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Introduction: With the growing severity of global salinization, assessing plant

growth vitality under salt stress has become a critical aspect in agricultural research.

Methods: In this paper, a method for calculating the leaf area and leaf growth rate

of okra based on the YOLOv11-HSECal model is proposed, which is used to

evaluate the activity of okra at the seedling stage. A high-throughput, Full-Time

Sequence Crop Germination Vigor Monitoring System was developed to

automatically capture image data from seed germination to seedling growth

stage, while maintaining stable temperature and lighting conditions. To address

the limitations of the traditional YOLOv11-seg model, the YOLOv11-HSECal

model was optimized by incorporating the HGNetv2 backbone, Slim-Neck

feature fusion, and EMAttention mechanisms.

Results: These improvements led to a 1.1% increase in mAP50, a 0.6% reduction

in FLOPs, and a 14.1% decrease in model parameters. Additionally, Merge and Cal

modules were integrated for calculating the leaf area and growth rate of okra

seedlings. Finally, through salt stress experiments, we assessed the effects of

varying NaCl concentrations (CK, 10 mmol/L, 20 mmol/L, 30 mmol/L, 40 mmol/

L, 50 mmol/L, and 60mmol/L) on the leaf area and growth rate of okra seedlings,

verifying the inhibitory effects of salt stress on seedling vitality.

Discussion: The results demonstrate that the YOLOv11-HSECal model efficiently

and accurately evaluates okra seedling growth vitality under salt stress in a full-

time monitoring manner, offering significant potential for broader applications.

This work provides a novel solution for full-time plant growth monitoring and

vitality assessment in smart agriculture and offers valuable insights into the

impact of salt stress on crop growth.
KEYWORDS

YOLOv11-HSECal model, okra, salt stress, time-series, leaf area, leaf growth rate, plant
vitality evaluation
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1 Introduction

With the rapid increase in the global population, the production

of vegetables and grains has become a primary concern (Zhu et al.,

2023). The vitality of plant seedlings is a key determinant of the

speed and uniformity of plant emergence and early growth, directly

influencing their ability to acquire and compete for essential

resources (Mondo et al., 2013). The yield of crops is closely

linked to seedling vitality: stronger vitality at the seedling stage

correlates with higher yields under identical growth conditions

(Podlaski and Chomontowski, 2020). Plants with higher vitality

during the seedling stage exhibit better performance in resource

acquisition (such as light, water, and nutrients) and enhanced

competitiveness, particularly in competition with weeds.

Additionally, high-vitality seeds tend to have larger leaf areas

during the seedling stage compared to those of low-vitality seeds.

For example, during the four-leaf and eight-leaf stages of maize, the

leaf area index of high-vitality seeds is 37% and 16% greater than

that of low-vitality seeds, respectively (Mondo et al., 2013).

Assessing seedling vitality through leaf area and growth rate

during this stage is an essential method for plant selection and

breeding. Okra (Abelmoschus esculentus L.), an annual herbaceous

plant belonging to the Malvaceae family, is a specialty vegetable

with both high nutritional and economic value. Its tender pods are

rich in proteins, dietary fiber, minerals, and various vitamins, with

protein content surpassing that of most conventional fruits and

vegetables, and offering a well-balanced amino acid profile. As an

economic crop integrating edible, medicinal, and industrial

functions, okra is characterized by a short cultivation cycle,

strong environmental adaptability, and high yield per unit area.

In addition to fresh consumption, it is extensively used in the

production of value-added products such as frozen food, seed oil,

and health supplements. Due to these advantages, okra has been

widely cultivated across the globe (Elkhalifa et al., 2021). Salt stress

is a major challenge in global agriculture, with approximately 21%

of arable land in China affected by salinization (Wang et al., 2013).

Soil salinization has emerged as one of the principal environmental

stressors limiting plant productivity (Yu et al., 2019; Wang L. et al.,

2022). Salt stress, particularly during the seedling stage, significantly

reduces photosynthetic efficiency, impairs plant biomass

accumulation, and inhibits leaf expansion (Zhang et al., 2018;

Zhao et al., 2022). Studies have shown that salt stress leads to a

reduction in leaf area and chlorophyll content in okra, causing

overall growth retardation and potentially inducing oxidative stress

(Abbas et al., 2017). Therefore, accurately assessing the leaf area and

growth rate of okra seedlings under salt stress is essential for
Abbreviations: P, Precision; R, Recall; AP, Average PrecisionmAP, mean

Average Precision; Params, parameters; FLOPs, floating point operations per

second; IoU, Intersection over Union; YOLO, You Only Look Once; HGNetv2,

Hierarchical Graph Neural Network v2; Slim-Neck; B-Spline, Slim Feature

Aggregation Neck; Basis Spline; EMAttention, Expectation-Maximization

Attention; VoV-GSCSP, Variety of View Grouped Spatial-Channel Split

Pyramid; GSConv, Ghost-Shuffle Convolution; GNN, Graph Neural Network.
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improving seed quality, enhancing yield, and achieving

sustainable agricultural objectives.

Traditional methods for measuring leaf area primarily rely on

manual techniques, such as the cardboard drawing method (Korva

and Forbes, 1997), the weighing method (Castillo et al., 2014),

volumetric accelerated leaf area measurement (Lee et al., 2022), and

laser scanning (Berk et al., 2020). Although these methods provide

high accuracy, most are destructive and involve cumbersome, time-

consuming operations. To reduce manual intervention and enhance

efficiency, researchers have developed various image-based, non-

destructive leaf area estimation methods, including modified

models based on leaf length and width (Leroy et al., 2007),

segmentation algorithms based on color and shape features (Tu

et al., 2021), and estimation methods utilizing leaf surface density

constants (Tu et al., 2021). Meanwhile, An et al. developed an

automated high-throughput phenotyping pipeline that utilizes a

cost-effective imaging system combined with image processing

algorithms to generate 2D orthomosaic projections (An et al.,

2016). While these approaches improve measurement efficiency,

they remain (Castillo et al., 2014) sensitive to factors such as

background, lighting, and leaf structure, which limits their

accuracy. In recent years, advances in 3D reconstruction and

imaging technologies have led researchers to explore methods

such as binocular stereo vision (Gong et al., 2015), infrared

thermal imaging (Zhang and Zhang, 2022), and LIDAR

measurement systems (Hu et al., 2018) for leaf area measurement.

These techniques offer non-contact, high-precision 3D

reconstruction of leaves, addressing some of the limitations

associated with occlusion and projection errors inherent in 2D

methods. However, their high equipment costs, complex

algorithms, challenges in achieving real-time measurements, and

sensitivity to environmental changes continue to hinder their

widespread adoption in conventional agricultural management

(Hu et al., 2018). Therefore, there is an urgent need to develop a

novel method for measuring leaf area and leaf growth rate that is

high-precision, full-time-series, non-invasive, robust to

environmental variations, and non-destructive. Such a method

would better support modern crop growth monitoring and meet

the practical demands of intelligent agriculture.

In recent years, deep learning-based instance segmentation

techniques have made remarkable advances in agricultural image

analysis, significantly enhancing the efficiency and accuracy of plant

phenotypic feature extraction. Compared to traditional image

processing and shallow machine learning methods, deep learning

models exhibit superior feature learning capabilities and

adaptability across diverse environments. Among them, the

YOLO (You Only Look Once) series has been widely adopted in

agricultural applications due to its end-to-end architecture and

excellent balance between speed and accuracy. For instance, Chen

et al. (2025) proposed the GE-YOLO model, which incorporates a

Gold YOLO multi-scale fusion structure and an EMA attention

mechanism, effectively improving weed detection performance in

rice fields. Miao et al. (2025) introduced SerpensGate-YOLOv8,

integrating DySnakeConv and STAmodules to enhance the model’s

perception of curved edges in plant disease regions. Similarly, Lv
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and Su (2024) developed YOLOv5-CBAM-C3TR by introducing a

Transformer-based attention mechanism, significantly boosting

inter-category segmentation accuracy for apple leaf disease

detection. Li HK. et al. (2024) proposed the RSG-YOLOv8 model,

which integrates CSPDenseNet and the BRA module for improved

detection of extremely small targets during rice seed germination.

Additionally, Zhang et al. (2024) developed the S-T-YOLOv5

model, combining the Swin Transformer architecture to achieve

high-precision, highly adaptive pollen counting in multiple plant

species such as alfalfa. Jiang et al., 2023 utilized the YOLOv8-Pea

network to assess the drought tolerance of pea seeds, while Fu et al.,

2022 evaluated salt tolerance during wheat seed germination using a

YOLOv4-based model. Moreover, Wang ZP. et al. (2022) and Cui

et al., 2023 applied optimized YOLOv5 and YOLOv4-Tiny models,

respectively, to apple stem recognition and pinecone harvesting

tasks. Despite YOLO’s strong performance in object detection tasks,

its bounding-box-based mechanism cannot provide pixel-level

contour information, limiting its effectiveness for applications

such as precise leaf area estimation, where high boundary

accuracy is critical. In natural field environments, plant leaves

often exhibit complex structures, including overlap, occlusion,

distortion, and non-rigid deformations. Relying solely on

bounding box detection makes it challenging to achieve accurate

single-leaf segmentation and area calculation. To overcome these

limitations, researchers have increasingly adopted instance

segmentation approaches for plant leaf recognition and area

estimation. For example, Huang et al. (2024) proposed a Mask R-

CNNmodel enhanced with local refinement mechanisms to achieve

fine segmentation of Chinese cabbage leaves under complex

greenhouse conditions. Lüling et al. (2023) combined Mask R-

CNN with Structure-from-Motion (SfM) 3D reconstruction

technology to enable non-contact measurement of fruit volume

and leaf area across multiple cabbage growth stages. Lu et al. (2024)

developed a maize growth organ recognition and annotation system

by integrating YOLOv5 with the Segment Anything Model.

Furthermore, the Hierarchical Plant Segmentation Framework

(Roggiolani et al., 2023) enabled semantic segmentation without

relying on point clouds, achieving joint modeling of plant and leaf

instances and providing a decoupled multi-scale pathway for leaf

area estimation. Schneider et al. (2024) employed YOLOv8 to detect

and model different growth stages of chili peppers in hydroponic

systems. Although previous studies have demonstrated significant

improvements in segmentation accuracy using various YOLO-

based models, they still suffer from several limitations, including

complex network architectures, lack of inherent segmentation

capabilities, large parameter sizes, low inference efficiency, and

limited robustness under natural lighting conditions (Khanam

and Hussain, 2024). Moreover, most existing approaches

primarily focus on static images or a single growth stage, making

them unsuitable for high-throughput monitoring of leaf area

throughout the entire plant growth cycle.YOLOv11 (Wu et al.,

2024), as the latest open-source iteration of the YOLO series,

exhibits comprehensive improvements over earlier versions in

terms of input image processing, computational load, edge device

deployment, precision, and parameter efficiency. It addresses the
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shortcomings of earlier variants that primarily focused on irregular

single-frame images and were constrained by environmental

complexity. YOLOv11 is thus better suited for executing full-

growth-cycle object detection and instance segmentation tasks

with higher efficiency. In addition, conventional YOLO models

tend to underperform in recognizing small features and irregular

leaf contours. Therefore, further model improvements to enhance

segmentation precision are necessary. When targeting only okra leaf

detection and segmentation, the output merely provides the

number of segmented masks in an image. To address this, the

YOLO model needs to be extended with post-processing modules

that refine the segmentation output and enable further image-level

analysis. Furthermore, the model still exhibits limitations in terms

of FLOPs and parameter count, imposing high requirements for

computational resources, runtime, and battery life—factors that

challenge its deployment on modern agricultural devices. Thus,

reducing FLOPs and model parameters is essential to achieve

further lightweighting and improve deployment efficiency in

resource-constrained agricultural environments.

In response to the aforementioned challenges, this study designs

a full-time-series crop germination vigor monitoring system and

proposes an improved YOLOv11-HSECal model to achieve the

following objectives:
1. Address the limitations of existing methods in complex

environments, including insufficient accuracy, destructive

data collection, and irregular phenotypic monitoring, by

enabling non-contact and dynamic leaf data acquisition

throughout the entire growth process of okra from seed

germination to the seedling stage.

2. Meet the agricultural monitoring demands for lightweight,

high-throughput, and high-precision deep learning

algorithms, while ensuring large-scale deployment on

resource-constrained devices.

3. Accurately assess and output the actual leaf area and leaf

growth rate of okra under salt stress, enabling effective

monitoring of okra seedling vigor. This provides a viable

solution to the low accuracy of YOLO models in detecting

small features and irregular contours, and to their inability

to output beyond instance masks.
2 Materials and methods

2.1 Development of full time sequence
monitoring system for plant initial growth

To enable full-time monitoring of okra seedling growth, we

developed a high-throughput, full-time crop germination vigor

monitoring system capable of maintaining optimal growth

conditions for plants, as illustrated in Figure 1. This system

supports multiple breeding methods, including soil cultivation

and hydroponics, while providing a controlled environment with

constant temperature and continuous lighting. Furthermore, it
frontiersin.org

https://doi.org/10.3389/fpls.2025.1625154
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cao et al. 10.3389/fpls.2025.1625154
enables the automated and continuous monitoring of the entire

developmental process from seed germination to seedling growth,

referred to as “ Temporal monitoring”. The system is composed of

five major components: (1) breeding environment control system,

(2) machine vision-based high-throughput imaging and orbital

image acquisition module, (3) seed growth and cultivation unit,

(4) computer-aided control module, and (5) human-computer

interaction interface.
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The breeding environment control system (Figure 1A) consists

of an incubator measuring 1055 mm in length, 740 mm in width,

and 1740 mm in height (manufacturer: Henan Greentech Electric

Technology Co., Ltd.), with a total of five incubators deployed at the

experimental site. This system primarily controls lighting and

temperature. It integrates a dual-channel temperature control

system featuring two precision heaters (operating range: 10–60°C;

accuracy: ± 0.1°C) equipped with Tp-100 thermocouples and an
FIGURE 1

Full-time sequence crop germination vigor monitoring system: (A) Breeding environmental regulation system; (B) Human-computer interface; (C)
Machine vision and track-based module; (D) Seed growth and cultivation unit; (E) Computer-aided control module; (F) Data acquisition and testing
result.
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embedded PTC thermodynamic circulation unit. Together, they

form a dynamic temperature control network capable of

intelligently adjusting heating power based on real-time data

feedback. When the internal temperature falls below the set

threshold, the PTC hot aerodynamic circulation system activates

to raise the temperature; conversely, when the temperature exceeds

the upper limit, the system automatically shuts down to maintain

environmental stability. Temperature settings are located at the

upper right corner of the incubator and can be specified using the

adjustment button. The lighting system features a dual-sided and

top-mounted fixed LED array with a non-dimmable intensity

design, controlled via a switch on the incubator panel. It provides

full-cycle lighting conditions to support the seedling growth of okra.

The machine vision-based high-throughput imaging and track-

based image acquisition module (Figure 1C) was constructed using

a two-dimensional precision motion platform, with an X-axis

horizontal rail spacing of 800 mm and a Y-axis vertical rail

spacing of 1000 mm. A camera was mounted on a stepper motor-

driven rail, allowing free movement across the upper plane of the

incubator and enabling image capture at six designated positions.

The motion mechanism supports an adjustable speed range of 0–50

mm/s. The imaging unit employs an HIV VISION RGB industrial

camera (model MV-CS200–10GC) equipped with a CMOS sensor

and a fixed-focus lens with a focal length of 30 mm (model LD-23–

0.18X145, manufacturer: Jiangsu Suzhou Youxin Zeda Co.).

Together with a ring-shaped constant-illuminance light source

(luminous intensity of 183.9 kLux and brightness of 46.341 kcd/

m²), the system establishes a standardized imaging environment.

Image acquisition operates in a fully automated trigger mode,

featuring a closed-loop feedback mechanism for both position

coordinates and speed parameters. During image capture, the

camera is automatically triggered and transmits image data to a

computer via an RJ-45 Gigabit Ethernet interface located at the rear

of the incubator. This setup facilitates efficient image editing,

dataset construction, and training of instance segmentation models.

The seed growth and cultivation unit (Figure 1D) consists of a

platform constructed inside the incubator, featuring six fixed

positions designed to hold cultivation boxes fabricated via 3D

printing. The fixed imaging points for the camera are aligned

with these six designated positions. The platform is positioned

approximately 1100 mm below the top of the incubator, providing

ample vertical space to support the healthy growth of okra seedlings

during the seedling stage.

The computer-aided control module (Figure 1E) adopts a dual-

software collaborative architecture. The camera debugging software

is responsible for hardware parameter configuration (such as

exposure and resolution), data transmission management, and

abnormal event logging. The image processing software manages

the entire workflow of data reception, storage, and analysis,

establishing a complete data processing pipeline from raw image

acquisition to feature extraction.

The human-computer interaction interface (Figure 1B) is

developed based on the MCGSpro platform, integrating the

Mitsubishi FX5U-32MT PLC and the MCGS-Top10s touchscreen.

Multi-module data interaction is achieved through MODBUS/TCP
Frontiers in Plant Science 05
and TCP/IP protocols. The main control interface features a dual-

mode operation design: the automatic mode supports one-click

initiation of the acquisition sequence and parameter presetting,

while the manual mode provides fine-grained control options,

including motion control (coordinate positioning and speed

adjustment), light source management, and shooting interval

settings. The real-time status monitoring panel consolidates

functions such as equipment operation status display, track

coordinate feedback, and limit status indication, ensuring both

the safety and convenience of system operation.
2.2 Okra seedling dataset construction and
image acquisition

To train the leaf area and leaf growth rate calculation model for

okra seedlings, this study selected 336 red okra seeds (purchased

from Shouguang Xinxinran Horticulture Co., Ltd., Shouguang,

Shandong, China) that were morphologically intact and uniform

in size to construct a seedling monitoring model. Following the

germination pretreatment procedure illustrated in Figure 2a, a sheet

of white filter paper (210 mm × 297 mm) was moistened with

deionized water and laid flat on an alcohol-sterilized table. Fifteen

okra seeds were evenly spaced 20 mm from the long edge of the

paper, followed by another fifteen seeds placed 20 mm apart from

the first row. Another sheet of filter paper, moistened halfway, was

used to cover the seeds with its wet side, allowing the filter papers

between the two rows to adhere to each other. The assembly was

rolled by folding the long edge (20 mm) vertically three times and

the short edge (40 mm) horizontally three times, secured with a

rubber band, and placed into a paper cup containing deionized

water. This setup, termed a “cultivation paper pack,” was incubated

at 28°C for 24 hours to promote germination. In total, 18 cultivation

paper packs were prepared. This process ensured the acquisition of

seeds at similar germination states, facilitating subsequent vigor

assessment during the seedling growth stage. Subsequently, seeds

with similar germination states were neatly and uniformly arranged

in a 4×4 grid within six soil-based cultivation trays. These trays were

then placed at six fixed positions within the seed growth cultivation

module, with an inter-seed spacing of 50 mm. All seeds were then

transferred to an incubator maintained at 28 °C under constant

temperature and illumination conditions for nine days of full-time

seedling monitoring. The experimental timeline commenced when

the seeds were placed into the incubator and concluded at the end of

the nine-day cultivation period. Utilizing the full-time crop

germination vigor monitoring system illustrated in Figure 1,

images were automatically captured at adjustable 30-minute

intervals, yielding a total of 3,456 time-series images. The study

employed an HIV VISION RGB industrial camera (model MV-

CS200–10GC) equipped with a CMOS sensor and a fixed-focus lens

with a 30 mm focal length (model LD-23–0.18X145, manufacturer:

Jiangsu Suzhou Youxin Zeda Co.). During each capture cycle, the

camera photographed six fixed positions. Additional imaging

parameters are detailed in Table 1. Representative daily images

are shown in Figure 2b. According to the criteria established by
frontiersin.org
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Martini et al (Martini, 2024), the growth of seeds after soil

emergence is classified as the seedling stage. Observations

indicated that during the first 24–28 hours of the experiment,

leaves had not yet emerged, making it difficult to assess seed

vigor (Figure 2b). In the later stages, between 24 and 48 hours,

substantial leaf overlap was observed (Figure 2b), complicating the

accurate identification of individual plants. Consequently, 480

images from the initial 24 hours and 960 images from the final 48

hours were excluded, along with 293 images affected by
Frontiers in Plant Science 06
environmental changes, exposure anomalies, or blurring.

Ultimately, 1,723 valid images were retained to form the

fundamental dataset for model training.

For dataset annotation, we employed the ISAT-SAM tool

(Yateng, 2023) to perform semi-automatic instance segmentation

of okra leaves. ISAT-SAM is a semi-automated image annotation

tool that integrates Interactive Segmentation Annotation (ISAT)

with Meta SAM (Kirillov et al., 2023) (Segment Anything Model).

Based on the SAM framework, users can generate high-quality
FIGURE 2

(a) Pretreatment of the germination process; (b) Collected images of okra seeds at seedling stage.
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segmentation masks by simply clicking on the target area,

significantly reducing the annotation workload. In this study, the

annotation was specifically focused on okra leaves, with the label

category set as “leaf.” The annotation process is illustrated in

Figure 3a. The annotation files generated by ISAT-SAM are in

JSON format, which does not directly meet the requirements for

instance segmentation model training. Therefore, we utilized the

data conversion tool provided by ISAT-SAM to extract key

parameters such as image resolution, category identifiers, and

bounding box coordinates, and normalized the pixel coordinates

to generate a TXT file compatible with the YOLO training standard.

According to the occlusion levels defined by Paul (Paul et al.,

2024b; Paul and Machavaram, 2025), this study considers two levels

of occlusion: No Occlusion and Leaves Occlusion. The imaging was

conducted under constant illumination conditions, with a light

intensity of 183.9 kLux and a luminance of 46.341 kcd/m². This

setup ensured uniform lighting across the entire dataset, facilitating

consistent feature extraction for subsequent model training and

evaluation. To enhance the model’s anti-overfitting capability and

generalization across different scenes, multi-dimensional data

augmentation strategies were employed (Figure 3b), including

rotation (within the range of -45° to +45°), hue adjustment

(between -180° and +180°), brightness adjustment (within -90%

to +90%), blur (up to 5.7px), and noise (up to 8.26% of pixels). This

augmentation process resulted in a total of 2707 datasets. After

splitting the dataset at a ratio of 70:20:10, a complete dataset

comprising 1,895 training images, 541 validation images, and 271

test images was obtained (the partitioning process is illustrated in

Figure 3b). This proportion ensures an appropriate and balanced

distribution of samples across subsets, which is critical for building

robust models and performing reliable evaluations. Such a division

strategy is commonly employed in instance segmentation tasks

(Hong et al., 2025) and seed germination object detection studies
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(Tian et al., 2025). The partition process is illustrated in Figure 3b.

By simulating variations in imaging conditions and viewing angles,

this approach significantly enhances the model’s adaptability to

complex experimental environments. Throughout all image

processing and annotation conversion stages, the original

resolution and spatial accuracy of the annotations were preserved

to ensure the reliability of the object detection model training.

To preliminarily validate the usability of the constructed

dataset, we trained the YOLOv11 model using the complete

dataset. The trained model was then employed to perform

inference on randomly selected okra leaf images. As illustrated in

Figure 1F, the model successfully generated object detection

bounding boxes and corresponding segmentation mask outputs.

These results demonstrate that the dataset possesses good usability

and is suitable for supporting subsequent model training and

performance evaluation.

Figure 3C illustrates the overall workflow of this study,

including time-series data collection, image preprocessing,

annotation, model training, instance segmentation, and leaf area,

growth rate calculation.
2.3 Okra seedling growth experiment
under salt stress

To investigate the potential impact of salt stress on the vigor of

okra seedlings, we designed a full-time monitoring experiment

under soil culture conditions. In this experiment, sodium chloride

(NaCl) solution was primarily used to simulate a salt stress

environment (Rewald et al., 2015), with six different NaCl

solution concentrations (ranging from 10 to 60 mmol/L) in 10

mmol/L increments. The concentration range was determined

based on two key considerations. First, preliminary experiments

indicated that the sensitivity threshold of okra seedlings to NaCl is

approximately 10 mmol/L, with higher concentrations (≥20 mmol/

L) significantly inhibiting leaf expansion. Second, Ullah et al. (2024)

reported that even under low-salinity conditions (50 mMNaCl), the

seedling vigor of most okra cultivars was markedly reduced (Ullah

and Jan, 2024). Deionized water was used as the control group (CK)

to compare differences in leaf area and leaf growth rate between the

treatment groups and normal water conditions. To minimize

experimental variability, two replicate experiments were

conducted simultaneously, with a total of 21 culture cassettes.

During the experiment, 250 ml of the corresponding solution was

sprayed into each culture box every 12 hours. Table 1 presents the

remaining experimental parameters. In this study, based on the full-

time seedling stage leaf image data collected under salt stress

conditions, a deep learning instance segmentation model was

developed to systematically analyze the spatiotemporal dynamics

of okra seedling growth vitality indices (leaf area and leaf growth

rate) under different salt stress levels. The aim was to establish an

intelligent evaluation system for okra seedling vitality using

computer vision techniques.
TABLE 1 Test parameters.

Parameter Numerical value

Solvent Deionized water

NaCl solution concentration 0(CK),10,20,30,40,50,60 mmol/L

Total number of seeds used 336

The number of seeds in each
culture box

16

Germination time 24h

Cultivation time 9d

Temperature 28°C ± 1°C

During the photo-taking break 30min

Number of replicates 3

Total number of photographs taken 3456

Image resolution 1800×1850

Picture format JPG
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2.4 Calculation model of leaf area growth
rate

2.4.1 Model training conditions and
hyperparameter settings

The processor used in this experiment was a 12th Gen Intel®

Core™ i5-12500H (2.50 GHz), with Windows 11, operating system

and an NVIDIA GeForce RTX 3050 Ti graphics card. The deep

learning framework utilized was PyTorch 2.6.0 (developed by

Facebook Artificial Intelligence Research, FAIR), running in a

virtual environment created via Anaconda3. Python 3.11

(developed by the Python Software Foundation, PSF) and CUDA

version 12.6 (developed by NVIDIA) were employed for training

the deep learning model on okra seedling process images. The

remaining environment configurations are listed in Table 2.

During training, hyperparameters were carefully fine-tuned to

optimize model performance, with the key parameters
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summarized in Table 3. These include the learning rate for

convergence speed and stability, the number of warm-up epochs

to prevent gradient oscillation due to an initially high learning

rate, and weight decay to mitigate overfitting and regulate model

complexity. These settings ensured that the YOLOv11-HSECal

model was effectively trained for accurate okra instance

segmentation. To ensure fairness and comparability across

experiments, all models were trained from scratch without the

use of pretrained weights.

The model was trained using the Stochastic Gradient Descent

(SGD) optimizer (Ketkar, 2017), which is known for its stability and

generalization capability, especially suitable for agricultural imaging

scenarios involving high-resolution inputs and a limited number of

object instances. The initial learning rate was set to 1×10-2, and a

warm-up strategy was adopted, linearly increasing the learning rate

during the first 3 epochs to avoid early-stage training instability. A

StepLR scheduler (Wen et al., 2023) was then applied to reduce the
FIGURE 3

(a) ISAT-SAM software annotation process; (b) dataset division and dataset enhancement. (c) System workflow for time-series data collection, model
training, and phenotypic traits calculation.
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learning rate by a factor of 0.5 every 20 epochs, gradually decaying it

to 1×10-4 to ensure smooth convergence in the later stages.

To further suppress overfitting, a weight decay of 5×10-4 was

introduced as an L2 regularization term in the optimizer, which

constrains the magnitude of model weights and improves

generalization. This parameter was selected based on the official

YOLO recommendations and refined through pre-experiments

within the 1×10-4 to 1×10-3 range. Results indicated that setting

the weight decay to 5×10-4 achieves a good trade-off between

convergence speed and detection accuracy.

2.4.2 Construction of YOLOv11-HSECal model
In the early seedling stage, when okra first emerges from the

soil, the target Leafs are relatively small and often exhibit irregular

edge contours—referring to boundaries composed of multiple

curved and serrated segments rather than smooth lines or arcs—

which substantially increases the complexity of segmentation tasks.

These characteristics pose significant challenges for the YOLOv11-

seg model in accurately detecting and segmenting such fine-grained

features. Although YOLOv11-seg has demonstrated strong

performance in object detection and instance segmentation across

various applications, it still presents certain limitations in

segmentation accuracy (mAP), computational load (FLOPs), and

model parameter size. To address these shortcomings, this study
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proposes a series of optimizations to the original model. Specifically,

the YOLOv11-seg backbone was replaced with HGNetv2 from the

RT-DETR framework (Zhao et al., 2024); the Neck component was

substituted with the lightweight Slim-Neck (Li HL. et al., 2024); and

the EMAttention mechanism (Ouyang et al., 2023) was introduced

to enhance feature representation. Furthermore, two additional

modules—Merge and Cal—were integrated to construct the

proposed YOLOv11-HSECal model, as illustrated in Figure 4.

These modifications significantly improve the model ’s

segmentation capability for small and irregular targets, increase

segmentation precision, and reduce both FLOPs and parameter

count. The enhanced model also facilitates the accurate

computation of leaf area and growth rate, thereby improving the

model’s real-time performance and deployment potential on

resource-constrained edge devices. The specific improvements are

as follows:
1. The backbone of the YOLOv11-seg model was replaced

with HGNetv2, the backbone architecture of the RT-DETR

model, to address the original model’s limited ability to

comprehend and process complex scenes. HGNetv2 is a

graph neural network (GNN)-based architecture

specifically designed to handle complex data with

hierarchical structures. By constructing a multi-level

graph topology and integrating it with graph convolution

operations, HGNetv2 effectively captures both node

relationships and global contextual information across

multiple scales. This design substantially enhances the

model’s capacity to tackle intricate visual tasks. The

hierarchical feature propagation mechanism enables

the fusion of local and global representations, thereby

improving the performance and robustness of tasks such

as node classification, graph classification, and graph

generation. Integrating HGNetv2 into the YOLOv11-seg

framework enhances segmentation accuracy while

simultaneously reducing model parameters and

computational complexity (FLOPs) to a certain extent.

2. The Slim-Neck feature fusion module was introduced to

replace the original neck component, aiming to optimize

the feature fusion process and enhance segmentation

accuracy for small targets and irregular leaf contours.

Slim-Neck improves the efficiency of feature integration

by incorporating the VoV-GSCSP module and GSConv

(a hybrid convolution module), thereby reducing

redundant computations. In this architecture, feature

maps at various scales are first processed through the

GSConv module. These processed maps are then fused

with feature maps from other scales using bilinear

interpolation for upsampling, followed by concatenation

operations. The resulting fused maps are further refined

through another pass of GSConv, followed by additional

feature extraction and integration using the VoV-GSCSP

module. This design enables more effective multi-scale

feature representation, particularly enhancing the
TABLE 2 Model training environment.

Environmental parameters Parameter description

Virtual Environment Manager Anaconda3

Virtual Environment Name Okra-leaf

Development language Python3.11

Deep Learning Framework Pytorch2.6.0

Image processing library Torchvision 0.21.0

GPU Acceleration Library Cuda 12.6

Numerical Calculation Library NumPy 2.2.4

Cartography Matplotlib 3.10.1
TABLE 3 Model training hyperparameter settings.

Hyperparameter name Specific information

Epoch 100

Batch size 4

Optimizer SGD

Image Size 640×640

Initial Learning Rate 1×10-2

Final Learning Rate 1×10-4

Weight-Decay 5×10-4

Warmup-epochs 3
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detection performance for small-scale objects and improving the

model ’ s robus tness and accuracy under complex

visual conditions.

3. The EMAttention mechanism was introduced to replace the

original C2PSA attention module in YOLOv11-seg, aiming to

enhance the model’s object detection and segmentation

performance in complex backgrounds and scenarios with

overlapping objects. EMA (Efficient Multi-scale Attention) is a

novel attention mechanism designed to improve feature

representation while reducing computational overhead. It

captures both short-range and long-range dependencies within
Frontiers in Plant Science 10
feature maps through a multi-scale attention architecture.

Unlike conventional attention mechanisms, EMA avoids

dimensionality reduction, thereby preserving rich channel

information and strengthening spatial feature aggregation.

Additionally, EMA employs parallel sub-networks with 1×1

and 3×3 convolutional kernels to aggregate multi-scale

information from feature groups. It also captures pixel-level

pairwise relationships through cross-spatial learning, resulting

in more refined spatial feature distributions and improved

contextual understanding of images. Experimental results

demonstrate that integrating EMA significantly enhances the
FIGURE 4

Improved YOLOv11-HSECal model network structure.
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detection and segmentation accuracy of the YOLOv11-

seg model.

4. The Merge module was incorporated to address the issue of

multiple masks resulting from the segmentation of numerous

okra leaves within a single image. Following instance

segmentation, each image yields multiple leaf masks, with the

segmentation output containing several mask attributes. To

integrate these, the Accumulate module iteratively processes

each individual mask by converting it to the uint8 format,

resizing it to match the original image dimensions, and

overlaying the masks onto the original image to generate a

unified merged mask containing all segmentation information.

A thresholding operation is then applied to the merged mask to

ensure pixel values fall within the range of (0, 255). The final

merged mask is saved as a high-resolution image file named

mask.jpg (1800×1850 pixels). Concurrently, binary images and

bounding boxes corresponding to each segmented leaf region

are extracted, and the central coordinates (Cx, Cy) and pixel

counts of individual masks are output. To further enhance the

quality of the instance segmentation masks for okra leaves, a

series of image processing techniques were applied, including

Canny edge detection, B-spline interpolation smoothing, and

morphological operations such as dilation and erosion (Unser

et al., 1993; Ding and Goshtasby, 2001; Kang et al., 2016). The

integration of these methods significantly improves the
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precision and smoothness of the segmentation masks, thereby

enhancing the accuracy of leaf area calculation and the reliability

of leaf growth tracking over time.

5. The Cal module was introduced to compute leaf area and leaf

growth rate based on the pixel data and mask images

transmitted from the Merge module. This module is

subdivided into Cal-area and Cal-speed, depending on the

nature of the dataset. For individual images or datasets

without temporal continuity, the Cal-area module calculates

the leaf area for each sample. In contrast, for datasets

representing full time-series growth sequences, the Cal-speed

module is employed to compute the real-time growth rate of

each leaf, while simultaneously outputting corresponding leaf

area values. To enable accurate tracking of individual leaves

across different time points, a cross-frame label tracing method

was developed. Each leaf is assigned a unique identifier (ID),

which is maintained throughout the sequence. In the initial

frame, 16 leaves fixed within the image are arranged in a 4×4

grid. Based on the vertical coordinate (Cy) of the leaf centroid,

the image is divided into four horizontal rows. Within each row,

leaves are sorted by their horizontal centroid coordinate (Cx),

and assigned IDs sequentially from left to right, ranging from 0

to 15. For subsequent frames, newly detected leaves are matched

to previously identified ones by comparing their segmentation

masks to those from the preceding frame. The Intersection over
FIGURE 5

Training loss curves during custom training of YOLOv11-HSECal model.
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Union (IoU) metric (Cheng et al., 2021) is employed as the

matching criterion. If the maximum IoU for a candidate leaf

exceeds a predefined threshold (e.g., 0.5), it is deemed to

represent the same leaf, and the corresponding ID is inherited.

This method ensures continuous and reliable tracking of

individual leaves across all frames, facilitating precise analysis

of temporal growth patterns.

In the actual model training process, the Merge and Cal

modules are not directly involved during the training phase;

therefore, they have a negligible impact on key model metrics

such as segmentation accuracy (mAP), the number of model

parameters, and FLOPs.

2.4.3 Okra seedling vigor evaluation index
The leaf area and leaf growth rate during the seedling stage of

okra are key indicators directly reflecting the vigor of okra seeds and

the growth status of seedlings (Al-Musawi and Al-Moussawi, 2020).

The actual leaf area is calculated using the Cal-area module based

on Equations 1, 2, with image resolution set at 1800 × 1850 pixels

and an actual physical length of 250 mm for the image. The

corresponding formulas are as follows:

  PixelArea (mm2) = 250
 ImgWidth 

� �2
  (1)

LeafArea   (mm2) =   PixelArea  �   SumPixel    (2)

where PixelArea  denotes the actual area represented by each

pixel; ImgWidth  refers to the total number of pixels along the image

boundary; LeafArea represents the actual area of each individual leaf;

and SumPixel  corresponds to the total number of pixels in the two-

dimensional Boolean matrix obtained through segmentation

(Benhacine et al., 2019).

The full time-series dataset utilized in this study incorporates

timestamps in the format “YYYY-MM-DD-HH-MM-SS”. The Cal-

speed module extracts temporal information from these timestamps

using regular expressions and computes the time interval (unit:

hours) between successive frames. Once the leaf area for each

dataset is obtained, the Cal-speed module calculates the real-time

growth rate of okra leaves based on Equation 3, enabling the

analysis of growth rate variations under different salt stress

conditions. The formula is presented as follows:

Growth  Rate =
Areacurrent−Areaprevious

ti−ti−1
  (3)

where Growth Rate denotes the leaf growth rate, while

Areacurrent and Areaprevious represent the leaf areas in the current

and previous frames, respectively. ti and ti-1 represent the

timestamps of the current and previous frames, respectively.

Notably, the time interval is not limited to consecutive frames; it

can also represent any user-defined time window, allowing for

flexible analysis of okra growth rates across different temporal

scales. Accordingly, we propose leaf area and leaf growth rate as

quantitative indicators for evaluating the growth vigor of

okra seedlings.
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2.4.4 Evaluation indicators of okra leaf
segmentation model

Instance segmentation models are typically evaluated using six key

metrics: precision (P), recall (R), and average precision (mAP50and

mAP50–95) to assess model accuracy, along with the number of

parameters (Params) and floating-point operations per second

(FLOPs) to evaluate model complexity (Khanam and Hussain, 2024).

Average precision is employed to evaluate the accuracy of the

model in recognizing and segmenting okra leaves. A higher

threshold in mAP indicates a greater overlap between the

predicted elements (bounding box and mask) and the ground

truth target, thereby providing a more stringent assessment of the

model’s capability to precisely localize objects. Conversely, a lower

threshold emphasizes the model’s ability to determine the presence

of a target, regardless of localization precision. This relationship can

be quantitatively described by Equations 4–8.

P = TP
TP+FP   (4)

R = TP
TP+FN   (5)

AP =
Z 1

0

P(R)dR   (6)

mAP50 =
1
nc

Z 1

0

P(R)dR   (7)

mAP50−95 = avg(mAPi), i = 50, 55,…, 95   (8)

where TP denotes true positives, where the leaf segmentation

model correctly detects and segments actual instances of okra

seedling leaves. FP represents false positives, referring to instances

where the model incorrectly detects or segments non-existent okra

seedling leaves (e.g., mistaking soil texture, culture box edges, or light-

induced noise as leaf regions) or produces segmentation results that

do not meet the required criteria. FN indicates false negatives, where

the model fails to detect or segment real okra seedling leaves. In

Equation 6, AP denotes the average precision obtained by integrating

the area under the Precision-Recall curve. Here, P(R) represents the

precision at a given recall level R, and dR is the integration variable

corresponding to an infinitesimal change in recall. A higher average

precision reflects better overall performance of the model in

accurately detecting and segmenting okra leaves.

The lightweight nature and computational complexity of the

model are assessed using the number of parameters and floating-

point operations per second (FLOPs), as defined by Equations 9, 10,

respectively. In these equations, K2 denotes the area of the

convolutional kernel, H × W represents the height and width of

the input feature map, Cin is the number of input channels, and Cout

is the number of output channels.

FLOPs = 2� H �W(CinK
2 + 1)Cout   (9)
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Params = Cin � K2 � Cout   (10)

Parameters focus on measuring the complexity and storage cost

of the model, affecting the training difficulty and the risk of

overfitting. FLOPs measure the computational cost and

operational efficiency of the model, and determine the hardware

suitability and real-time performance. Therefore, on the premise of

ensuring accuracy, the smaller the two, the more cost-effective the

model (Wan et al., 2023).
3 Results

3.1 Analysis of training loss for YOLOv11-
HSECal

In neural networks, the term “loss” refers to a measure of

prediction inaccuracy. The primary metrics used to indicate

training error in instance segmentation include box loss,

segmentation loss, classification loss, and Distribution Focal Loss

(DFL), as illustrated in Figure 5. Box loss quantifies the algorithm’s

ability to accurately localize object centers and the precision of

predicted bounding boxes containing the objects. Segmentation loss

measures the discrepancy between predicted pixel-level labels and

ground truth masks. Classification loss evaluates the accuracy of the

predicted object classes. Distribution Focal Loss (DFL) is specifically

designed to mitigate class imbalance during network training,

which occurs when certain classes are overrepresented (Paul and

Machavaram, 2025).

The training box loss exhibited a sharp decline around the 2nd

epoch, followed by a steady decrease until approximately the 55th

epoch, and stabilized near the 85th epoch with a minimum value of

0.266. The other three losses followed similar trajectories, reaching

minimum values of 0.328, 0.194, and 0.824, respectively. The initial

rapid decline in all losses is attributed to hyperparameter tuning,

while the stabilization around the 85th epoch validates the decision

to terminate training at the 100th epoch.

The validation loss curves demonstrated trends similar to the

training loss but with greater fluctuations, indicating the model’s

adaptability to the validation dataset. Validation box loss showed a

sharp decrease during early epochs, followed by irregular

fluctuations and eventually stabilized around the 78th epoch with

a minimum of approximately 0.533. Validation segmentation loss

dropped rapidly within the first four epochs, fluctuated intensely

between the 8th and 63rd epochs, and stabilized near the 92nd

epoch with a minimum value of about 1.919. Validation

classification loss sharply declined in the first 10 epochs,

oscillated around the 20th epoch, then gradually decreased before

stabilizing after a sharp drop at the 91st epoch, with a minimum

near 0.496. Validation DFL loss exhibited a similar pattern, with

overall stabilization accompanied by fluctuations within a range and

a minimum value of approximately 1.042. The fluctuations in

validation loss reflect the model’s sensitivity to unseen data, yet

the overall downward trend indicates improved generalization

performance, consistent with the stable trend observed in

training loss.
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3.2 Longitudinal comparison of YOLOv11-
HSECal with iterative versions of YOLO
series instance segmentation models

To comprehensively validate the performance advantages of the

proposed model in okra leaf detection and segmentation tasks, we

selected several other YOLO-series instance segmentation models

as benchmarks, including YOLOv6-seg, YOLOv8-seg, YOLOv8-

seg-p6, YOLOv8-segANDCal, YOLOv10-seg, and YOLOv11-seg.

Systematic experiments were conducted under unified

configurations and hyperparameter settings. Figure 6a presents

the segmentation results of these seven models under two

occlusion levels during the okra seedling stage: No Occlusion and

Leaves Occlusion. “No Occlusion” indicates that okra leaves are

fully visible without overlap, whereas “Leaves Occlusion” refers to

scenarios where leaves overlap and cause mutual occlusion. In the

figure, yellow indicates duplicate segmentation, green represents

erroneous segmentation, and red denotes incomplete segmentation.

Although YOLOv8-seg and YOLOv8-seg-p6 both belong to the

YOLOv8 family, they differ significantly in network architecture.

YOLOv8-seg is constructed based on three backbone feature

outputs corresponding to 8×, 16×, and 32× downsampled feature

maps (denoted as P3/8, P4/16, and P5/32), offering a favorable

balance of detection efficiency and model compactness. Conversely,

YOLOv8-seg-p6 further incorporates a P6 layer (P6/64), a 64×

downsampled deep feature map that enhances semantic

representation and improves recognition of small targets, albeit

with increased computational complexity and parameter count.

Under the No Occlusion condition, models rarely produced

erroneous segmentations, with YOLOv11-HSECal exhibiting only

one instance of incomplete segmentation. Under Leaves Occlusion,

segmentation accuracy declined markedly across models; however,

YOLOv11-HSECal demonstrated superior robustness, with only

one duplicate and one erroneous segmentation instance, and

relatively fewer incomplete segmentations compared to other

models. These results indicate that YOLOv11-HSECal achieves

outstanding segmentation performance.

Wu et al. (2024) utilized an improved YOLOv8-segANDCal

model to estimate soybean root length, enhancing local feature

extraction of soybean radicles via the SegNext_Attention

mechanism. Nonetheless, its architecture primarily targets linear

structures (e.g., roots), limiting adaptability to irregular leaf

morphologies. We thus conducted a comparative analysis

between YOLOv11-HSECal and YOLOv8-segANDCal .

Performance evaluations on datasets featuring No Occlusion and

Leaves Occlusion conditions (see Figure 6a) revealed that the

custom-trained YOLOv11-HSECal outperforms YOLOv8-

segANDCal in precision, recall, and F1 score (Table 4). Overall,

YOLOv11-HSECal demonstrates superior segmentation capability

compared to YOLOv8-segANDCal.

According to the experimental results shown in Figure X(B), the

proposed model achieves superior lightweight performance while

maintaining high segmentation accuracy. Specifically, the

segmentation mask mAP50 and mAP50-95 reached 86.9% and

76.5%, respectively, while the FLOPs and parameter count were
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reduced to 9.3G and 2.4M. Here, G denotes the number of giga

floating-point operations (GFLOPs), and M represents the number

of million trainable parameters contained in the model. Compared

to YOLOv11-seg, our model improved mAP50 by 1.1%, reduced

FLOPs by 0.6%, and decreased the number of parameters by 14.1%.

Although YOLOv6-seg and YOLOv8-seg-p6 exhibited slightly

higher segmentation accuracy, their computational complexity

increased significantly, with FLOPs and parameter counts nearly

doubling those of our model.

These comparative experiments demonstrate that our model

achieves the optimal balance between segmentation accuracy and

model lightweight design. The average precision of the

segmentation mask directly influences the accuracy of leaf area

and growth rate calculations. Meanwhile, a high number of model

parameters and FLOPs imposes substantial demands on hardware

resources. In contrast, our model significantly reduces hardware

requirements while maintaining a high segmentation accuracy after

lightweight optimization. This makes it particularly well-suited for
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practical agricultural applications, where computational efficiency

and accuracy are both critical at lab or field level.
3.3 Horizontal comparison between
YOLOv11-HSECal and state-of-the-art
instance segmentation models such as
grounded SAM

Ayan Paul et al. (Paul et al., 2024a) previously conducted

comparative experiments between YOLOv9c-seg and the

Grounded SAM model for instance segmentation of pepper

pedicels. Building upon this, we aim to further evaluate the

strengths and weaknesses of YOLO-based models in comparison

to Grounded SAM for instance segmentation tasks. To validate the

horizontal effectiveness of our proposed YOLOv11-HSECal model,

we also conducted comparative analyses with other state-of-the-art

but computationally intensive segmentation frameworks, including
FIGURE 6

(a) Comparative analysis of segmentation performance across models (b) Longitudinal comparative analysis of the performance indicators of the
YOLO model.
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Mask2Former (R50-FPN) (Cheng et al., 2022), SOLOV2 (R50-

FPN) (Wang et al., 2020), and Mask R-CNN (R50-FPN) (He

et al., 2017). All models were trained and tested under identical

experimental settings to ensure a fair comparison, as shown

in Figure 7.

Our results indicate that, although models such as Grounded

SAM, Mask R-CNN (R50-FPN), SOLOV2 (R50-FPN), and

Mask2Former (R50-FPN) have demonstrated solid performance in

many previous segmentation tasks, they offer no significant accuracy

advantage in our case. Moreover, they exhibit substantially higher

model sizes and computational costs. These findings highlight the

superiority of YOLOv11-HSECal in achieving competitive

segmentation performance with greater computational efficiency.
3.4 Ablation experiment of YOLOv11-
HSECal, a seedling leaf segmentation
model of okra

To evaluate the effectiveness of the aforementioned

improvements, a series of ablation experiments were conducted.

Four model variants were assessed on the same validation dataset.

As illustrated in Figure 8, replacing the backbone of YOLOv11-seg

with HGNetv2 resulted in the YOLOv11-H model, which

maintained comparable accuracy while achieving a 17% reduction

in model parameters and a 9.6% decrease in FLOPs, thereby

demonstrating the effectiveness of the lightweight design.

Subsequent replacement of the Neck component with the Slim-

Neck module in YOLOv11-H led to the YOLOv11-HS model.

Although this increased the number of parameters by 6.03%, it

yielded a 0.7% improvement in mAP50, with no additional increase

in FLOPs. Building upon YOLOv11-HS, the introduction of the

EMAttention mechanism further enhanced detection performance,

increasing mAP50 by an additional 0.3%, while reducing

parameters and FLOPs by 2.25% and 1.06%, respectively. These

findings indicate that, compared to YOLOv11-seg, the proposed

YOLOv11-HSECal model significantly reduces model complexity

while achieving a 1.1% gain in mAP50. As shown in Figure 8, the

YOLOv11-HSECal model demonstrates enhanced accuracy in okra

leaf segmentation while maintaining computational efficiency,

making it more suitable for deployment on resource-constrained

hardware platforms.
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3.5 Accuracy evaluation of the model
algorithm

In this study, the leaf area of okra at the seedling stage was used

as an accuracy benchmark. To validate the reliability of this metric,

a total of 380 images were randomly selected from those captured in

the culture box, and a plant exhibiting relatively complete and

consistent growth morphology was tracked. The leaf area of this

target plant was calculated using both manual and algorithm-based

methods. The algorithmic procedure involved three steps: first,

instance segmentation was performed using the YOLOv11-

HSECal model to generate the mask image; second, the Merge

module was employed to refine and optimize the mask, yielding

accurate pixel-level data; and finally, the Cal module was used to

track the target plant across images by matching its unique ID

number, thereby computing the algorithm-derived leaf area.

Corresponding manual measurements were conducted based on

the same ID. To assess the correlation, agreement, and error

character i s t ics between the manual and algor i thmic

measurements, regression fitting plots, residual plots, and normal

distribution plots were generated, as illustrated in Figure 9.

r = Cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xj j·Var Yj j

p   (11)

R2 = 1 − on
i=1

(yi−ŷ i)
2

on
i=1

(yi−�y)
2   (12)

Adjusted  R2 = 1 − 1−R2

n−k−1

� �
(n − 1)   (13)

y = ax + b   (14)

a = on
i=1

(xi−�x)(yi−�y)

on
i=1

(xi−�x)
2   (15)

y = 1:0078x − 6:6564   (16)

Here, Cov (X, Y) denotes the covariance between variables X

and Y, while Var|X| and Var|Y| represent the variances of X and Y,

respectively. The parameter a corresponds to the slope of the fitted

regression line, and b represents the intercept on the Y-axis.

Figure 9A presents the distribution of leaf area measurements

obtained through manual annotation and algorithmic calculation.
TABLE 4 Comparison of the performance of the two models at different occlusion of okra.

Models Occlusion
Level

Precision Recall F1-score Average inference
time/peduncle (ms)

YOLOv11-HSECal
No occlusion 0.99 0.98 0.98 7.5

Leaves occlusion 0.88 0.85 0.87 9.1

YOLOv8-segANDCal
No occlusion 0.98 0.96 0.97 11.4

Leaves occlusion 0.83 0.79 0.82 13.9
frontiersin.org

https://doi.org/10.3389/fpls.2025.1625154
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cao et al. 10.3389/fpls.2025.1625154
To further validate the consistency between model predictions and

manual measurements, a regression fitting plot was generated by

setting manually calculated leaf area as the horizontal axis and the

model-predicted leaf area as the vertical axis. The correlation

analysis yielded a Pearson correlation coefficient of r = 0.9922 (as

defined in Equation 11), indicating a very strong linear relationship

between the two variables. The corresponding coefficient of

determination was calculated as R² = 0.9845 (Equation 12),

suggesting that approximately 98.45% of the variance in leaf area

can be explained by the model’s predictions, demonstrating

excellent fitting performance. Considering the effects of sample

size and the number of independent variables, the adjusted

coefficient of determination was further calculated as R² = 0.9844

(Equation 13), which remains at a high level. This adjusted metric

accounts for the influence of the number of explanatory variables in

the model and provides a more realistic reflection of its

generalization ability. Collectively, these metrics confirm that the

proposed algorithm achieves outstanding accuracy and robustness

in leaf area prediction tasks, supporting its practical value in plant

phenotyping and quantitative analysis. Furthermore, a linear

regression analysis was conducted using the least squares method

to obtain the optimal fitting line by minimizing the sum of squared

differences between the predicted and actual values. The resulting

regression equation is expressed as Equation 14, where the slope

a=1.0078 (Equation 15) and the intercept b=−6.6564. The final

fitted equation, presented in Equation 16, quantitatively describes

the relationship between manual and algorithmic measurements.

As observed in Figure 9A, the data points are symmetrically
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distributed around the fitted line, suggesting a good match.

Figure 9B illustrates a three-dimensional spatial distribution of

the manual and algorithmic results, providing a visual

representation of the consistency between the two measurement

approaches. Figure 9C displays the residual plot, showing the

deviations of the predicted values from the observed ones. The

residuals are distributed evenly on both sides of the zero line

without evident patterns, indicating the absence of systematic

error and further confirming the goodness of fit. Lastly,

Figure 9D shows that the residuals follow a normal distribution,

indicating that the prediction errors are both random and unbiased,

thereby affirming the robustness and reliability of the

model’s predictions.

In conclusion, the YOLOv11-HSECal model demonstrates high

accuracy in estimating okra leaf area, effectively supporting the

pract ica l appl icat ion demands of okra seedl ing leaf

monitoring tasks.
3.6 Analysis of the vigor of okra seeds and
the growth status of okra seedlings under
salt stress

Salinity is one of the major environmental factors adversely

affecting plant growth and is known to significantly reduce crop

yields. In this study, we conducted experiments at the seedling stage

of okra under varying concentrations of NaCl solutions. A control

group was established using deionized water, while treatment
FIGURE 7

Side-by-side comparative analysis of other advanced model performance indicators.
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groups were irrigated with NaCl solutions at concentrations of 10

mmol/L, 20 mmol/L, 30 mmol/L, 40 mmol/L, 50 mmol/L, and 60

mmol/L. Growth images were collected at ten time points, and leaf

area as well as leaf growth rate were calculated. The results are

illustrated in Figures 10, 11. Due to inherent limitations in model

precision, a very small number of negative values appeared in the

calculated growth rates, which can be considered negligible in the

overall analysis. Figures 12, 13 further illustrate the leaf growth

patterns of okra seedlings under varying NaCl concentrations. As

the concentration of NaCl increased, a clear downward trend was

observed in both leaf area and leaf growth rate at the same

developmental stage, indicating that salt stress progressively

inhibited leaf expansion and growth vigor. To highlight the

differences more clearly, image data from the third day of the

seedling stage were analyzed. The average leaf area and real-time

growth rate in the CK group were 325.175 mm² and 13.32 mm²/h,

respectively. Under increasing NaCl concentrations, the average leaf

area and average real-time growth rate were reduced to 241.79 mm²,

138.75 mm², 87.66 mm², 75.28 mm², 66.37 mm², and 64.54 mm²,

and to 6.78 mm²/h, 5.63 mm²/h, 3.13 mm²/h, 2.73 mm²/h, 1.69

mm²/h, and 2.06 mm²/h, respectively.

Figures 12, 13 illustrate the leaf area and growth rate of okra

seedlings under control conditions (CK) and at various

concentrations of NaCl solution. Figure 12 presents the dynamic

changes in the area of each individual leaf and the average area of 16

leaves during the seedling stage, across different treatment groups.

The monitoring period spanned from 1 day and 12 hours to 8 days

(a total of 156 hours), with images captured at 15-minute intervals,

resulting in 624 images per group—thereby enabling continuous
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full-time monitoring of okra leaf area. As shown in Figure 12,

although a few individual leaves at each concentration deviated

from the overall trend, the growth trajectories of the majority of the

16 leaves at each NaCl concentration remained consistent. With

increasing NaCl concentration, the slopes of the growth curves

(represented by wall plots) gradually decreased, indicating a

reduction in growth vigor. Based on the data from Figure 12, the

average leaf areas of the 16 leaves at each concentration on the

second day were 268.16 mm² (CK), 231.54 mm² (10 mmol/L),

132.47 mm² (20 mmol/L), 77.1 mm² (30 mmol/L), 69.34 mm² (40

mmol/L), 64.24 mm² (50 mmol/L), and 57.28 mm² (60 mmol/L),

respectively. On the fourth day, the average areas increased to 574.8

mm², 553.1 mm², 530.57 mm², 384.79 mm², 373.38 mm², 337.03

mm², and 250.11 mm², respectively. By the seventh day, the values

reached 1064.57 mm², 897.75 mm², 908.53 mm², 741.17 mm², 703

mm², 657.7 mm², and 626.62 mm², respectively. These results

demonstrate that, across all treatments, the average leaf area of

okra seedlings increased over time. However, higher NaCl

concentrations consistently resulted in smaller leaf areas when

compared to lower concentrations or the CK group at the same

time points, indicating that increased salinity negatively affected the

growth vigor of okra seedlings.

Figure 13 illustrates the variation in growth rate for each

individual leaf and the average growth rate of 16 leaves at the

okra seedling stage under CK and various NaCl solution

concentrations. The observation period was consistent with that

of Figure 13, spanning from 1 day and 12 hours to 8 days (totaling

156 hours), with images captured at 15-minute intervals, resulting

in 624 images per treatment group. From the temporal trends in leaf
FIGURE 8

Comparison of YOLOv11-HSECal model ablation experiment performance indicators on the validation sets.
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growth rate under the seven NaCl concentrations shown in

Figure 13, it is evident that although certain leaves exhibited

phases of rapid growth within a specific period, the overall

growth rates tended to stabilize over time. The early-stage growth

rates were slightly lower than those in the mid-to-late stages. Leaves

within the same concentration group exhibited generally consistent

growth patterns. However, with increasing NaCl concentration, the

height of the wall plots progressively decreased, indicating a gradual

decline in both growth rate and physiological vigor. Furthermore,

Figure 13 shows that on the second day, the average growth rates of

the 16 leaves under CK and NaCl treatments at 10, 20, 30, 40, 50,

and 60 mmol/L were 14.22 mm²/h, 9.86 mm²/h, 9.07 mm²/h, 8.83

mm²/h, 7.05 mm²/h, 4.99 mm²/h, and 6.73 mm²/h, respectively. On

the fourth day, the rates increased to 17.13 mm²/h, 18.17 mm²/h,

15.44 mm²/h, 10.3 mm²/h, 9.49 mm²/h, 7.79 mm²/h, and 9.04 mm²/

h. By the seventh day, the corresponding growth rates were 25.18

mm²/h, 9.07 mm²/h, 13.94 mm²/h, 13.35 mm²/h, 1.17 mm²/h, 5.63

mm²/h, and 1.09 mm²/h. These findings suggest that okra seedlings

exhibit relatively slow leaf growth during the early stages, with a

noticeable increase in growth rate during the middle and late stages.

The overall trend of leaf growth rate mirrors that of leaf area: at a

given concentration, the growth rate is typically higher in the later

stages than in the early phase. Although occasional anomalies were

observed where high-concentration treatments yielded slightly

higher rates than lower concentrations, the overall average growth

rate consistently declined with increasing NaCl concentration. This

confirms that the salt stress environment simulated by NaCl
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significantly inhibits both the growth capacity and developmental

potential of okra seedlings.
4 Discussion

In this study, a full-time sequence evaluation method for

assessing okra seedling vigor was developed, offering a valuable

tool and reference for understanding leaf development during the

seedling stage, optimizing seed treatment strategies, and supporting

rapid breeding as well as precision growth management. Despite its

effectiveness, the current system has several limitations. First, the

light intensity within our full-time monitoring system for crop

germination vigor is not yet adjustable, which restricts experimental

flexibility under varying illumination conditions. To address this

issue, we plan to incorporate an adjustable lighting module to

facilitate data collection under different light intensities. Second,

the system lacks an automatic irrigation function and currently

relies on daily manual watering during the experiment. This

increases the labor burden and poses challenges for maintaining

consistent environmental conditions. To enhance system

automation and environmental control, we intend to integrate an

automatic irrigation module in future iterations. Finally, the current

assessment primarily relies on leaf area and leaf growth rate as

indicators of okra seedling vigor. While these metrics are valid,

future work could explore the integration of additional

morphological indicators, such as stem length and stem growth
FIGURE 9

Correlation analysis between algorithmic detection values and manual measurements: (a) fitted straight line; (b) manual and algorithmic count
statistics; (c)scatter plot of residuals; and (d) normal distribution plot.
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rate, derived from 3D stereoscopic imaging. This would enable a

more comprehensive and multidimensional evaluation of

seedling vigor.
5 Conclusion

To address the issues of large errors and low efficiency

associated with traditional manual leaf area measurements, as

well as the limitations of existing instance segmentation models—

such as complex architecture, high parameter count, and poor

robustness—this study aimed to achieve high-throughput,
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lightweight, and full-time monitoring of okra seedling vigor. To

this end, the following research was conducted to explore a full-time

seedling vigor evaluation approach for okra based on the

YOLOv11-HSECal model:
1. We developed a full-time sequence crop germination vigor

monitoring system capable of supporting automated and

continuous monitoring of okra seedlings, encompassing

dynamic data acquisition from seed germination through

to seedling development. The system not only provides a

stable environment with controlled light and temperature

but also ensures data reliability and validity through high-
FIGURE 10

Okra seedling leaf area under different concentration of NACI solutions.
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throughput image acquisition and precise growth tracking.

This establishes a robust foundation for assessing plant

growth status. Utilizing this system, we successfully

conducted a 9-day okra seedling experiment under salt

stress conditions, comprising a control group (CK) and six

different concentrations of NaCl solution. A total of 3,456

seedling images were collected. Following data annotation

and augmentation, we constructed an image dataset

capturing the growth dynamics of okra seedlings.

2. To address the task of leaf segmentation and growth

evaluation, this study optimized the YOLOv11-seg model
tiers in Plant Science 20
and proposed the YOLOv11-HSECal model. By integrating

the HGNetv2 backbone network, the Slim-Neck feature

fusion module, the EMAttention attention mechanism, and

a combination of the Merge and Cal modules, the model

significantly enhances segmentation accuracy, particularly

for small targets and complex leaf edges, making it directly

applicable for okra seedling vigor monitoring. The

optimized YOLOv11-HSECal model achieves a mAP50 of

86.9%, with the number of parameters and FLOPs reduced

to 2.4M and 9.3G, respectively. This not only ensures high

segmentation accuracy but also substantially improves
FIGURE 11

Okra seedling leaf growth rate under different concentration of NACI solutions.
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computat ional efficiency , thereby meet ing the

requirements for lightweight, high-throughput, and high-

precision monitoring in agricultural applications.

3. This study innovatively introduced the leaf growth rate as a

key indicator for evaluating the growth vitality of okra

seedlings. By integrating both leaf area and leaf growth rate,
tiers in Plant Science 21
we assessed the effects of CK and NaCl solutions at

concentrations of 10, 20, 30, 40, 50, and 60 mmol/L on

seedling viability. The results demonstrated that, at each

concentration, the growth rate of okra leaves in the middle

and late stages was consistently higher than in the early

stage. Furthermore, with increasing NaCl concentration,
FIGURE 12

Changes of leaf area of each leaf and average leaf area of 16 leaves in the seedling stage of the culture box under different concentration of NACI
solutions over time.
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both leaf area and growth rate significantly declined during

the same growth period, confirming the inhibitory effect of

salt stress on okra seedling development. By applying the

YOLOv11-HSECal model, we effectively analyzed the

temporal dynamics of okra leaf growth under different
tiers in Plant Science 22
levels of salt stress, providing a novel approach for plant

growth assessment in adverse environments.
Although the proposed full-time-series evaluation method for

okra seedling vigor demonstrates promising applications in
FIGURE 13

Changes of leaf growth rate of each leaf and average leaf growth rate of 16 leaves in the seedling stage of the culture box under different
concentration of NACI solutions over time.
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phenotypic monitoring, several limitations remain. For instance,

the current platform lacks adjustable light intensity and requires

manual irrigation, which compromises the consistency of

environmental control and the degree of automation.

Additionally, the evaluation indices are primarily based on leaf

area and growth rate, without incorporating 3D structural

characteristics. Future research will aim to integrate adjustable

lighting and automated irrigation modules, as well as incorporate

3D phenotypic features, to enable more precise and comprehensive

assessments of seedling vigor in crops.

Conclusion: This study presents a high-throughput, non-

destructive, full-time, accurate, and efficient method for assessing

the vigor of okra seedlings, offering a novel approach for dynamic

plant growth evaluation. Additionally, it provides a practical and

effective tool for monitoring plant development under salt stress

conditions, thereby advancing the application and development of

intelligent agricultural technologies.
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