi W., Lv Y., Yan S., Xu L., Yang W., et al. (2018). OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell 30, 375–396. doi: 10.1105/tpc.17.00616, PMID: 29436476



	

 Guo T., Yang N., Tong H., Pan Q., Yang X., Tang J., et al. (2014). Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor. Appl. Genet. 127, 2149–2158. doi: 10.1007/s00122-014-2368-x, PMID: 25104328



	

 Gyoja F. (2017). Basic helix-loop-helix transcription factors in evolution: Roles in development of mesoderm and neural tissues. Genesis 55, e23051. doi: 10.1002/dvg.23051, PMID: 28804953



	

 Han J., Lee S. Y., Jun Y., Lee S.-M., Eom G.-H., Lee J.-H., et al. (2025). Identification of QTL for rice panicle length and grain weight using a doubled haploid population derived from 93–11 and Milyang352. Plant Biotechnol. Rep. 19, 123–135. doi: 10.1007/s11816-025-00962-4




	

 Han L., Zhong W., Qian J., Jin M., Tian P., Zhu W., et al. (2023). A multi-omics integrative network map of maize. Nat. Genet. 55, 144–153. doi: 10.1038/s41588-022-01262-1, PMID: 36581701



	

 He K., Zhang Y., Ren W., Chen P., Liu J., Mi G., et al. (2023). QTL mapping and transcriptome analysis identify candidate genes influencing water–nitrogen interaction in maize. Crop J. 11, 1872–1883. doi: 10.1016/j.cj.2023.09.001




	

 Hoopes G. M., Hamilton J. P., Wood J. C., Esteban E., Pasha A., Vaillancourt B., et al. (2019). An updated gene atlas for maize reveals organ-specific and stress-induced genes. Plant J. 97, 1154–1167. doi: 10.1111/tpj.14184, PMID: 30537259



	

 Hu J., Wang X., Zhang G., Jiang P., Chen W., Hao Y., et al. (2020). QTL mapping for yield-related traits in wheat based on four RIL populations. Theor. Appl. Genet. 133, 917–933. doi: 10.1007/s00122-019-03515-w, PMID: 31897512



	

 Huo D., Ning Q., Shen X., Liu L., Zhang Z. (2016). QTL mapping of kernel number-related traits and validation of one major QTL for ear length in maize. PloS One 11, e0155506. doi: 10.1371/journal.pone.0155506, PMID: 27176215



	

 Huo X., Wang J., Zhang L. (2023). Combined QTL mapping on bi-parental immortalized heterozygous populations to detect the genetic architecture on heterosis. Front. Plant Sci. 14. doi: 10.3389/fpls.2023.1157778, PMID: 37082336



	

 Labroo M. R., Studer A. J., Rutkoski J. E. (2021). Heterosis and hybrid crop breeding: A multidisciplinary review. Front. Genet. 12. doi: 10.3389/fgene.2021.643761, PMID: 33719351



	

 Lan T., He K., Chang L., Cui T., Zhao Z., Xue J., et al. (2018). QTL mapping and genetic analysis for maize kernel size and weight in multi-environments. Euphytica 214, 119. doi: 10.1007/s10681-018-2189-0




	

 Li C., Li Y., Sun B., Peng B., Liu C., Liu Z., et al. (2013). Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica 193, 303–316. doi: 10.1007/s10681-013-0901-7




	

 Li Q., Li L., Yang X., Warburton M. L., Bai G., Dai J., et al. (2010). Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight. BMC Plant Biol. 10, 143. doi: 10.1186/1471-2229-10-143, PMID: 20626916



	

 Li Y., Ma S., Zhao Q., Lv D., Wang B., Xiao K., et al. (2021). ZmGRAS11, transactivated by Opaque2, positively regulates kernel size in maize. J. Integr. Plant Biol. 63, 2031–2037. doi: 10.1111/jipb.13198, PMID: 34850567



	

 Li K., Tassinari A., Giuliani S., Rosignoli S., Urbany C., Tuberosa R., et al. (2023). QTL mapping identifies novel major loci for kernel row number-associated ear fasciation, ear prolificacy and tillering in maize (Zea mays L.). Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1017983, PMID: 36704171



	

 Liu L., Du Y., Huo D., Wang M., Shen X., Yue B., et al. (2015). Genetic architecture of maize kernel row number and whole genome prediction. Theor. Appl. Genet. 128, 2243–2254. doi: 10.1007/s00122-015-2581-2, PMID: 26188589



	

 Liu W., Tai H., Li S., Gao W., Zhao M., Xie C., et al. (2014). bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol. 201, 1192–1204. doi: 10.1111/nph.12607, PMID: 24261563



	

 Luo Y., Zhang M., Liu Y., Liu J., Li W., Chen G., et al. (2022). Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytol. 234, 513–526. doi: 10.1111/nph.17882, PMID: 34837389



	

 Ma J., Cao Y. (2021). Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.690059, PMID: 34335658



	

 Mei H., Liu Y., Cui C., Hu C., Xie F., Zheng L., et al. (2021). QTL mapping of yield-related traits in sesame. Mol. Breed. 41, 43. doi: 10.1007/s11032-021-01236-x, PMID: 37309387



	

 National Bureau of Statistics of China
 (2025). Output of Major Farm Products. Available online at: https://data.stats.gov.cn/english/easyquery.htm?cn=C01 (Accessed July 29, 2025).



	

 Ning Q., Jian Y., Du Y., Li Y., Shen X., Jia H., et al. (2021). An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat. Commun. 12, 5832. doi: 10.1038/s41467-021-26123-z, PMID: 34611160



	

 Ohno S., Deguchi A., Hosokawa M., Tatsuzawa F., Doi M. (2013). A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. Planta 238, 331–343. doi: 10.1007/s00425-013-1897-x, PMID: 23689377



	

 Pascual L., Desplat N., Huang B. E., Desgroux A., Bruguier L., Bouchet J. P., et al. (2015). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol. J. 13, 565–577. doi: 10.1111/pbi.12282, PMID: 25382275



	

 Pei Y., Deng Y., Zhang H., Zhang Z., Liu J., Chen Z., et al. (2022). EAR APICAL DEGENERATION1 regulates maize ear development by maintaining malate supply for apical inflorescence. Plant Cell 34, 2222–2241. doi: 10.1093/plcell/koac093, PMID: 35294020



	

 Penfield S., Josse E. M., Kannangara R., Gilday A. D., Halliday K. J., Graham I. A. (2005). Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr. Biol. 15, 1998–2006. doi: 10.1016/j.cub.2005.11.010, PMID: 16303558



	

 Qi T., Huang H., Wu D., Yan J., Qi Y., Song S., et al. (2014). Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26, 1118–1133. doi: 10.1105/tpc.113.121731, PMID: 24659329



	

 Qian F., Jing J., Zhang Z., Chen S., Sang Z., Li W. (2023). GWAS and meta-QTL analysis of yield-related ear traits in maize. Plants (Basel) 12, 3806. doi: 10.3390/plants12223806, PMID: 38005703



	

 Revelle W., Revelle M. W. (2015). “Package ‘psych’,” in The comprehensive R archive network (Evanston, Illinois: Northwestern University), vol. 337. .



	

 Seo J. S., Joo J., Kim M. J., Kim Y. K., Nahm B. H., Song S. I., et al. (2011). OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J. 65, 907–921. doi: 10.1111/j.1365-313X.2010.04477.x, PMID: 21332845



	

 Shen X., Zhao R., Liu L., Zhu C., Li M., Du H., et al. (2019). Identification of a candidate gene underlying qKRN5b for kernel row number in Zea mays L. Theor. Appl. Genet. 132, 3439–3448. doi: 10.1007/s00122-019-03436-8, PMID: 31612262



	

 Shi Z., Song W., Xing J., Duan M., Wang F., Tian H., et al. (2017). Molecular mapping of quantitative trait loci for three kernel-related traits in maize using a double haploid population. Mol. Breed. 37, 108. doi: 10.1007/s11032-017-0706-9




	

 Simmons C. R., Weers B. P., Reimann K. S., Abbitt S. E., Frank M. J., Wang W., et al. (2020). Maize BIG GRAIN1 homolog overexpression increases maize grain yield. Plant Biotechnol. J. 18, 2304–2315. doi: 10.1111/pbi.13392, PMID: 32356392



	

 Takuno S., Terauchi R., Innan H. (2012). The power of QTL mapping with RILs. PloS One 7, e46545. doi: 10.1371/journal.pone.0046545, PMID: 23056339



	

 Tian T., Liu Y., Yan H., You Q., Yi X., Du Z., et al. (2017). agriGO v2.0: a GO analysis toolkit for the agricultural community 2017 update. Nucleic Acids Res. 45, W122–W129. doi: 10.1093/nar/gkx382, PMID: 28472432



	

 Wang J., Lin Z., Zhang X., Liu H., Zhou L., Zhong S., et al. (2019). krn1, a major quantitative trait locus for kernel row number in maize. New Phytol. 223, 1634–1646. doi: 10.1111/nph.15890, PMID: 31059135



	

 Wang Q., Wang M., Chen J., Qi W., Lai J., Ma Z., et al. (2022). ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. Plant Cell 34, 1054–1074. doi: 10.1093/plcell/koab312, PMID: 34935984



	

 Wei T., Simko V., Levy M., Xie Y., Jin Y., Zemla J. (2017). Package ‘corrplot’. Statistician 56, e24.



	

 Wu Y., Huang M., Tao X., Guo T., Chen Z., Xiao W. (2016). Quantitative trait loci identification and meta-analysis for rice panicle-related traits. Mol. Genet. Genomics 291, 1927–1940. doi: 10.1007/s00438-016-1227-7, PMID: 27380139



	

 Wu J., Lawit S. J., Weers B., Sun J., Mongar N., Van Hemert J., et al. (2019). Overexpression of zmm28 increases maize grain yield in the field. Proc. Natl. Acad. Sci. U.S.A. 116, 23850–23858. doi: 10.1073/pnas.1902593116, PMID: 31685622



	

 Xiao Y., Jiang S., Cheng Q., Wang X., Yan J., Zhang R., et al. (2021). The genetic mechanism of heterosis utilization in maize improvement. Genome Biol. 22, 148. doi: 10.1186/s13059-021-02370-7, PMID: 33971930



	

 Xiao Z., Zhiyong R., Bowen L., Haixu Z., Peng M., Hongkai Z., et al. (2022). Genetic architecture of maize yield traits dissected by QTL mapping and GWAS in maize. Crop J. 10, 436–446. doi: 10.1016/j.cj.2021.07.008




	

 Xue Y., Warburton M. L., Sawkins M., Zhang X., Setter T., Xu Y., et al. (2013). Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Genet. 126, 2587–2596. doi: 10.1007/s00122-013-2158-x, PMID: 23884600



	

 Yan J.-b., Tang H., Huang Y.-Q., Zheng Y.-L., Li J.-S. (2006). Quantitative trait loci mapping and epistatic analysis for grain yield and yield components using molecular markers with an elite maize hybrid. Euphytica 149, 121–131. doi: 10.1007/s10681-005-9060-9




	

 Yang L., Li T., Liu B., Li R., Yu R., Zhang X., et al. (2021). Genetic analysis of ear-related traits under different pollination treatments in maize (Zea mays). Plant Breed. 140, 211–222. doi: 10.1111/pbr.12887




	

 Yang N., Lu Y., Yang X., Huang J., Zhou Y., Ali F., et al. (2014). Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PloS Genet. 10, e1004573. doi: 10.1371/journal.pgen.1004573, PMID: 25211220



	

 Yang C., Zhang L., Jia A., Rong T. (2016). Identification of QTL for maize grain yield and kernel-related traits. J. Genet. 95, 239–247. doi: 10.1007/s12041-016-0628-z, PMID: 27350665



	

 Yang H., Zhang Z., Zhang N., Li T., Wang J., Zhang Q., et al. (2024). QTL mapping for plant height and ear height using bi-parental immortalized heterozygous populations in maize. Front. Plant Sci. 15. doi: 10.3389/fpls.2024.1371394, PMID: 38590752



	

 Yu C., Yan M., Dong H., Luo J., Ke Y., Guo A., et al. (2021). Maize bHLH55 functions positively in salt tolerance through modulation of AsA biosynthesis by directly regulating GDP-mannose pathway genes. Plant Sci. 302, 110676. doi: 10.1016/j.plantsci.2020.110676, PMID: 33288001



	

 Zeng T., Meng Z., Yue R., Lu S., Li W., Li W., et al. (2022). Genome wide association analysis for yield related traits in maize. BMC Plant Biol. 22, 449. doi: 10.1186/s12870-022-03812-5, PMID: 36127632



	

 Zhang X., Guan Z., Li Z., Liu P., Ma L., Zhang Y., et al. (2020). A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor. Appl. Genet. 133, 2881–2895. doi: 10.1007/s00122-020-03639-4, PMID: 32594266



	

 Zhang L., Wang X., Wang K., Wang J. (2022). GAHP: An integrated software package on genetic analysis with bi-parental immortalized heterozygous populations. Front. Genet. 13. doi: 10.3389/fgene.2022.1021178, PMID: 36276955



	

 Zhou B., Zhou Z., Ding J., Zhang X., Mu C., Wu Y., et al. (2018). Combining three mapping strategies to reveal quantitative trait loci and candidate genes for maize ear length. Plant Genome 11, 170107. doi: 10.3835/plantgenome2017.11.0107, PMID: 30512044











Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.




Copyright © 2025 Zhang, Li, Zhang, Wang, Yang, Liu, Zhu, Xue and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.



OEBPS/Images/fpls-16-1624954-g002.jpg
600

200

1 2 3 4 5 6
Chromosome

Physical distance (Mb) =
Genetic distance (cM) Il






OEBPS/Images/fpls.2025.1624954_cover.jpg
& frontiers | Frontiers in Plant science

Dissecting the genetic architecture of yield-
related traits by QTL mapping in maize





OEBPS/Images/fpls-16-1624954-g005.jpg
RIL

IB1

IB2 IBL

-~|

o%

gKNR2-1 OD

gED1-10D @%w
gqED1-2 OD
qED2-3 OD
gED5-2 OD
qED5-3 OD
qED6-1 OD
gED7-1 OD
gqED8-3D

gqED1-5 PD
qED8-2 OD

* % %%

000 »o

gERN3-1 PD
gERN5-2 A
qERN5-4 A
gERN5-5 A
qERN6-2 PD
gERN2-1 OD
QERN2-3D @
gERN5-1 OD

qGYP1-1D @%
qGYP1-2 OD
qGYP1-30D @

qEL1-2A @
qEL2-1 A
qEL9-2 PD
gEL3-30D @
qEL1-10D @%

gKL7-10D @%
qKL7-20D W
gKL6-1 OD %
gKL9-2PD %





OEBPS/Images/fpls-16-1624954-g004.jpg
I OD

IB1 B2

-
N

IBL

-
o

Number of QTLs
» o

N

2 =

O-Ii

ED EL ERN GYP HKW KL KNR KW
Trait

RIL IB1 IB2 IBL





OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/fpls-16-1624954-g001.jpg
[JRIL []1B1 []IB2 — KA105 — KB024 — SD650

m

BT

T
: 0.15
I
I
1

0.00-

0.201
0.154
> >
& =
0 @
c c 4
[0 [0 0.10
o @]
0.051
50 55 60 65 50 100 150 200 15 20 25 30
KL (mm) KW (mm) GYP (9) HKW (g)
11131517 15202530 50 6.0 15 25 14 16 18 2530 35 40 5.0 6.0 20253035 14 16 18 2530 35 40 5.05.56.0 20 24 28
i L RSN L P ket L P SN
ED B ED 5 [
0.24** | 0.59*** | 0.20** | 0.47***| 0.21** | 0.66*** [ 0.31*** »E \ | 0.37**]0.55"* | 0.24** | 0.66*** | 0.22** | 0.70"**| 0.39"* [ 0.46*** [ 0.51**| 0.33*** | 0.65*** [ 0.32"* | 0.69*** | 0.44** L 3
Fs il FS [e
=3 T EL ® ©
EE £ 0.08 |0.49***|0.25"* | 0.26*** | 0.51***| 0.21** e 0.57***10.31"* 0.35 e 0.48***  0.54*
ofs ® [o ® Lo
0.00 |-0.35"0.46"* | -0.20" * 0.35***| -0.29"T o [~
|2 [ [« w
3 T e e 2
& 2 pd
& -0.16* | 0.58*** | -0.24** o 0.00 o 0.31**
o 3 3
KL B [o
3 0.60"** | 0.54*** [ 0.66™** [ 2 0.58" 0.64***| 0.74*** [ 0.76*** | &
L [
© ~
o o
©
0.78*** © 0.85"* o 0.53"* | 0.81**
H s S
] & s
= & &3
0207 F3 042 [g 0,63+ [
(e o 8 =3
HKW 3 HKW i HKW
& \

657585 20 60 100 404448 14 16 18 7.0 8510.0 50100 200





OEBPS/Images/fpls-16-1624954-g003.jpg
IB1
IB2
IBL
RIL
IB1
IB2
IBL
RIL
IB1
B2
IBL
RIL
IB1
IB2
IBL
RIL
IB1
IB2
IBL
RIL
IB1
IB2

IBL
RIL

IB1
IB2

IBL
RIL
IB1
IB2
IBL
RIL

| Trait

ED
EL
ERN
GYP
HKW
KL
KNR

KW





OEBPS/Images/fpls-16-1624954-g006.jpg
A B C

Transcriptome 1 Transcriptome 2 Transcriptome 1 Transcriptome 2 Transcriptome 1 Transcriptome 2

. il

1096 . 5951

1328

QTL Classic gene Classic gene QTL Classic gene

D E

IS
|

cytoskeleton organization

cell division

microtubule-based process

cell proliferation

) regulation of DNA metabolic process
4 5.0 e mitotic cytokinetic process
' ] mitotic cytokinesis
cytokinesis by cell plate formation
8 regulation of DNA replication

4.5 - histone H3-K9 methylation

Chr2:185.574 Zm00001d005740 Chr2:185.580(Mb) - nucleic acid binding | IR
3 protein binding - NN

cytoskeletal protein binding

tubulin binding

motor activity

microtubule motor activity

microtubule binding

actin binding

ATP-DMMA, plus-end-directed

ATP-dependent microtubule motor activity(ATP-DMMA)

w
:
.

-log, (P value)
[N}
L
L]
L]
L]
L]
L]
L]
ssao04d [eoibojolg

4.0

3.51

uonouny Je|nos|oN
-log,,(FDR)
N W b OO

Ear diameter

— nucleus
plasma membrane
cytoskeleton
microtubule cytoskeleton
cytoskeletal part
2.5 supramolecular fiber
polymeric cytoskeletal fiber
T T bt mécrotubfle
microtubule associated complex
Hap 1_A Hap1_C kinesin complex

3.0 S

jJusuodwod Jen||e0

D' Color Key

[ T 0 25 50 75
0.0 1.0 Counts

L] B zooHmss 0

Q X O b d® o o o O QO X O @ o o o D P Y O D > D P
@@\@@\@@\@@%@@%@&@&@& Q}\Q}\\ (é\\ Q}‘\ Q,&Q,&Q}(b Q}r\b (é@ DD DN NG Y PP






