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Lipid droplets (LDs) have emerged as dynamic organelles central to plant lipid

metabolism, stress adaptation, and energy homeostasis. This review synthesizes

recent advances in understanding LD biogenesis and degradation in plants,

highlighting conserved and divergent mechanisms relative to other eukaryotes. LD

formation originates in the endoplasmic reticulum (ER), where neutral lipids

synthesized by diacylglycerol acyltransferases (DGAT) and phospholipid:

diacylglycerol acyltransferases (PDAT) accumulate into lens-like structures. These

structures bud into the cytosol via ER machinery, including SEIPIN complexes,

vesicle-associated membrane proteins, and LD-associated protein-interacting

protein which regulate LD size and abundance. Degradation occurs through two

major pathways: lipolysis, mainly mediated by the patatin-like lipase SUGAR-

DEPENDENT1, and lipophagy, where AUTOPHAGY-RELATED proteins deliver LDs

for breakdown. LDs also function as stress-responsive hubs, accumulating under

abiotic stresses and during pathogen interactions, where they participate in

membrane remodeling and antimicrobial defense. Extensive studies in major

oilseed crops reveal that expressions of multiple genes involved in LD turnover are

significantly induced under various abiotic stresses and phytohormone treatments.

These genetic components operate autonomously or synergistically (e.g. DGAT and

PDAT) within the TAG biosynthesis and LDmetabolic pathways, effecting concurrent

enhancements in stress resilience and oil production under suboptimal growth

conditions. Critical knowledge gaps persist, including the interplay between lipolysis

and lipophagy, the integration of energy-related signaling pathways in LD turnover,

and stress-modulated post-translational control of LD proteome. Deciphering these

mechanisms will advance our understanding towards LD biology.
KEYWORDS
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1 Introduction

Since their identification as organelles in the 19th century, lipid droplets (LDs) have

undergone various nomenclature changes. They were once referred to as lipid bodies,

adiposomes, oil bodies, sphaerosomes and oleosomes, but are now commonly known as

LDs (Walther and Farese, 2012). LDs are lipid-rich organelles, which possess a core of
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neutral lipids, predominantly triacylglycerols (TAGs) and steryl/

wax esters, which is encased by a monolayer of phospholipids (PLs).

LDs are derived from the endoplasmic reticulum (ER), and the

biogenesis of LDs includes the following key steps: neutral lipid

synthesis at the ER; formation of a lipid lens; budding of LDs; LD

growth and maturation (Mathiowetz and Olzmann, 2024). In the

last decade, proteins involved in these steps have been well

characterized in plants, especially model plant Arabidopsis

thaliana. These proteins include TAG-synthesizing enzymes and

the proteins responsible for the LDs generation, such as SEIPIN,

VESICLE-ASSOCIATED MEMBRANE PROTEIN-ASSOCIATED

PROTEIN 27 (VAP27) and LD-ASSOCIATED PROTEIN-

INTERACTING PROTEIN (LDIP) (Barneda and Christian, 2017;

Man et al., 2024). The degradation of LDs in plants is also a tightly

regulated process, mainly mediated by lipolysis and lipophagy.

Among the key players in lipolysis, a conserved patatin domain

containing protein SUGAR-DEPENDENT1 (SDP1) stands out

(Eastmond, 2006; Huang et al., 2022). In A. thaliana leaves,

lipophagy occurs through microautophagy, relying on the core

components of the macroautophagy pathway (Fan et al., 2019a).

The role of LDs in carbon reserve storage is fundamental to the

survival and growth of plants. However, over the past decade, a

paradigm shift has occurred in the perception of LDs in plant

biology. Except acting as static storage organelles, LDs are now

recognized as dynamic subcellular structures actively involved in

multiple physiological processes. Mounting evidence has shown

that LDs play a crucial role in stress adaptation. Under abiotic stress

conditions such as drought, cold, and heat stress, the abundance of

LDs increases in plant cells (Yang et al., 2011; Kong et al., 2013; Kim

et al., 2016; Yang et al., 2024). This new understanding has

highlighted the importance of lipid metabolism, lipid transport,

and stress responses in plants.

Given the significance of LDs in plant physiology, this review

aims to provide a comprehensive overview of the latest research

advancements in the biogenesis and degradation of LDs in plants. It

will also explore the importance of LDs in the stress response of

plants. By integrating findings from recent studies, we hope to shed

light on the complex molecular and physiological processes

associated with LDs in plants, which may have implications for

crop improvement, bioenergy production, and understanding plant

responses to environmental changes.
2 The proteins involved in the
generation of lipid droplets

LD biogenesis in plant cells shares conserved mechanisms with

other eukaryotes, relying on ER-localized protein machinery to

initiate LD formation and on LD surface proteins to ensure proper

cytoplasmic packaging. The process begins with the synthesis of

neutral lipids within the ER, where they accumulate into lens-like

structures between the ER membrane leaflets (Scholz et al., 2022).

Key proteins, such as SEIPIN and VAP27, facilitate the budding of

nascent LDs into the cytoplasm (Guzha et al., 2023). During this step,

the phospholipid monolayer of the LD becomes continuous with the
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outer ER membrane leaflet. Subsequently, additional proteins,

including lipins and LD coat proteins, are recruited to promote LD

growth. However, the mechanism underlying LD dissociation from

the ER remains poorly understood (Bouchnak et al., 2023).
2.1 Enzymes for neutral lipids synthesis

In plants, the ER serves as the principal site for TAG

biosynthesis, which is mainly accomplished through the glycerol-

3-phosphate (G3P) pathway or the Kennedy pathway (Xu and

Shanklin, 2016). Firstly, glycerol-3-phosphate acyltransferase

(GPAT) catalyzes the combination of G3P and Acyl-CoA,

resulting in the formation of lysophosphatidic acid (LPA).

Subsequently, under the catalytic action of lysophosphatidic acid

phosphatase (LDPAT), LPA combines with Acyl-CoA once more to

produce phosphatidic acid (PA). Phosphatidic acid phosphatase

(PAP) then dephosphorylates PA to generate diacylglycerol (DAG).

Finally, DAG undergoes final acylation to form TAG through two

distinct mechanisms. The Acyl-CoA-dependent pathway, catalyzed

by diacylglycerol acyltransferases (DGATs), utilizes Acyl-CoA as

the acyl donor (Walther and Farese, 2012). Alternatively,

phospholipid: diacylglycerol acyltransferase (PDAT) drives an

Acyl-CoA-independent route by transferring an acyl moiety from

phosphatidylcholines (PC) to DAG, producing TAG alongside a

lysophospholipid (Bates et al., 2013). Thereafter, TAGs are

subsequently stored between the two leaflets of the ER. As TAG

accumulates and LDs enlarge, they separate from the ER membrane

and enter the cytoplasm (Figure 1, Table 1).

Plants possess multiple DGAT isoform, including the ER-

localized DGAT1 and DGAT2, as well as a soluble DGAT3 whose

physiological role remains under investigation (Qin et al., 2023). In

A. thaliana, PDAT contains two homologs, and PDAT1 is the

dominant isoform in TAG biosynthesis (Fan et al., 2019b). Distinct

expression patterns and functional specializations among TAG-

synthesizing enzymes enable plants to adjust lipid metabolism

according to developmental and environmental cues. In different

plant species, such as A. thaliana, Camelina sativa and soybean,

DGAT1 is the most highly expressed TAG biosynthetic enzyme

(Hatanaka et al., 2022). Loss of AtDGAT1 activity in the A. thaliana

dgat1–1 mutant leads to a reduction in seed oil content by at least

20% (Katavic et al., 1995; Regmi et al., 2020), while the dgat1–1

dgat2 double mutant does not display more oil reduction than

dgat1–1 mutant (Zhang et al., 2009). As for PDAT genes, either oil

content or FA composition is affected by the Atpdat1mutation. The

AtDGAT1 mutation causes the up-regulated expression of

AtPDAT1, and the dgat1–1 pdat1–1 double mutant is lethal,

indicating DGAT1 and PDAT1 have overlapping functions in A.

thaliana TAG biosynthesis. The suppression of AtPDAT1

expression by RNAi interference in the dgat1–1 genetic

background reduces oil accumulation by 70% to 80%, suggesting

that PDAT1 rather than DGAT2 supports TAG biosynthesis when

DGAT1 is lacking (Zhang et al., 2009). Furthermore, the detailed

role of DGAT2, DGAT3 and PDAT2 in seed oil biosynthesis is

unclear (Regmi et al., 2020).
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In addition to TAGs, other forms of nonpolar lipids may also be

present in LDs of some specific plant species. Wax esters (WEs),

which are neutral lipids composed of a fatty alcohol esterified to a

fatty acid. The WEs are synthesized through two enzymatic

reactions catalyzed by fatty Acyl-CoA reductase and wax

synthase. In jojoba (Simmondsia chinensis), a small shrub native

to the deserts of North America, WEs can accumulate up to 60% of

the seed weight (Sturtevant et al., 2020). Some algae, mosses, and

pollen grains may also accumulate wax esters in LDs, though

typically in smaller amounts (Guzha et al., 2023).
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2.2 Lipid droplet proteins

Following their synthesis, neutral lipids — primarily TAGs —

begin to accumulate between the leaflets of the ERmembrane, forming

small lens-like structures. These nascent lipid globules gradually

expand through localized lipid synthesis and incorporation of

additional neutral lipids. As these globules undergo expansion, they

undergo a process of budding towards the cytosol, eventually

maturing into discrete LDs (Figure 1, Table 1). This process of

budding and stabilization is contingent on the recruitment of LD
FIGURE 1

The biosynthesis and metabolism of plant lipid droplets (Park et al., 2013; Choi et al., 2022; Huang et al., 2022; Guzha et al., 2023). Plastids supply
FAs that are transported to the cytosol and activated into Acyl-CoA. In the endoplasmic reticulum, G3P is acylated to form LPA using Acyl-CoA. LPA
is further acylated by LPAT to produce PA. PAP dephosphorylates PA to DAG, which can be acylated by DGAT to form TAG. DAG can also exchange
with PC, which are generated through an acyl editing cycle involving reacylation and acylation. LDs store TAG and are covered by a single layer of
phospholipids and LD-associated proteins. The budding of LDs from the ER is regulated by the SEIPIN protein complex (including SEIPIN1, SEIPIN2,
and SEIPIN3), which acts as an ER-localized scaffold protein to ensure proper LD formation by controlling neutral lipid synthesis and droplet size.
Additionally, VAP27–1 functions as an ER-LD contact site protein, mediating phospholipid transfer to promote LD maturation and stabilize the LD
formation complex. As LDs mature, they recruit proteins such as LDAP and LDIP, OLEOSIN, CALEOSIN, and STEROLEOSIN, which contribute to LD
structure, stability, and function. During lipolysis, the ESCRT component FREE1 directly interacts with both PEX11e and SDP1, thereby regulating
SDP1-mediated LD degradation and promoting FAs release. And these FAs are transported into peroxisome by PXA1 for b-oxidation. In contrast,
lipophagy involves the selective autophagy of LDs, delivering them to vacuoles for breakdown. FAs, fatty acids; G3P, glycerol-3-phosphate; LPA,
lysophosphatidic acid; LPAT, lysophosphatidic acid acyltransferase; PA, phosphatidic acid; PAP, Phosphatidic acid phosphatase; DAG, diacylglycerol;
DGAT, acylated by diacylglycerol acyltransferase; PC, phosphatidylcholines; LDs, lipid droplets; TAG, triacylglycerol; ER, endoplasmic reticulum;
VAP27-1, VESICLE-ASSOCIATED MEMBRANE PROTEIN-ASSOCIATED PROTEIN 27-1; LDAP, LIPID DROPLET-ASSOCIATED PROTEIN; LDIP, LDAP-
INTERACTING PROTEIN; ESCRT, ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT; FREE1, FYVE DOMAIN PROTEIN REQUIRED FOR
ENDOSOMAL SORTING 1; PEX11e, PEROXIN 11e; SDP1, SUGAR DEPENDENT 1; PXA1, PEROXISOMAL ABC TRANSPORTER 1.
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TABLE 1 Functionally characterized genes involved in LD turnover in plants.

Pathway Gene types Species Gene names Growth and Stress-response-
related functions

References
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TABLE 1 Continued
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proteins. LD proteins are classified into two groups based on the

pathways that they employ to traffic to LDs: class I LD proteins and

class II LD proteins. Class I LD proteins are composed of proteins that

are co-translationally inserted into the cytoplasmic face of the ER

bilayer; in contrast, class II LD proteins target the LD from the

cytoplasm (Mathiowetz and Olzmann, 2024).
2.2.1 OLEOSIN, CALEOSIN and STEREOLESIN
The presence of OLEOSIN proteins on the phospholipid layer

of LDs plays a crucial role in LD formation and its functional

regulations (Anaokar et al., 2024). The prevailing LD proteins

identified in the seeds of plants are OLEOSIN, CALEOSIN, and

STEREOLESIN (Guzha et al., 2023). In A. thaliana, there are a total

of 16 OLEOSIN genes, which include five seed-type OLEOSIN

genes. Among these, OLE1 is the most abundant OLEOSIN in A.

thaliana seeds, followed by OLE2. OLEOSINs play a crucial role in

preventing oil body fusion, thus maintaining the structural integrity

of oil bodies. The OLEOSIN content is critical for oil body size

regulation; a reduction in OLEOSIN content leads to an increase in

oil body diameter due to the steric hindrance of OLEOSINs on the

oil body surface inhibiting oil body fusion. Seeds of OLEOSIN single

mutants (ole1 and ole2) contain larger oil bodies than those of the

wild type, and seeds of an OLEOSIN double mutant (ole1 ole2)

contain even larger oil bodies than those of ole1 and ole2 single

mutants. This suggests that OLEOSINs are essential for normal

germination and enhance plant survival during winter by inhibiting

freezing stress-induced oil body fusion (Siloto et al., 2006). Recent

studies have identified a low-abundance, seed-specific LD protein

termed LIPID DROPLET PROTEIN OF SEEDS (LDPS), which

contains an amphipathic a-helix and a proline hairpin motif that

serve as LD targeting signals. A distinct domain of LDPS mediates

its interaction with OLE1. ldps mutant shows smaller LDs,

reduction in seed oil content, and complete absence of LD fusion

during post-germinative growth. Genetic analyses using ole1 and

ldps single mutants, double mutants, along with freeze-thaw

experiments, demonstrated that OLE1 negatively regulates the

LDPS-mediated promotion of LD expansion (Doner et al., 2025).

In comparison to OLEOSIN protein, CALEOSIN, which

comprises three distinct domains, including N-terminal

hydrophilic domains, C-terminal hydrophilic domains, and a

central hydrophobic anchor domain, with the N-terminal domain

containing a calcium-binding motif, exhibits a lower abundance

(Shen et al., 2014; Liu et al., 2022). Moreover, from an evolutionary

perspective, CALEOSIN protein exhibits homologous sequences in

algae, fungi, and non-vascular plants, while such homology is not

observed for OLEOSIN (Shen et al., 2014). The A. thaliana genome

contains eight CALEOSIN genes divided into two groups: high-Mw

CALEOSIN (CLO1, CLO2, CLO3 and CLO8) and low-Mw

CALEOSIN (CLO4-LOL7) (Liu et al., 2022; Miklaszewska et al.,

2023). Several studies have indicated that CALEOSIN proteins have

overlapping functions in oil accumulation (Shen et al., 2014; Liu

et al., 2022; Miklaszewska et al., 2023). The STEREOLESIN-related

proteins participate in intracellular signaling during plant growth

and development by being involved in the phytohormone pathways,

e.g. brassinosteroids-related pathways (Shao et al., 2019).
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2.2.2 Endoplasmic reticulum machinery: SEIPIN,
LDIP, and VAP27

The SEIPIN complex, named after Berardinelli-Seip congenital

lipodystrophy (BSCL), associates with these lipid lenses and directs the

budding of nascent LDs into the cytoplasm. Most plants have multiple

SEIPIN genes, in A. thaliana, three SEIPIN genes encode proteins with

conserved structural features, predicted to form barrel-like complexes

at the ER-LD junction (Arlt et al., 2022). Notably, AtSEIPIN2 and

AtSEIPIN3 have longer N termini, with AtSEIPIN3 promoting the

proliferation of very small LDs in leaves (Cai et al., 2015). The FFAT

motifs present at the N termini of both SEIPIN2 and SEIPIN3 have

been shown to interact with VAPs (Slee and Levine, 2019). VAPs,

which are conserved across kingdoms, have been identified as the

structural elements that facilitate contact sites between organelle

membranes. The LD-forming complex has been demonstrated to be

stabilized by VAP27–1 through a direct interaction with the N

terminus of SEIPIN2 and/or SEIPIN3, a process that is deemed to

be essential for LD biogenesis (Greer et al., 2020). In planta, loss of

VAP27–1 results in the formation of large LDs in seeds, a phenotype

similar to that observed in seipin2 seipin3 double mutants (Taurino

et al., 2018). In addition, AtSEIPIN2 and AtSEIPIN3 are crucial for the

modulation of the number and size of LDs by interacting with LDIP,

facilitating LD biogenesis (Pyc et al., 2021).
3 Lipid droplet degradation through
lipolysis by cytosolic lipases

In yeast, Drosophila, plants, and humans, stored TAGs are

typically degraded by lipases, a conserved protein family with a

patatin domain (Xu and Shanklin, 2016). As mentioned previously,

lipolysis refers to the process of TAG degradation in LDs mediated

by lipases, whereas lipophagy denotes an autophagic mechanism for

LD degradation. The stored lipids are hydrolyzed by these lipases,

leading to the breakdown of TAGs into components such as

diacylglycerols (DAGs), monoacylglycerols (MAGs), fatty acids

(FAs), and glycerol. Subsequent to this process, the hydrolytic

byproducts enter diverse metabolic pathways, thereby playing

pivotal roles in cellular growth, energy balance, and other

physiological processes, occurring at the opportune moment

(Kretzschmar et al., 2020). SDP1, the patatin-like acyl-hydrolase

domain protein encoding gene, was discovered using forward

genetic screening in A. thaliana (Figure 1) (Eastmond, 2006).

Subsequent evidence suggests that this protein also serves as a

primary enzyme for TAG hydrolysis in the leaves and roots of

mature plants (Kelly et al., 2013a; Fan et al., 2014). During the early

stages of seed germination in A. thaliana, SDP1 initially localizes to

the surface of peroxisomes in an inactive form and subsequently

extends to the surface of LDs within peroxisomes to hydrolyze

TAGs (Thazar-Poulot et al., 2015). Further investigations have

revealed that FYVE DOMAIN PROTEIN REQUIRED FOR

ENDOSOMAL SORTING 1 (FREE1), within the ENDOSOMAL

SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT),

directly interacts with both PEROXIN 11e (PEX11e) and SDP1,

thereby facilitating the transport of SDP1 from peroxisomes to LDs
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(Huang et al., 2022). In addition to SDP1, A. thaliana possesses

other patatin domain-containing lipases, such as SDP1-LIKE

(SDP1L), which exhibit lipase activity and can release FAs from

TAGs (Kelly et al., 2011, 2013a). Both SDP1 and SDP1L proteins are

involved in the hydrolysis of TAGs during seed germination and

also vegetative growth (Kelly et al., 2013a; Huang et al., 2022). In

addition, the AtOBL1 gene in A. thaliana encodes for an enzyme

known as OIL BODY LIPASE 1, which is associated with LDs.

AtOBL1 represents the only described TAG lipase from A. thaliana

that is associated with LDs, as SDP1 is regarded as a peroxisome-

associated protein (Müller and Ischebeck, 2018).

Besides, biochemical analysis indicates that SDP1 and SDP1L

preferentially hydrolyze TAGs over DAGs and monoacylglycerols

(MAGs). The purification of oil body membranes from sdp1 sdp1L

double mutant seedlings revealed a deficiency in TAG lipase

activity. However, the hydrolysis of DAGs and MAGs was still

observed, indicating the presence of other lipid enzymes that

function in synergy with patatin-like acyl-hydrolases to complete

the hydrolysis of TAG (Eastmond, 2006; Kelly et al., 2011, 2013a).

Following the liberation of FAs into the cytoplasm by SDP1,

these FAs are converted into CoA esters through the action of

currently unidentified Acyl-CoA synthetases (Li et al., 2016). The

subsequent translocation of FAs across the peroxisomal membrane

is facilitated by PXA1, an ABCD transporter belonging to the ATP-

binding cassette (ABC) transporter family. Notably, PXA1 exhibits

a unique intrinsic Acyl-CoA thioesterase activity (De Marcos Lousa

et al., 2013). This distinctive property enables PXA1 to first bind

fatty Acyl-CoAs on the cytosolic face of the peroxisomal membrane,

then cleave the CoA moiety, and ultimately mediate the import of

free FAs into the peroxisomal matrix for b-oxidation - a metabolic

process that yields Acetyl-CoA as the end product (Kunz et al.,

2009; Li et al., 2016; Fan et al., 2017). In the case of impaired b-
oxidation function, pxa1 mutants exhibit delayed germination and

reduced germination rate due to insufficient ATP supply required

for the germination process. However, this defect can be alleviated

by supplementing external carbon sources (Kunz et al., 2009). In

addition, compared to the wild type, pxa1 mutant shows increased

sensitivity to dark conditions and exhibits early plant death due to

the compromised b-oxidation (Fan et al., 2017).

In addition, COMPARATIVE GENE IDENTIFICATION-58

(CGI-58) protein positively regulates lipid metabolism through b-
oxidation-related pathway. Chapman et al. identified the homologous

gene of human CGI58 in A. thaliana, referred to as CGI58-like

(Yamaguchi and Osumi, 2009; James et al., 2010). In the A. thaliana

mutant of this gene, plant leaves display a significantly increased TAG

content of over tenfold compared to the wild type. However, unlike the

sdp1 mutants, germination and growth of cgi-58mutants do not show

obvious defects (Yamaguchi and Osumi, 2009). Subsequent studies by

Park et al. demonstrated that CGI-58 interacts with PXA1 to coregulate

lipid homeostasis and signaling in A. thaliana (Park et al., 2013).

In the context of seedling establishment, the rapid breakdown of

TAGs in planta, predominantly within four days, is particularly

noteworthy. This phenomenon is further compounded by the

accelerated degradation of LD-associated proteins, which may

contribute to the enlargement of LDs during this critical phase.
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Studies have demonstrated that several LD proteins, including

oleosins and steroleosins, have been observed to undergo

polyubiquitination, a process associated with protein degradation

(Deruyffelaere et al., 2018). This pathway, which is dependent on

the removal of proteins from membranes, involves the action of the

ubiquitin-proteasome system. Intriguingly, the analysis highlights

the potential role of CELL DIVISION CYCLE PROTEIN 48

(CDC48) unfoldases, conserved in eukaryotes, in facilitating the

unfolding and removal of membrane proteins. In planta, CDC48

has been observed to collaborate with PUX10, a scaffold protein

residing at the LDs, to facilitate the degradation of ubiquitinated

proteins (Kretzschmar et al., 2018; Liu et al., 2024). pux10 mutants

exhibit a reduced rate of LD protein degradation and an

accumulation of ubiquitinated proteins (Deruyffelaere et al.,

2018). However, to date, no known degradation mechanism has

been identified for LD membrane lipids.
4 Autophagic degradation of lipid
droplets

Lipophagy, a selective autophagic process, first described in

mammals, is a process that involves the selective uptake of LDs

into the vacuole or lysosome, followed by their degradation (Figure 1,

Table 1). Notably, mammalian lipophagy is a form of

macroautophagy, in which autophagosomes engulf LDs,

distinguishing it from microlipophagy observed in yeast.

Autophagy, a self-degradative and highly conserved process, plays a

crucial role in various developmental processes within cellular

organisms (Zhao et al., 2020). Autophagy primarily functions

through vacuolar degradation and recycling of harmful or obsolete

cellular components, thereby maintaining cellular homeostasis and

facilitating adaptation to environmental changes (Avin-Wittenberg

et al., 2012; Couso et al., 2018; Sun et al., 2018; Bao et al., 2020). The

identification of AUTOPHAGY-RELATED (ATG) genes in

Saccharomyces cerevisiae revolutionized our understanding of

autophagy, revealing a highly conserved eukaryotic mechanism

(Marshall and Vierstra, 2018). Subsequent studies identified

homologous ATG genes in plants, including A. thaliana, Oryza

sativa, and Zea mays, through sequence alignment analyses (Li

et al., 2015). These studies uncovered over 40 evolutionarily

conserved ATG proteins that orchestrate autophagosome

biogenesis and autophagy regulation across kingdoms, from yeast

to mammals and plants (Marshall and Vierstra, 2018).

InA. thaliana, two independent studies, Fan et al. and Havé et al.,

reached the same conclusion through different approaches, thereby

demonstrating the involvement of autophagy in the degradation of

lipids (Fan et al., 2019a; Havé et al., 2019). Their findings suggest that,

in A. thaliana leaves, basal autophagy contributes to TAG synthesis,

whereas inducible autophagy under starvation contributes to LD

degradation (Fan et al., 2019a). Besides, direct evidence through

ultrastructural analysis has demonstrated that LDs are degraded in

autophagic vacuoles (Fan et al., 2019a). In the parallel study, Havé

et al. utilized protein and lipid profiling analyses on atg5 mutant,

demonstrating that autophagy plays a pivotal role in the lipid
Frontiers in Plant Science 10
metabolism of the ER and peroxisome in A. thaliana leaves (Fan

et al., 2019a; Havé et al., 2019). Fan et al. investigated the role of

autophagy in lipid metabolism by using mutants with auto (Havé

et al., 2019). In addition to its role in A. thaliana, autophagy has been

observed to contribute to the degradation of LD in other plant

species. In rice, investigating osatg7 mutants has demonstrated

autophagy’s crucial role during the late stages of pollen meiosis. As

LDs are critical for energy supply, osatg7 mutants exhibit reduced

levels of autophagy, and such deficiency leads to impaired pollen

maturation (Kurusu et al., 2014).
5 Lipid droplets are involved in abiotic
and biotic stress responses

5.1 Abiotic stress

It is imperative to acknowledge that plants are subject to

numerous stressors throughout their life cycle, which necessitates

the orchestration of adaptive responses to these environmental cues

by all cellular organelles. Among these organelles, cytosolic LDs and

their core set of neutral lipids and associated surface proteins play a

significant yet understudied role. It has been demonstrated that

environmental changes have a substantial influence on LD-related

processes. For example, the abundance of LDs in A. thaliana leaves

increases under drought, cold, or heat stress (Yang et al., 2011; Kong

et al., 2013; Kim et al., 2016; Yang et al., 2024).

A close relationship exists between stress and TAG accumulation

in plant tissues, especially the vegetative tissues (Lee et al., 2019). For

instance, low-nitrogen stress and the stress hormone abscisic acid

(ABA) have been observed to stimulate TAG accumulation in A.

thaliana seedlings (Yang et al., 2011; Kong et al., 2013; Coulon et al.,

2024). During periods of heat stress, cells undergo a process of

unsaturated acyl chain replacement with saturated ones, a process

that may lead to an increase in membrane fluidity (Mueller et al.,

2017; Yang et al., 2024). This phenomenon suggests that LDs may

absorb discarded unsaturated acyl chains from membrane lipids,

resulting in the formation of triacylglycerols, thereby facilitating

membrane remodeling (Yang et al., 2011; Scholz et al., 2025).

Transgenic plants overexpressing LIPID DROPLET-ASSOCIATED

PROTEINS (LDAPs) exhibit enhanced drought tolerance, suggesting

a close relationship between stress and TAG accumulation in

vegetative tissues (Zhao et al., 2023).

It has been determined that ABA signaling plays a pivotal role

in the regulation of LD generation, particularly with regard to the

expression of DGAT1. Tobacco transient assays have revealed a

synergistic effect of ABA-insensitive 4 (ABI4) and ABI5, two

important ABA-related transcription factors, in regulating

DGAT1 expression under stress (Yang et al., 2011; Kong et al.,

2013). Furthermore, a comprehensive transcriptome analysis has

revealed that LIPID DROPLET PROTEIN (LDP) genes, including

OLEOSINs and CALEOSINs, exhibited up-regulation of up to 1000-

fold through the activation of ABI3. This provides compelling

genetic evidence that ABI3 activates oil accumulation, most likely

through up-regulating LDPs (Yang et al., 2022).
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5.2 Biotic stress

Furthermore, LDs have been observed as targets by invasive

organisms. Phytophthora infestans degrade LDs as energy source in

guard cells to maintain stomatal opening (Yang et al., 2021). Plant

RNA viruses induce endomembrane proliferation for viral

replication compartments (VRCs) formation, and the host lipid

metabolism is crucial for their replication. However, to date, direct

links between LDs and plant virus infection have not been firmly

established, and the extent of their involvement in plant defense or

viral benefit remains to be elucidated (Zhang et al., 2019). In

addition, during infections by pathogens such as Botrytis cinerea

or Pseudomonas syringae, the leaves of plants exhibit an increased

accumulation of TAGs (Sham et al., 2014; Galluzzi and Green,

2019). Besides, LDs have been proposed to function as “subcellular

factories” for the production of antimicrobial compounds. For

instance, two key lipid-modifying enzymes - peroxygenase

(CLO3) and a-DIOXYGENASE (a-DOX) - coordinately catalyze

a coupling reaction that converts a-linolenic acid into the

antifungal compound 2-hydroxy-octadecanoic acid during

defense responses against Colletotrichum higginsianum infection

(Fernández-Santos et al., 2020). LDAP1, CLO3, and a-DOX1 are

upregulated in leaves infected by Botrytis cinerea, suggesting that

LD biosynthesis is induced either by the fungi or as a plant defense

mechanism. The fatty acid composition of TAGs varies depending

on the infecting pathogen, indicating the presence of distinct

synthesis pathways. The hijacking of LDs by pathogens or their

utilization by plants for defense mechanisms bears resemblance to

the processes observed in animal cells (Roingeard and Melo, 2017).

Meanwhile, PHYTOALEXIN DEFICIENT 3 (PAD3), a cytochrome

P450 monooxygenase known to be involved in the biosynthesis of

antimicrobial phytoalexins, has been observed to translocate to LDs

following infection by Pseudomonas syringae (Fernández-Santos

et al., 2020). This dynamic relocation of defense-related enzymes to

LDs highlights the organelle’s emerging role as a critical platform

for organizing plant immune responses.
6 Conclusions and prospects

This review offers a detailed examination of the processes

involved in the formation and breakdown of LDs in plants,

emphasizing crucial enzymes, regulatory pathways, and

physiological contexts. A more profound understanding of the

regulatory mechanisms governing LD-associated pathways holds

considerable potential for enhancing crop yield and promoting

bioenergy production. Manipulating the genes and proteins

involved in LD biogenesis and turnover may lead to the

development of crops with higher oil yields and improved

stress resilience.

Many studies have demonstrated that LDs play a crucial role in

cellular lipid homeostasis. While much attention has been paid to

how LD size and number are determined in plants (Doner et al.,

2025), the regulation of lipolysis and lipophagy-mediated lipid

turnover, particularly during nutrient deprivation when plants
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rely on lipid catabolism for energy production, remains poorly

understood. In mammals, the process of lipolysis is subject to

stringent regulation, with the rate-limiting enzyme Adipose

Triglyceride Lipase (ATGL) being subject to enhancement of up

to 20-fold through its interaction with the activator CGI-58

(ABHD5) (Mathiowetz and Olzmann, 2024). Concurrently, PLIN

proteins function as a regulatory mechanism, sequestering CGI-58

and thereby impeding ATGL activity (Mathiowetz and Olzmann,

2024). In contrast, plants employ SDP1 as their functional ATGL

homolog, but lack both PLIN proteins and CGI-58-mediated

activation of SDP1, despite the presence of a CGI-58 homolog

that instead regulates PXA1 (Park et al., 2013). The current

understanding of plant lipolysis regulation remains incomplete,

particularly regarding whether energy-sensing pathways modulate

SDP1 activity. The energy-sensing central regulators include the

low-energy sensor SnRK1, the high-energy sensor TOR kinase and

the sucrose-signaling metabolite T6P. These components form an

intricate regulatory network where SnRK1 promotes lipolysis

during energy deficit while TOR suppresses it under energy-

replete conditions, with T6P fine-tuning this balance by inhibiting

SnRK1 (Figueroa and Lunn, 2016; Liu and Xiong, 2022; Van Leene

et al., 2022). Critical areas for future investigation include

investigating the possible direct phosphorylation of SDP1 by

SnRK1/TOR kinases, characterizing the functional relationship

between the energy sensing module and SDP1 during lipid

mobilization, and identifying potential novel components that

facilitate communication between SDP1 and energy-sensing

pathways. Resolution of these questions will significantly advance

our understanding of the molecular mechanisms controlling LD

degradation and overall plant lipid homeostasis.

Current research indicates that plants may dynamically regulate

the functions of LD-associated proteins through post-translational

modifications (PTMs) in response to environmental stresses.

Despite extensive characterization of LD protein PTMs in animal

systems (Zhang et al., 2022; Loix et al., 2024), their functional

validation and molecular mechanisms remain largely unexplored in

plants. Ubiquitination may regulate LD protein turnover through

either proteasomal degradation or selective autophagy (e.g.,

lipophagy), maintaining cellular homeostasis under stress

conditions. Furthermore, oxidative modifications and

SUMOylation likely participate in mediating LD-organelle

interactions (e.g., with peroxisomes), affecting membrane

remodeling and ROS scavenging. Future investigations should

integrate subcellular proteomics, PTM site-directed mutagenesis,

and super-resolution imaging to systematically decipher stress-

specific PTM dynamics on LD proteins and their physiological

relevance. Such advances would not only elucidate the regulatory

mechanisms of plant lipid metabolism under stress but may also

provide novel strategies for improving crop stress tolerance.

LDs serve as critical organelles in stress response mechanisms.

Numerous abiotic stressors have been shown to induce LD

biogenesis (Zhao et al., 2023; Coulon et al., 2024). During

senescence or stress conditions, TAG accumulation is closely

linked to lipid catabolic processes. However, several key aspects

remain poorly understood: the functional significance of fatty acids
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derived from membrane lipids like Monogalactosyldiacylglycerol

(MGDG) (Fan et al., 2017); the specific roles of various lipases in

stress adaptation; and the degradation mechanisms of stress-

induced LDs during post-stress recovery. While LD degradation

during seed germination has been well characterized (Kelly et al.,

2011), the catabolic pathways of stress-induced LDs and their

contributions to cellular homeostasis restoration remain elusive.

Particularly, the relative importance of lipolysis versus lipophagy in

TAG remobilization, the metabolic fates of neutral lipids, and the

subsequent utilization of released fatty acids all require systematic

investigation (Coulon et al., 2024). Elucidating these processes will

not only advance our understanding of plant stress responses but

also provide a theoretical framework for developing stress-resistant

crops through LD manipulation.

Research has shown that the proteome of LDs in plants

undergoes extensive dynamic remodeling under diverse stress

conditions (Krawczyk et al., 2022). This is evidenced by the

specific upregulation of stress-responsive LD-associated proteins,

such as CLO3 and a-DOX1, in both wild-type plants and the tgd1–1
sdp1–4 mutant (Shimada et al., 2014). Notably, different stresses

exhibit distinct regulatory effects on LD proteins: CLO3 responds to

both heat stress and pathogen infection, whereas a-DOX1 is

selectively activated only under pathogen infection and drought

stress conditions (Scholz et al., 2025). These findings suggest that

plants have evolved a stress-specific LD reprogramming

mechanism, fine-tuning protein expression to adapt to different

environmental threats. However, the molecular mechanisms

governing LD remodeling under various stress conditions remain

poorly understood and warrant further investigation.
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