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Performance assessment of
three simplified Gielis equations
in quantifying the geometries of
lanceolate bamboo leaves
Qinchao Fu1*, Jing Li1, Azuo Jimu1,
Ximeng Xiao1 and Lin Wang2*

1Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan
Normal University, Leshan, China, 2College of Life Sciences, Sichuan University, Chengdu, China
Accurate quantification of bamboo leaf morphology is essential for

understanding plant morphogenesis and development. However, most

bamboo leaves exhibit long lanceolate shape characteristic, posing challenges

in finding suitable mathematical models for accurate shape description. Previous

studies indicated that the simplified versions of Gielis equation, a nonlinear polar

coordinate system derived from the superellipse equation, have shown promise

in describing bamboo leaf geometries. Nevertheless, selecting an optimal

nonlinear equation that precisely fits empirical bamboo leaf data remains a

formidable challenge in morphological studies. This persistent limitation

underscores the critical need for developing systematic evaluation methods to

assess the performance of such nonlinear models. In the present study, three

distinct versions of simplified Gielis equation, i.e., four-parameter version

(referred to as SGE-1), three-parameter version (referred to as SGE-2), and

two-parameter version (referred to as SGE-3), were used to fit the two-

dimensional contours of bamboo leaves with a long lanceolate shape across

two species (Indocalamus decorus with 254 leaves, and Indocalamus

longiauritus with 251 leaves). The root-mean-square error (RMSE) and Akaike

information criterion (AIC) were employed to assess the goodness of fit and

model structural complexity, and the nonlinear behavior for each model was

assessed using relative curvature measures of nonlinearity. Across both datasets,

SGE-1 showcased the lowest RMSE and AIC values but exhibited the poorest

close-to-linear behavior based on relative curvature measures among the three

models. Conversely, SGE-3 had the best close-to-linear behavior among the

three models, but it exhibited the highest RMSE and AIC values. These findings

provide a methodological framework for selecting nonlinear models in plant

morphometrics, particularly for lanceolate-shaped leaves, while highlighting the

critical balance between descriptive accuracy and statistical robustness in

biological shape analysis.
KEYWORDS
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1 Introduction

The leaf is the primary photosynthetic organ in most plants

(Wright et al., 2004), and its morphology significantly influences

plant growth and nutrient transport (Daas-Ghrib et al., 2010). As a

result, an increasing number of mathematical models, such as the

superellipse equation, have been developed to capture the geometric

shape of leaves (Gielis, 2003). Bamboo, an essential component of

ecosystems, is widely distributed in tropical and subtropical regions.

Most bamboo leaves exhibit a long lanceolate shape, posing

challenges in finding suitable mathematical models for accurate

shape quantification. Fortunately, a polar coordinate equation was

proposed by Gielis (2003), referred to as the Gielis equation

hereinafter, which can effectively describe the two-dimensional

contours of bamboo leaves, offering a promising approach for

geometric modeling (Lin et al., 2016; Shi et al., 2018; Yao

et al., 2022).

Gielis (2003) extended the superellipse equation to model a

wide range of geometric shapes found in plants, which is usually

reparameterized in the following form (Shi et al., 2020; Tian et al.,

2020):

r(q) = a cos
m
4
q

� ���� ���n2+ 1
k
sin

m
4
q

� �����
����
n3

� �− 1
n1

, (1)

where r and q represent the polar radius and polar angle,

respectively; a, k, n1, n2 and n3 are parameters to be fitted; and m

is a positive integer that determines the number of angles of the

Gielis curve within the interval [0, 2p) (Wang et al., 2022a). In

recent years, various studies have demonstrated the validity of the

Gielis equation for describing actual biological geometries, e.g., leaf

shapes (Lin et al., 2016; Shi et al., 2018, 2019; Yao et al., 2022),

planar projections of seed and fruit (Tian et al., 2020; Yao et al.,

2024), geometries of the outer rims of corolla tubes (Wang et al.,

2022b), and shapes of some sea stars (Shi et al., 2020), as well as egg

shapes of birds (Shi et al., 2022a). Particularly, bamboo leaves—with

their easy accessibility and clear morphological boundaries—have

become a preferred material for validating the Gielis equation in

studies of natural geometries (Shi et al., 2015a; Yao et al., 2022). Shi

et al. (2015a) employed a simplified Gielis equation with two

parameters to describe the shape of bamboo leaves, in which one

parameter represented the overall ratio of leaf width to leaf length.

Yao et al. (2022) compared a three-parameter Gielis equation with a

two-parameter version using leaf boundary coordinate data from

six bamboo species within the same genus, all characterized by

distinct long lanceolate leaves. Their study aimed to determine

whether the three-parameter Gielis equation could enhance the

model’s fitting accuracy for bamboo leaf shapes.

However, previous researches on model evaluation have

primarily focused on assessing goodness of fit (e.g., the coefficient

of determination) or examining the trade-off between goodness of

fit and model complexity (e.g., the Akaike information criterion)

(Shi et al., 2015a; Lin et al., 2016; Yao et al., 2022). Despite its

potential to offer valuable insights into plant leaf formation

mechanisms, the nonlinearity of the Gielis equation has remained

largely unexplored in terms of quantification and comparison using
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relative curvature measures of nonlinearity. In fact, relative

curvature measures of nonlinearity offer a more comprehensive

evaluation of the nonlinear behavior of models such as the Gielis

equation, providing insights beyond traditional criteria like the

coefficient of determination or the Akaike information criterion.

While conventional metrics primarily assess how well a model fits

the data, they fail to capture the intrinsic nonlinearity of the model

and its potential impact across varying datasets or conditions.

However, relative curvature measures quantify how closely a

nonlinear regression model approximates linear behavior (Bates

and Watts, 1980), which is particularly relevant for Gielis curves

derived from the Gielis equation, where nonlinearity is an inherent

characteristic. By incorporating these nonlinear measures, studies

can ensure that selected models not only achieve better fit to the

data but also offer a deeper understanding of their structural

properties. This makes them particularly valuable for comparing

nonlinear models, especially in ecological and biological research,

where nonlinearity is a fundamental feature.

To systematically investigate the intrinsic nonlinearity of the

Gielis equation, we employed three simplified versions (i.e., the

four-parameter, three-parameter, and two-parameter Gielis

equations) to model leaf contours of two bamboo species within

the same genus, both exhibiting characteristic lanceolate

morphology. Each species had a dataset of more than 250 leaves,

ensuring robust statistical analysis. Model performance was

evaluated using root-mean-square error, the Akaike information

criterion, and relative curvature measures of nonlinearity to identify

which of the three nonlinear models best captured the geometric

properties of bamboo leaves. This study aims to validate the

effectiveness of relative curvature measures of nonlinearity in

nonlinear regression analysis and to introduce a novel approach

for assessing the Gielis equation’s suitability in describing the

geometries of natural plants. Our work establishes curvature

analysis as a vital complement to conventional model selection

criteria in plant morphometrics.
2 Materials and methods

2.1 Leaf collection

During November 2024, we randomly collected 254 mature

leaves from 122 healthy culms of Indocalamus decorus in Yuping

Town, Hongya County, Sichuan Province, China (103°27’53’’E, 29°

55’33’’N). Similarly, in November 2024, an additional 251 leaves

were sampled from 120 culms of Indocalamus longiauritus at the

Bamboo Resource Base of Leshan Normal University, Leshan City,

Sichuan Province, China (103°44’57’’E, 29°33’54’’N). To preserve

fresh weight and minimize morphological distortion, all leaves of

each species were promptly wrapped in wet paper and transported

to the laboratory within 2 hours post-collection. Although

variations in sampling vertical positions, azimuth angles, leaf age,

and culm age were present, their potential effects were statistically

negligible given our large sample size (more than 250 per species).

For each species, leaves were randomly collected from at least 120

healthy culms, encompassing a wide range of canopy positions and
frontiersin.org
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orientations. Sampling occurred near the end of the second growth

season, ensuring that all shoots were mature and the collected leaves

had fully expanded. This sampling strategy—randomized and

distributed across individuals and canopy layers—was intended to

minimize potential biases associated with developmental stage or

microenvironmental variation (Shi et al., 2015a; Lin et al., 2016; Yao

et al., 2022). Figure 1 provides representative leaf profiles of I.

decorus and I. longiauritus.
2.2 Data acquisition

Fresh leaves were scanned using a photo scanner (M208, BenQ,

Shanghai, China) at a resolution of 600 dpi and saved as PDF files.

To minimize scanning-related distortions, the surface moisture of

each leaf was gently wiped dry prior to scanning to ensure clean

image boundaries. Additionally, leaves were carefully flattened

during placement on the scanner to avoid folding or curvature,

thereby preserving their natural two-dimensional geometry.

Subsequently, Adobe Photoshop CS2 (version 9.0; Adobe, San

Jose, CA, USA) was employed to convert the PDF images into

black and white images saved as BMP files for each individual leaf.

Planar leaf boundaries were extracted using a custom MATLAB

script (version ≥ 2009a; MathWorks, Natick, MA, USA) following

the methodology described in Shi et al. (2018) and Su et al. (2019).

These procedures have been demonstrated to yield reliable and

reproducible results in extracting leaf boundary data for geometric

analysis (Yu et al., 2020; Guo et al., 2021; Wang et al., 2024a). Each

leaf boundary was represented by approximately 2000 equidistant

points, extracted using the “adjdata” function from the “biogeom”

package (version 1.4.3; Shi et al., 2022b). The raw data for leaf
Frontiers in Plant Science 03
boundary coordinates are accessible in online Supplementary

Tables S1 and S2.
2.3 Models

To balance model flexibility and computational efficiency for

fitting bamboo leaf boundaries, we employed a simplified version of

the Equation 1 by setting k = m = 1, following established

methodologies (Shi et al., 2015a; Wang et al., 2022a). This four-

parameter formulation (denoted as SGE-1) is expressed as

r(q) = a cos
1
4
q

� �����
����
n2

+ sin
1
4
q

� �����
����
n3

� �− 1
n1

, (2)

where parameter n1, n2, and n3 can assume distinct values, enabling

generation of both symmetrical and asymmetrical leaf geometries.

The parameter a primarily controls the overall scaling of the leaf

shape and correlates strongly with leaf area (Gielis, 2003).

Parameter n1 is the principal shape determinant and has been

shown to be positively associated with the width-to-length ratio of

the leaf (Yao et al., 2022). Parameters n2 and n3 collectively define

the symmetry characteristics of the leaf contour; when n2 and n3 are

equal, the resulting shape exhibits perfect bilateral symmetry (Wang

et al., 2022a). While SGE-1 offers greater shape diversity, its

computational demands increase with parameter dimensionality.

For cases requiring more symmetrical shape representation, we

adopted the three-parameter reduction (denoted as SGE-2)

proposed by Yao et al. (2022), where n3 = n2 in Equation 2:

r(q) = a cos
1
4
q

� �����
����
n2

+ sin
1
4
q

� �����
����
n2

� �− 1
n1

: (3)
FIGURE 1

Outlines of leaf samples of (A) Indocalamus decorus and (B) Indocalamus longiauritus.
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Further simplification was achieved through the two-parameter

version developed by Shi et al. (2015a), setting n2 = 1 in Equation 3:

r(q) = a cos
1
4
q

� �����
���� + sin

1
4
q

� �����
����

� �− 1
n1

: (4)

Equation 4 was denoted as SGE-3. Notably, the SGE-3 has

demonstrated excellent fitting performance for empirical bamboo

leaf boundary coordinate data despite its reduced number of

parameters (Shi et al., 2015a; Lin et al., 2016; Yao et al., 2022),

making it particularly suitable for large-scale analyses.
2.4 Data fitting and model evaluation

The three nonlinear models (SGE-1, SGE-2, and SGE-3; Section

2.3) were employed to fit empirical leaf boundary coordinate data

utilizing the Nelder-Mead optimization algorithm (Nelder and

Mead, 1965) within a general-purpose framework. The Nelder-

Mead algorithm was selected because of its simplicity, robustness in

low-dimensional parameter spaces, and ability to handle non-

differentiable or noisy objective functions. Given the limited

number of parameters (2–4 in the tested models), the algorithm

has been shown to perform effectively in similar morphological

modeling tasks. Previous studies (e.g., Lin et al., 2016; Shi et al.,

2022a) have successfully employed the Nelder-Mead method to

estimate parameters of simplified Gielis equation with high fitting

accuracy in plant geometry studies. To reduce the risk of

convergence to local optima, we performed multiple optimization

runs with different initial parameter values for each individual leaf

profile. Illustrative R scripts for implementing the data fitting

procedure using the simplified Gielis equation is available in

Supplementary Material S4 of Shi et al. (2018).

Parameters of each simplified Gielis equation were estimated by

minimizing the residual sum of squares (RSS) between the observed

and predicted radii from the polar point to the leaf boundary:

RSS =o
N

i=1
ri − r̂ ið Þ2, (5)

where ri in Equation 5 represents the observed distance from the

polar point to the i-th point on the scanned perimeter of leaf shape;

r̂ i represents the predicted distance from the polar point to the i-th

point on the predicted perimeter of leaf shape based on the each

simplified Gielis equation; and N is the number of data points on

the scanned perimeter of leaf shape. The root-mean-square error

(RMSE) was calculated to evaluate the goodness of fit of the

nonlinear regression:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS=(N − P)

p
, (6)

where P in Equation 6 is the number of parameters for each

simplified Gielis equation. The smaller RMSE value, the better the

model fits. Additionally, we computed the Akaike information

criterion (AIC) to balance the trade-off between goodness of fit

and model structural complexity (Burnham and Anderson, 2004).

The model with the lowest AIC value is considered best. Wilcoxon
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signed rank test (Wilcoxon, 1945) with a 0.05 significance level was

employed to determine whether there were significant differences

among RMSE or AIC values derived from different models.

When applying least squares protocols to fit a mathematical

model, it is essential to consider the stochastic assumption about the

random error term (Bates and Watts, 1980). This involves

specifying the nature of the error term, which in this case

captures the differences between the observed and predicted polar

radii as they vary with changes in the polar angle. Under the

classical assumption that these errors are independently and

identically distributed following a normal distribution, the least

squares estimators in linear regression are known to be unbiased,

jointly normally distributed, and exhibit minimum variance among

estimators within the class of regular estimators (Ratkowsky and

Reddy, 2017). However, these guarantees often fail in nonlinear

contexts. In such cases, particularly when the sample size is limited,

least squares estimators may be biased and inefficient. As a result,

assessing the validity of the underlying assumptions for the three

nonlinear models (i.e., SGE-1, SGE-2, and SGE-3) is a critical

component of the analysis.

The core principle behind most algorithms for estimating

parameters using least squares in nonlinear models and many

associated inference techniques is the use of a first-order Taylor

series expansion to locally approximate the nonlinear function with

a linear one (Bates and Watts, 1980, 1988). The linear

approximation corresponds to two distinct assumptions: the

planar assumption and the uniform coordinate assumption (Bates

and Watts, 1980). A variety of measures of nonlinearity have been

developed to evaluate how well a linear approximation captures the

behavior of a nonlinear model, or to reveal its limitations when it

does not, i.e., confidence regions (Beale, 1960), bias (Box, 1971),

skewness (Hougaard, 1985), and kurtosis (Haines et al., 2004). The

root-mean-square relative curvatures (gRMS) (Bates and Watts,

1980; He et al., 2024), including the root-mean-square relative

intrinsic curvature (gNRMS) and the root-mean-square relative

parameter-effects curvature (gTRMS), offers comprehensive

evaluations to determine whether a nonlinear regression model

aligns “close-to-linear” or “far-from-linear”. A “close-to-linear”

model means that a nonlinear model has least squares estimators

closely approached the mentioned asymptotic properties (i.e.,

unbiased, jointly normally distributed, and exhibit minimum

variance) (Ratkowsky, 1983, 1990). In contrast, “far-from-linear”

nonlinear models lacked these desirable asymptotic properties. The

two root-mean-square relative curvatures gNRMS and gTRMS were

evaluated by the critical curvature (Kc), defined as 1=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F(P,N − P;a)

p
, where F represents the F-distribution, P is the

number of the model parameters, N is the number of data points,

and a is the confidence level equal to 0.05 (Bates and Watts, 1980;

He et al., 2024). Here, a value of gNRMS is smaller than Kc suggests

that the planar assumption is acceptable. Meanwhile, if gTRMS value is

smaller than Kc, then the uniform coordinate assumption holds

true. Indeed, it is common for most nonlinear regression models to

exhibit relatively low gNRMS values, which often fall below the critical

threshold, as intrinsic curvature primarily reflects the overall

geometric nonlinearity of the model structure. In contrast, gTRMS is
frontiersin.org
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more sensitive to the behavior of individual model parameters and

typically yields higher values, making it more challenging to meet

the close-to-linear criteria (Ratkowsky and Reddy, 2017; He

et al., 2024).

While gNRMS and gTRMS provide valuable global assessments of

model nonlinearity, they offer limited insight into individual model

parameter performance on the linear approximation. To address

this limitation, we complemented our analysis by employing the

percentage bias (Pb) of each parameter, as suggested by Box (1971)

and Ratkowsky (1983), to evaluate the nonlinear behavior for a

particular parameter within a nonlinear model. As a general

guideline, when the absolute value of Pb falls below 1%, the

nonlinear model exhibits “close-to-linear” behavior. This suggests

that the parameter estimators possess several desirable asymptotic

characteristics, including proximity to unbiasedness, normal

distribution, and minimization of variance (Ratkowsky, 1990).

The function “fitGE” from the “biogeom” package (version

1.4.3; Shi et al., 2022b) were used to estimate the model

parameters within the three simplified Gielis equation (i.e., SGE-

1, SGE-2, and SGE-3). The functions “curvIPEC” and “biasIPEC”

from the “IPEC” package (version 1.1.0; Shi et al., 2024) were used

to calculate the curvature measures of nonlinearity described above,

including gNRMS, gTRMS, Kc, and Pb. All calculations and figures were

accomplished based on R (version 4.2.1; R Core Team, 2022).
3 Results

The three models (i.e., SGE-1, SGE-2, and SGE-3) generally

provided effective representations to the boundary of bamboo leaves

for both species (Supplementary Tables S3–S5 in the

Supplementary Materials). Figure 2 illustrates the fitting results of

the leaf profile using the three models for two leaf examples as

intuitively shown in Figure 1. For species of I. decorus, the results of

Wilcoxon signed rank test for every two models, conducted at a

significance level of 0.05, revealed that SGE-3 exhibited significantly

highest RMSE values than other two models. While there was no

significant difference in RMSE values derived from SGE-1 and SGE-

2 (Figure 3; Supplementary Table S6). For species of I. longiauritus,

the results of Wilcoxon signed rank test for every two models

indicated that SGE-3 exhibited significantly highest RMSE values

and SGE-1 exhibited significantly lowest RMSE values (Figure 3;

Supplementary Table S6). These findings suggest that SGE-1

demonstrated the best goodness of fit for both species.

Furthermore, the Wilcoxon signed rank tests revealed that SGE-3

had the highest AIC values among the three models for the empirical

data of both species at a significance level of 0.05 (Figure 4;

Supplementary Table S7). And for species of I. decorus, there was

no significant difference in AIC values derived from SGE-1 and SGE-

2; for species of I. longiauritus, SGE-1 exhibited significantly lower

AIC values than SGE-2 (Figure 4; Supplementary Table S7). These

results indicate that SGE-1 outperformed the other models in

nonlinear regression by achieving a favorable trade-off between

model structural complexity and goodness of fit.
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The overall nonlinearity of the nonlinear regression models was

evaluated by the root-mean-square relative curvatures, i.e., gNRMS,

gTRMS, and Kc. For I. decorus leaf data across the three models,

99.20% (SGE-1), 100% (SGE-2), and 97.86% (SGE-3) of the 254

leaves had gNRMS values smaller than the corresponding Kc.

Additionally, the proportions of gTRMS values less than the

corresponding Kc were 45.60% (SGE-1), 58.20% (SGE-2), and

88.03% (SGE-3) (Figure 5A; Supplementary Tables S3-S5). For I.

longiauritus leaf data, all of the gNRMS values were less than the

corresponding Kc across the three models. The proportions of gTRMS

values smaller than the corresponding Kc were 63.20% (SGE-1),

68.80% (SGE-2), and 98.80% (SGE-3) (Figure 5B; Supplementary

Tables S3–S5).

These results indicated that SGE-3 exhibited the best linear

approximation among the three models, while the SGE-1 showed

the worst performance in linear approximation. Notably, all three

models demonstrated exceptional adherence to the planar

assumption, with over 97% of gNRMS values being smaller than the

corresponding Kc in both species. Regarding the uniform

coordinate assumption, the SGE-3 emerged as the most

satisfactory among all models, as evidenced by over 88% of gTRMS

values being less than the corresponding Kc in both species.

In terms of individual parameter-level nonlinear behavior,

examining the percentage bias (Pb) of parameters reveals

insightful findings. For SGE-1, the absolute values of Pb for a, n1,

n2, and n3 were smaller than 1% in 2.40%, 29.20%, 61.60%, and

59.20% of cases, respectively, in the data of I. decorus leaves.

Correspondingly, these proportions were 9.20%, 40.80%, 67.20%,

and 66.40% for the data of I. longiauritus leaves (Figure 6A;

Supplementary Table S3). Moving to SGE-2, 7.79%, 14.75%, and

42.62% of the absolute values of Pb for a, n1, and n2 were below 1%

for I. decorus, and these figures were 18.00%, 16.80%, and 40.40%

for I. longiauritus (Figure 6B; Supplementary Table S4). Regarding

SGE-3, 94.44%, and 89.74% of the absolute values of Pb for a, and

n1, respectively, were below 1% in I. decorus leaves data, and

99.60%, and 99.20% in I. longiauritus leaves data (Figure 6C;

Supplementary Table S5).

These results underscored that SGE-3 exhibited the best close-

to-linear behavior among the three models, with over 89% of the

absolute values of Pb for each parameter being smaller than 1% in

both species. SGE-1 demonstrates relatively good close-to-linear

behavior, except for parameter a, where <10% of the absolute values

of Pb are less than 1%. However, SGE-2 performs poorly, with three

parameters (a, n1, and n2) having less than 43% of their absolute

values of Pb below 1% for both datasets.
4 Discussion

The Gielis equation, originating from the superellipse

formulation (Lamé, 1818), has demonstrated remarkable

versatility in modeling diverse biological morphologies. Previous

applications include: (1) simplified versions for characterizing tree

ring cross-sections in conifers (Shi et al., 2015a, 2015b) and leaf
frontiersin.org
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boundaries across 46 bamboo species (Lin et al., 2016); (2) modified

twin versions showing superior performance in describing the

morphologies of some sea stars (Shi et al., 2020); and (3)

successful applications in quantifying seed projections in Ginkgo
Frontiers in Plant Science 06
biloba cultivars (Tian et al., 2020) and fruit geometries in

Koelreuteria paniculata (Li et al., 2022). Notably, Wang et al.

(2022b) extended its utility to corolla tube geometries in Vinca

major. These collective findings underscore the equation’s
FIGURE 2

The observed (gray curves) and predicted (red curves) boundary geometries of the representative leaves of (A, C, E) Indocalamus decorus and (B, D,
F) Indocalamus longiauritus (see Figure 1) simulated using the three simplified Gielis equations (SGE-1, SGE-2, and SGE-3). Letters a, n1, n2, and n3
with hats represent the estimated values of parameters of the corresponding simplified Gielis equation in each panel; RMSE represents the root-
mean-square error; AIC represents the Akaike information criterion.
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adaptability, though further validation across morphologically

diverse specimens within single taxa remains valuable.

Traditional model evaluation metrics (e.g., the goodness of fit

and the Akaike information criterion) face limitations when

assessing complex nonlinear models with multiple parameters

(Ratkowsky and Reddy, 2017). Beyond mere fitting accuracy, an

ideal nonlinear model should ensure parameter estimators exhibit

close-to-linear behavior including unbiasedness, normality, and

minimum variance (Ratkowsky, 1990; Ratkowsky and Reddy,

2017). Our comprehensive evaluation framework addresses these

requirements through simultaneous consideration of both fitting

performance and intrinsic nonlinearity characteristics.
Frontiers in Plant Science 07
Our analysis reveals distinct trade-offs among the three

nonlinear models scrutinized in this study. We found that SGE-1

demonstrated superior fitting performance, as illustrated in

Figure 3. Meanwhile, SGE-1 exhibited a robust performance in

adhering to the planar assumption, with almost all of gNRMS values

being smaller than the corresponding Kc in both species (Figure 5).

However, SGE-1 showed limitations in confirming the uniform

coordinate assumption, as over 36% of gTRMS values were greater

than the corresponding Kc in both species (Figure 5). Particularly,

only two out of four parameters within SGE-1, namely n2 and n3,

demonstrated close-to-linear behavior, as assessed by metrics such

as lower percentage bias (Figure 6). For the other end of the
FIGURE 3

Violin plots display the distribution of the root-mean-square error
values derived from the three simplified Gielis equations (SGE-1,
SGE-2, and SGE-3). Horizontal bar within each box denotes
medians; bottoms and tops of boxes represent 25th and 75th
percentiles, and lines extend to the 1.5-fold interquartile range.
Statistical significance of the two-sided Wilcoxon test at the 0.05
significance level is marked: ns for not significant, *** for p < 0.001,
and **** for p < 0.0001.
FIGURE 4

Violin plots display the distribution of the Akaike information
criterion values derived from the three simplified Gielis equations
(SGE-1, SGE-2, and SGE-3). Horizontal bar within each box denotes
medians; bottoms and tops of boxes represent 25th and 75th
percentiles, and lines extend to the 1.5-fold interquartile range.
Statistical significance of the two-sided Wilcoxon test at the 0.05
significance level is marked: ns for not significant, *** for p < 0.001,
and **** for p < 0.0001.
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goodness of fit scale, SGE-3 was found to be poor in fitting the

observed data (Figure 3). Despite its shortcomings in goodness of

fit, SGE-3 demonstrated commendable performance in terms of

being close-to-linear. To be specific, SGE-3 had the best linear

approximation (Figure 5). And at the individual parameter level, all

parameters of SGE-3, a and n1, were close-to-linear as judged by the

lower percentage bias (Figure 6).

After assessing the nonlinear regression models using various

methods, it can be concluded that SGE-3 exhibited the poorest

goodness of fit and the highest AIC values, whereas SGE-1

showcased the best goodness of fit and the lowest AIC values.

However, despite SGE-3’s suboptimal goodness of fit, it

demonstrated the best close-to-linear behavior among the three

models, both as an overall measure and at the individual parameter
Frontiers in Plant Science 08
level of nonlinear behavior. On the other hand, SGE-1 faced

challenges related to the uniform coordinate assumption, and

displayed drawbacks in the behavior of four of its parameters,

with two of them, i.e., a, and n1, were not close-to-linear.

Therefore, among the three models examined, SGE-1 emerges as

the clear choice when considering mainly the goodness of fit and

AIC. While if one focuses on the nonlinear behavior, SGE-3 might

be considered the optimal selection. It is essential to note that future

studies on different species may lead to different conclusions. The

choice between models should therefore be guided by study

objectives—prioritizing either morphological characterization or

statistical inference.

Generally, through an appropriate nonlinear reparameterization

can effectively reduce parameter-effects curvature in nonlinear models
FIGURE 5

Assessment of nonlinear behavior of the three simplified Gielis equations (SGE-1, SGE-2, and SGE-3) at the global level for two datasets. g N
RMS

represents root-mean-square relative intrinsic curvature, g T
RMS represents root-mean-square relative parameter-effects curvature, and Kc represents

critical curvature. For example, 99.20% in (A) represents for SGE-1, there are 99.20% of g N
RMS values which are smaller than the corresponding Kc for

Indocalamus decorus; 68.80% in (B) represents for SGE-2, there are 68.80% of g T
RMS values that are smaller than the corresponding Kc for

Indocalamus longiauritus.
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(Bates and Watts, 1980; Ratkowsky and Reddy, 2017). It has been

confirmed that performing specific parameter transformations like

exponential modification in nonlinear regression models can

simultaneously improve the parameter-effects curvature and close-

to-linear behavior of the model parameters (He et al., 2024; Wang

et al., 2024b). However, such approaches risk increasing model

complexity, particularly problematic for already intricate

formulations like the Gielis equation. Based on this trade-off

analysis, we recommend retaining the current parameterization

while identifying this as a promising direction for future

methodological research.
5 Conclusions

In summary, we evaluated three simplified Gielis equations for

modeling leaf contours of two bamboo species. The results derived

from the two datasets demonstrated a clear trade-off between model

performance metrics: while SGE-3 had the best close-to-linear

behavior among the three models, it exhibited the poorest goodness

offit and the highest AIC value. In contrast, although SGE-1 achieved

the best fit quality and the lowest AIC value, it provided unacceptable

close-to-linear least squares estimates of parameters. Consequently,

the choice of model applied for capturing the geometric properties of

bamboo leaves depends on the criteria used to evaluate it, e.g.,

goodness of fit, model structural complexity, and the close-to-linear

behavior of parameters. When models exhibit comparable fit,

assessing parameter nonlinearity becomes critical for optimal

selection. The present work provided insights into the criteria of

model selection for nonlinear regression for future researches on
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describing the leaf shape of bamboo and other plant species with

similar lanceolate leaves. One limitation of the current work is that it

does not address the ecological or functional significance of the

lanceolate leaf shape in bamboo, such as its potential role in drought

resistance or other environmental adaptations. Additionally, the

relationship between the parameters of the simplified Gielis

equations and specific ecological traits remains unclear. Future

research should aim to bridge this gap by linking shape descriptors

derived from geometric models with physiological and ecological

functions. Such studies would deepen the understanding of how leaf

morphology contributes to adaptive strategies in varying

environments and enhance the applicability of geometric modeling

in functional plant ecology.
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