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Tomato is a vital crop within agricultural production systems and ranks among
the most in-demand vegetables on the market, but tomato production faces
significant challenges due to long-term cultivation practices, including soil
successive cropping obstacles, nutrient imbalances, reduced microbial
diversity, and the accumulation of allelopathic substances. Previous studies
show that tomatoes exhibit substantial differences in yield and quality between
integrated and conventional systems, primarily attributed to its high nutrient
demands. This review synthesizes the most relevant scientific literature
worldwide to examine the current state of knowledge regarding crop nutrition
and soil fertility management in tomato production systems. It systematically
analyzes the impacts of nutrient solutions, green manures, soil amendments, and
biostimulants on both tomato yield and quality. The main findings indicate that
conventional management methods lead to constrained tomato yields due to
degraded soil fertility and inadequate nutrient supply. Therefore, integrated soil-
tomato system strategies are required to enhance productivity and meet
consumer demands. Additionally, this review uniquely integrates
multidisciplinary approaches to highlight synergistic strategies for optimizing
both yield and quality. We identify a critical gap in long-term comparative studies
on soil-tomato system management and emphasize the need for consumer-
oriented quality metrics in future research. By synthesizing global evidences, this
work provides a comprehensive framework for sustainable tomato production
beyond conventional nutrient-focused practices.

KEYWORDS

tomato, soil fertility, nutrient management, integrated systems, yield and quality

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1626136&domain=pdf&date_stamp=2025-09-24
mailto:wangcan_1983@catas.cn
mailto:sywxx@hebau.edu.cn
https://doi.org/10.3389/fpls.2025.1626136
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1626136
https://www.frontiersin.org/journals/plant-science

Li et al.

1 Introduction

Tomato (Solanum lycopersicum L.) is an extensively cultivated
vegetable to meet the dietary needs of populations worldwide, as its
enriched with vitamin C, antioxidants, and lycopene. In the context
of ongoing advancements in economic conditions and living
standards, it is essential to prioritize the exploration of taste and
nutritional qualities alongside agricultural yield, particularly in
crops such as tomatoes (Perveen et al., 2015; Kumar et al.,, 2022).
Breeders and researchers are dedicated to developing tomato
varieties that exhibit superior flavor and quality, with the goal of
meeting market demands and enhancing the overall economic
efficiency of the tomato industry (Klee, 2010; D’Amico et al., 2024).

Soil nutrient dynamics play a pivotal role in tomato
productivity and fruit quality (Masih et al., 2020; Sharma et al,
2023). Soil fertility management is vital for a optimized nutrient
level and plant development such as optimal pH, electrical
conductivity (EC), and nitrogen levels showed positive effects on
plant height, length, and width in tomatoes (Putranta et al., 2019).
However, conventional intensive farming, particularly in
greenhouse systems, often relies on excessive synthetic fertilizers,
leading to soil acidification, nutrient imbalances, and secondary
salinization (Liu et al., 2021). These issues not only hinder plant
growth but also threaten the sustainability of agricultural systems.
Organic fertilizers enhance soil quality, stability, and microbial
diversity by altering soil microbial composition (Zhou et al,
2024). Excessive or improper use can promote surface water
eutrophication and chemical or biological pollution, ultimately
reducing soil fertility and adversely impacting vegetable yield and
quality over time. Therefore, the judicious application of organic
fertilizers and biostimulants is crucial for improving soil health and
promoting the sustainable development of facility agriculture (Thi
Kieu Oanh et al., 2023; Jana et al., 2024).
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Recent advances in soil fertility research underscore the potential
of integrated nutrient management (INM) to reconcile yield and
quality objectives in tomato production, with bibliometric analysis
indicating a threefold increase in relevant studies since 2000
(Figure 1). However, unregulated organic inputs may contribute to
nutrient leaching and eutrophication, necessitating precision
management strategies. Despite this growing research focus, critical
knowledge gaps remain concerning the trade-offs between short-term
productivity and long-term soil health, the complex interactions
between organic amendments and microbial consortia, and the
practical scalability of precision nutrient delivery systems for
smallholder farmers. These findings are particularly relevant for
transitioning from conventional to integrated production systems,
where the synergy between nutrient management and soil health can
lead to more resilient and economically viable tomato cultivation.
This review therefore synthesizes the latest of research to evaluate the
efficacy of various soil fertility management strategies including
optimized fertilization, biostimulants, and soil amendments in
enhancing both tomato yield and quality, while critically assessing
their impacts on fruit physicochemical properties, nutritional profiles,
and economic viability to identify key priorities for
sustainable intensification.

2 Effects of nutrient solution on
tomato production

2.1 The effects of nutrient solution
application on soil-grown tomatoes

Optimized nutrient solutions (ONS) markedly enhance
fertilizer efficiency and tomato fruit quality (Figure 2). Studies
show that adjusting EC and organic components (e.g., ONS) can
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FIGURE 1

Annual counts of journal articles indexed in the Web of Science database from 2000 to 2024 containing the keywords “tomato yield,” "tomato

quality,” and "tomato stress resistance.
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A systematic outline of nutrient solution utilization into plant and its effects on the yield, growth, defense, physiological and chemical mechanism in

tomato plants.

increase total soluble solids (T'SS) by 0.7%, soluble sugars by 23.3%,
and organic acids by 33.4%, directly improving flavor and
marketability (Ma et al, 2021; Lu et al, 2022). Additionally,
optimal drainage rates with elevated EC promote sugar and
aromatic compound accumulation (Ou et al,, 2023).
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However, imbalanced or excessive nutrient solutions may
counter these benefits. High nitrogen/potassium concentrations
can cause leaf chlorosis, fruit cracking, and yield loss
(Gholamnejad et al., 2023; Xie et al., 2024), while prolonged over-
application risks soil salinization and root dysfunction (Tarolli
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et al., 2024). Notably, the same EC levels that enhance sugar
accumulation at optimal ranges may induce salt stress if
exceeded, highlighting the need for precise management.

Likewise, the implementation of ONS in commercial
production systems faces multiple challenges. Over reliance on
nutrient solutions often leads to over fertilization especially under
non precision based management (Fathidarehnijeh et al.,, 2024).
This problem is exacerbated in systems without real time
monitoring where imbalances in electrical conductivity or pH
may accumulate resulting in nutrient leaching, soil salinization,
and reduced microbial diversity (Tarolli et al., 2024; Mohmed et al.,
2025). Furthermore economic and technical barriers such as the
high cost of sensor based systems and the need for skilled labour
limit the scalability of ONS in smallholder and resource limited
settings (Awal et al., 2025). These limitations emphasise the
necessity of integrating ONS with other sustainable practices like
organic amendments and biostimulants to enhance system
resilience and reduce environmental impacts.

Therefore, achieving high-quality yields requires a trade-off
between nutrient optimization and salt stress mitigation,
including dynamic adjustments of EC, pH, and drainage rates
based on real-time plant responses (Putranta et al., 2019;
Langenfeld et al., 2022). While nutrient solution optimization
demonstrates significant potential for enhancing tomato quality,
its long-term sustainability remains uncertain. Current research
predominantly focuses on short-term agronomic effects, leaving
critical gaps in our understanding of how continuous nutrient
solution application impacts soil health over extended periods.
Additionally, the economic viability of organic versus inorganic
nutrient solutions in commercial-scale production systems requires
rigorous assessment, particularly in resource-limited settings.
Further complexities arise when considering climatic variability,
as optimal nutrient management strategies must be adapted to
seasonal conditions, such as summer’s high temperatures versus
winter’s reduced light availability to maintain consistent yield and
quality. To address these challenges, future studies should leverage
advanced multi-omics methodologies, including metabolomics and
microbiome analysis, to holistically optimize nutrient formulations.
Such approaches could simultaneously maximize crop performance
while reducing adverse environmental impacts, ensuring a balance
between productivity and ecological stewardship.

2.2 The effects of nutrient solution
application on hydroponically grown
tomatoes

Modern agriculture has widely used hydroponics as an efficient
soilless method for tomato production (Al-Gaadi et al., 2024).
Tomato plants grown hydroponically depend on the formulation
and maintenance of the nutrient solution, which has a direct impact
on yield and quality (Hochmuth and Hochmuth, 2018). An
adequate availability of nutrient solutions is essential to enhance
the plant growth and development at all growth stages to maintain
the of tomatoes, equilibrium between vegetative and reproductive
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stages (Liu et al., 2024). High-quality hydroponic items are
becoming more and more in demand, and buyers are willing to
pay more for hydroponic tomatoes (D’Amico et al., 2024).
However, the economic viability of hydroponic systems remains
questionable for small-scale farmers due to high initial
infrastructure costs and energy demands for lighting and climate
control. The premium prices hydroponic tomatoes command may
not offset these expenses unless production is scaled significantly,
raising concerns about accessibility and equity in
agricultural innovation.

Tomato plants can be successfully grown using hydroponic
tanks with the necessary modifications in a variety of environments,
such as indoors and greenhouses. In comparison to applying the
same fertilizer every two weeks and not replenishing the nutrient
solution, renewing the nutrient solution every two weeks enhanced
the leaf area and fresh weight of tomato plants by 18% and the 28%,
respectively (Solis-Toapanta et al., 2020). The closed hydroponic
system offered significant advantages in terms of water and fertilizer
conservation, allowing nutrient solution consumption by 96% and
fertilizer consumption by 97% without adversely affecting crop yield
provide substantial benefits regarding water conservation and
fertilizers (Fayezizadeh et al., 2021). Desalinated seawater (DSW)
used in hydroponic systems instead of conventional water resources
is most accurate alternative tofacilitating nearly year-round
continuous production and elevated crop yields. Irrigation with
DSW sepreate and along with conventional water sources did not
impact tomato quality (Antolinos et al., 2020). However,
desalination is an energy-intensive process that contributes to
carbon emissions unless powered by renewable energy. Relying
on DSW may simply shift water scarcity challenges from freshwater
sources to energy demands, without addressing the root causes of
resource depletion. A single cherry tomato plant could produce up
to 682 g when grown hydroponically using a deep bed system (DBS)
and irrigated with purified agricultural wastewater. This shows how
agricultural waste can be used and provides a sustainable method of
recycling agricultural wastewater (Afonso et al., 2023). Using DSW
and agricultural wastewater to grow tomatoes hydroponically is a
new way to recycle agriculture that effectively uses marine resources
while reducing need on traditional freshwater sources. While
wastewater recycling is commendable, potential contamination
risks from heavy metals or pathogens must be rigorously
managed. Without strict regulatory oversight, the use of treated
wastewater in hydroponics could introduce food safety hazards,
undermining consumer trust in soilless agriculture. The substantial
upfront investment required for hydroponic systems makes their
economic viability heavily contingent on high-value crops whose
market prices can fully offset costs and generate surplus, thereby
restricting their adoption for lower-margin produce (Souza et al.,
2019). In addation, the nutrient uptake process in hydroponic
systems critically affects crop yield and quality, influenced by
nutrient interactions, availability, and chemical forms in the
growth medium (Valentinuzzi et al,, 2015). While hydroponic
systems demonstrate superior operational cost-efficiency
compared to conventional soil-based agriculture post-
establishment, they present distinct technical limitations. The
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primary challenges include non-uniform nutrient distribution
throughout the solution and heightened vulnerability to
waterborne pathogen proliferation (Suarez-Caceres et al., 2021;
Sangeetha and Periyathambi, 2024). These constraints necessitate
rigorous implementation of advanced crop health surveillance
protocols and precision management strategies by cultivators. The
focus should remain on holistic sustainability rather than isolated
technological fixes.

3 The effects of green manure on
tomatoes

Green manure is a crucial type of organic fertilizer derived from
green plant materials used to improve soil structure, soil fertility,
promotes nutrient availability and increases agricultural
productivity (Wang et al, 2025). This agricultural practice
involves cultivating specific green manure crops, collecting wild
green manure species which are then incorporated into the soil

10.3389/fpls.2025.1626136

through plowing or composting (Behera et al., 2025; Kama et al,,
2025). While studies demonstrate benefits such as enhanced tomato
yield, nutrient uptake, and soil quality, these findings may not be
universally applicable due to contextual factors like soil types,
climate, and management practices.

For instance, incorporating leguminous green manure is helpful
to increase tomato fruit yield by 10%-30% relative to animal
manure alone which directly supports tomato growth (Gatsios
et al,, 2019). However, this advantage varies across agroecological
conditions, and improper incorporation timing or excessive use
may disrupt soil balance or compete with cash crops for resources.
Additionally, green manure significantly increased soil microbial
biomass carbon (MBC) and microbial biomass nitrogen (MBN) by
20.0% and 18.5%, respectively (Behera et al., 2025). Nevertheless,
such improvements may come with trade-offs, such as short-term
nitrogen immobilization or pathogen risks under certain green
manure regimes.

Green manure demonstrates substantial potential in tomato
production systems (Table 1). This agricultural practice enhances

TABLE 1 The benefits of green manure for tomato production in different countries.

Planting/application . .
Green manure crops Country 9/app Main benefits References
pattern
QOats (A tiva L. d Barl ixt
ats (Avena sativa L.) and Barley mixture Enhanced nitrogen availability; Increased
(Hordeum vulgare L.); .
marketable tomato yield; .
Rye (Secale cereale L.); i (Lenzi et al.,
L Ttaly Monoculture Improved nitrogen uptake by tomato;
Brown Mustard (Brassica juncea L.); . 2009)
. I Reduced need for external fertilizers;
Flax (Linum usitatissimum L.); i .
. L. . Tomato quahty maintenance
Pigeon Bean (Vicia faba L. var. minor)
Reduced cash expenditure on fertilizer;
Reduced weed growth;
Jack Bean (Canavalia ensiformis); Monoculture and € ?ce weed gro (Dorward et al.,
Velvet Bean (Mucuna pruriens) Ghana intercroppin; Possible benefit to subsequent crops; 2003)
P pping Lower rates of abortion and flower drop (due .
to lower temperatures)
Reduced nitrate leaching;
Vetch (Vicia villosa Roth.); Ital Monoculture and Enhanced biomass accumulation; (Farneselli et al.,
a
Barley (Hordeum vulgare L.) ¥ intercropping Improved leaf area index (LAI); 2018, 2020)
Higher yield potential
Increased soil nitrogen availability;
Faba bean (Vicia faba L.); . Sustainable nitrogen input through biological (Gatsios et al.,
Gi Mobil
Alfalfa (Medicago sativa L.) reece obrie green manure nitrogen fixation (BNF); 2021)
Higher economic returns due to increased yield
Jack bean (Canavalia ensiformis DC);
Sun h Crotalaria j L);
un hemp (Crotalaria juncea L) L Increased N transfer to cherry tomato;
Dwarf velvet bean (Mucuna deeringiana i L X R
i ) Higher N concentration in leaves and fruits; (Salgado et al.,
(Bort)); Brazil Intercropping . .
X X i N transfer increases with tomato development; 2021)
Mung bean (Vigna radiata (L.) Wilezek); Sufficient N supply for cherry tomato
White lupine (Lupinus albus L.); PPy R
Cowpea bean (Vigna unguiculata (L.) Walp)
Improved soil physical properties;
Mexican sunflower (Tithonia diversifolia); L . Enhanced soil chemical properties;
L Individual or combined . .
Banana (Musa spp) Nigeria L Increased tomato growth and yield; (Adekiya, 2019)
application L
leaves Enhanced soil mineral contents;
Cost-effective and sustainable
Increased tomato yield;
SoyPean (Glycn?e max L MervrA); China and Enhanced nl?roger.l 'uptake; (Tho Nissen
Indigofera (Indigofera tinctoria L.); Philippines Monoculture Improved soil fertility; et al,, 2000)
al,
Mungbean (Vigna radiata L. Wilcz.) PP Reduced need for synthetic fertilizers;
Sustainable soil health;
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soil fertility and structural integrity by providing essential
macronutrients for optimizing tomato growth parameters and
yield potential, including nitrogen, phosphorus, and potassium
(Wei et al., 2025). However, claims of universal improvements in
nutrient cycling and plant vigor require further scrutiny, as the
effectiveness of green manure depends on decomposition rates,
microbial communities, and farming practices, factors often
overlooked in short-term studies. Furthermore, while green
manure is often promoted for its carbon sequestration potential,
long-term stability depends on complex interactions that are rarely
examined in depth (Behera et al., 2025).

Beyond agronomic benefits, practical application remain
understudied. Green manure species selection, frequently
presented as straightforward, is highly sensitive to local
conditions such as rainfall, soil pH, and microbial activity.
Moreover, economic and labor constraints, including land
opportunity costs and mechanization limitations for smallholder
farmers, are frequently neglected in the study despite their critical
influence on adoption rates. A more nuanced assessment is needed
to determine the feasibility and effectiveness of green manure across
diverse agricultural systems.

4 Biostimulants in tomato cultivation

4.1 Humic acid

Humic acids are natural organic substances found in soil as a
result of the chemical breakdown and decomposition of plant
matter, animal waste, and microorganisms due to microbial
activity (Hayes, 1983; Calvo et al., 2014). By triggering
biochemical and metabolic processes within plant cells and either
directly or indirectly boosting mineral nutrition, humic acids can
have biostimulant effects on plants, promoting growth (Shah et al,
2018; Quijia Pillajo et al., 2024; Zamljen et al., 2024). Moreover,
humic acids particularly influence the growth hormones to facilitate
the lateral and primary root development and regulate the
metabolism of the root system (Zandonadi et al., 2007). These
compounds stimulate the activity of plasma membrane H*-ATPase
in roots, threby boosting the proton gradient in the cell membrane
(Zandonadi et al., 20105 Jindo et al, 2012). This stimulation
facilitate the nutrient absorption and concurrently influencethe
expression of relevant genes (Zandonadi et al., 2010; Jindo et al,
2012). Addationally, humic acid improve soil structure and nutrient
availability and strengthen the plant resilience to environmental
stressors (Maffia et al., 2025).

Humic acid treatment resulted in a 1.5- to 2.6-fold increase in
the number of lateral roots in tomato plants. Conversely, lateral root
length exhibited an even more pronounced enhancement, ranging
from 4.05- to 22.8-fold (Dobbss et al., 2007). This phenomenon was
attributed to the similarity between the effects of humic acid and the
stimulatory responses induced by the application of exogenous
growth hormones regardless of their concentrations whether
applied in small or large quantities (Cordeiro et al., 2011; Rathor
et al, 2024). Application of 120 L/ha humic acid considerably
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enhanced soluble solids content, titratable acidity, tomato
plantheight, stem diameter, SPAD, and yield (Asri, 2021). Humic
acid also enhance the plant tolerance in response to osmotic stress
by modulating the phytohormone and antioxidant metabolism,
which promotes plant development and interestingly influences
the modified the composition of the inter-root endophytic bacterial
community (Lengrand et al, 2024). Pre-treatment with 4 mM
humic acids significantly increased H'-ATPase activity by 60%
and maintain the maximum quantum yield of Photosystem II (PSII;
Fv/Fm) and significantly reduce the lipid peroxidation levels. These
combined effects maintain plant growth parameters and
substantially reduce salt-induced oxidative damage in tomato
plants (Souza et al., 2021). However, excessive use of humic acid
may cause tomato infection by root rot bacteria and elevate the
prevalence of tomato root rot (Yigit and Dikilitas, 2008).

Although extensive research has substantiated the efficacy of
humic acid applications in tomato cultivation, several
criticallimitations warrant further investigation. Firstly, existing
studies has predominantly focused on assessing short-term growth
parameters and yield metrics, resulting in a limited understanding of
the long-term effects of humic acids on sustainable tomato cultivation
practices and their subsequent impacts on soil ecosystem dynamics.
Secondly, variations in the source, extraction technique, and
application method of humic acid across different studies
complicate the comparison of experimental results. Thirdly,
additional research is essential to determine the optimal dosage and
frequency of humic acid treatments across various soil types and
climatic conditionsSuch research is crucial to optimize application
protocols and establishing consistency and adaptability across various
agricultural environments and management practices.

4.2 Arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi (AMF) are soil microorganisms,
considered as plant root symbionts globally that establish a
symbiotic association with plant roots (Smith et al., 2003). Most
vegetable crops has potential to act as host plants for AMF including
tomato, which can enhance nutrition and water availability,
promote tolerance to environmental stressors, root and
nematodes diseases (Smith et al., 2003; Baum et al., 2015; Flor-
Peregrin et al., 2016; Leventis et al., 2021). However, the extent of
these benefits may vary depending on environmental conditions,
AMEF species, and host genotypes. For instance, Yu et al. (2022)
observed a 20% increase in root length and 15% improvement in
root surface area in AMF-inoculated tomatoes, but similar studies
in different soil types or climates might yield divergent results.
Consequently, the optimized implementation of AMF to enhance
yield and quality is essential for advancing the sustainable growth of
the tomato-producing sector.

The synergistic interaction between AMF and plant growth-
promoting bacteria (PGPB) demonstrates considerable potentialto
attain sustainable agriculture. The synergistic application of AMF
along with required fertilizer helps to improve the tomato growth
and 13% yield compared to the non-AMF-inoculated plants,
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although a 50% reduction in chemical fertilizer was implemented
(Ziane et al., 2017; Bernados et al., 2024). However, the mechanisms
by which AMF enhances phosphorus uptake or alters root exudates
remain unclear and require further mechanistic investigation.

Utkhede (2006) reported a 46% reduction in root rot and 15%
yield improvement, the efficacy of AMF against pathogens likely
depends on the specific AMF-pathogen interaction. Devi et al.
(2022) found that combining AMF with endophytes reduced wilt
incidence by 77%, yet such high efficacy may not be universal across
pathosystems. These inconsistencies highlight the importance of
optimizing AMF strains and application methods for tomato
production in practice.

4.3 Biofertilizers

Biofertilizers are a category of fertilizers comprising
microorganisms, substitute for conventional chemical fertilizers
that enhance soil nutrients and facilitate nutrient absorption in
crops (Kour et al., 2020; Mamouni et al., 2025). While the benefits of
biofertilizers are well-documented, their widespread adoption faces
several challenges that warrant critical examination.

Prolonged and excessive application of chemical fertilizers to
mitigate the pest and disease effects, might result in environmental
contamination and diminished food safety (Tallou et al., 2021; Jin
et al., 2022). However, the claim that biofertilizers universally
improve soil fertility and crop quality requires nuanced scrutiny.
Although studies demonstrate that biofertilizers can enhance
microbial activity, soil structure, and crop growth, their efficacy is
highly dependent on environmental conditions, microbial strain
specificity, and farming practices (Jin et al., 2022; Ruiz and Salas
Sanjuan, 2022). For instance, the simultaneous use of biofertilizers
with inorganic nitrogen fertilizers has been shown to improve
tomato growth, with treated plants exhibiting significantly greater
height, fresh weight, and dry weight compared to untreated
controls. Yet, these results may not be replicable across all soil
types or climatic conditions, raising questions about the
generalizability of such findings.

Similarly, plant growth-promoting microorganisms (PGPM)
and algal-based biostimulants markedly enhanced the soil fertility
and yield of organic tomatoes. Specifically, PGPM-treated tomato
plants showed enhanced characteristics including, height, leaf
count, and root biomass, which attained 9.22 g per plant root
biomass compared to 6.35 g per plant in the absence of PGPM
application. The synergistic combination of PGPM with 1.0% algal
biostimulant yielded 67.2 t/ha of tomatoes (Valentina et al., 2025).
These outcomes may not account for variability in microbial
survival rates in different soils or the potential for inconsistent
product formulations in commercial biofertilizers. Additionally,
tomato fruits treated with biofertilizers exhibited 40% higher
soluble sugars, 23% increased vitamin C, and 62% reduced nitrate
levels compared to those subjected to standard chemical fertilizers
(Ye et al., 2020). However, long-term studies are needed to assess
whether these benefits persist over multiple growing seasons or
under stress conditions.
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Biofertilizers generally enhance tomato growth and quality, but
there can be adverse effects when they completely replace chemical
fertilizers or in saline conditions. The detrimental consequences are
primarily defined by imbalanced nutrient availability, soil microbial
competition, and unfavorable impacts on various plant
development metrics under saline stress (Deng et al., 2025; Pan
et al, 2025; Tian et al,, 2025). This implies that biofertilizers do not
represent a universally applicable solution and may necessitate
supplementary chemical inputs in specific agroecosystems to
achieve optimal efficacy. Therefore, while biofertilizers offer a
sustainable alternative to chemical fertilizers, their application
must be carefully optimized, considering soil-specific conditions,
microbial compatibility, and integrated nutrient management
strategies. Overstating their benefits without addressing these
limitations could lead to unrealistic expectations and suboptimal
agricultural outcomes. Future research should focus on long-term
field trials, standardization of biofertilizer formulations, and
tailored recommendations for different cropping systems to
ensure their effective and sustainable use.

5 Soil amendments in tomato
cultivation

5.1 Biochar

Biochar, a source of rich organic matter and minerals,
significantly influences tomato growth and yield by enhancing
soil structure and fertility (Figure 3) (Carril et al., 2025; Parasar
and Agarwala, 2025; Waheed et al., 2025). It is the porous structure
facilitates water and air retention in the soil, fostering an optimal
growth condition for the tomato root system (Ikram et al., 2024;
Waheed et al., 2025). However, the extent of these benefits may vary
depending on soil type, biochar feedstock, and pyrolysis conditions,
suggesting that universal applicability cannot be assumed.

Furthermore, biochar augments enzyme activity in the soil,
which is crucial for the decomposition of organic matter and
nutrient transformation. This increasing enzyme activity improves
the soil’s detoxification capacity, which facilitates the removal of
harmful substances, and foster healthier growth conditions for
tomato plants (Pokharel et al., 2020; Murtaza et al., 2024).
However, the long-term stability of these effects remains
uncertain, as the impact of biochar on microbial activity may
diminish over time, necessitating further research on its
sustained benefits.

Biochar with particle sizes less than 3 mm enhanced 69%
tomato fruit yield and improved key fruit quality parameters,
particularly fruit diameter and carotenoid content by a
remarkable 210% increase in soil organic matter, 100% mineral
nitrogen content, available phosphorus by 29%, and available
potassium by 30% (Zeeshan et al., 2020). While these results are
impressive, it is important to consider whether such high gains are
replicable across different agricultural systems or if they are context-
specific. Furthermore, biochar was shown to effectively alleviate the
concentrations of heavy metals such as copper, nickel, and
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cadmium in the soil, significantly reducing their levels compared to
untreated soil. This alleviation significantly decreased the
bioavailability of these heavy metals, thereby mitigating their
toxic impact on tomato plants and promoting healthier growth
(Alam et al., 2021; Zhou et al., 2022; Pir Dad et al., 2024). However,
the mechanisms underlying this reduction, including potential roles
of adsorption, pH modification, or microbial mediation, require
further investigation to optimize biochar application in
contaminated soils. Biochar application considerably enhanced
tomato yield by up to 29.6%, increasing total soluble solids (TSS)
2024). Various
biochar types considerably influenced secondary metabolites which

and vitamin C content in the fruits (Lei et al.,

not only enhances tomato productivity but also elevates the
2015).
Nevertheless, the variability in biochar feedstock (e.g., wood, crop

nutritional quality of the tomato fruit (Petruccelli et al,

residues, manure) and pyrolysis temperatures introduces
complexity, as these factors significantly alter biochar’s chemical
properties. For instance, biochar produced through pyrolysis at
550°C could enhance 42% fruit yield compared to the control group
(Tartaglia et al., 2020). However, the optimality of this pyrolysis
temperature across different biochar types has not been conclusively
established. Biochar withnitrogen fertilizer enhanced the yield and
quality of tomatoes while decreasing the quantity of nitrogen
fertilizer utilized (Guo et al, 2021). This suggests potential
economic and environmental benefits, but the optimal biochar-to-
fertilizer ratio must be carefully calibrated to avoid unintended
nutrient imbalances.

Frontiers in Plant Science

Conversely, biochar application positively affected tomato
growth under saline stress conditions (Figure 3). Incorporating
biochar effectively alleviated oxidative damage and enhanced the
antioxidant capacity of plant, thereby enhance the growth and
2021; Yuan et al., 2023).
application resulted in a 32% reduction in malondialdehyde levels

tomato yield (Kul et al., Biochar
and a 132% increase in peroxidase activity, indicating a substantial
improvement in the plant’s antioxidant defense system under salt
stress conditions (Coppa et al., 2024). Thus, while biochar shows the
potential as a salinity mitigation tool, its efficacy in highly saline or
arid regions warrants further validation.

5.2 Composting

Composting convert organic waste into stable organic additives
appropriate for waste management at various scales (Sayara et al.,
2020). While this process is widely promoted for its environmental
benefits, its efficiency can vary significantly depending on feedstock
composition, operational conditions, and microbial activity, which
are often overlooked in generalized claims. The physicochemical
qualities of compost and the succession of microbial communities
can be markedly enhanced through the incorporation of mature
compost (Figure 3) (Wang et al., 2022). However, the practicality of
this approach may be limited by the availability of mature compost
in resource-constrained settings, raising questions about scalability.
Composting alleviates the environmental impact of agricultural
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waste and fosters agricultural sustainability by improving soil
fertility and facilitating crop development. The significance of
composting in the circular economy has been underscored by
assessing its efficacy in managing organic waste and its leachate
in practical scenarios (Oueld Lhaj et al., 2024). Nevertheless, the
long-term effects of compost application, including potential heavy
metal accumulation and nutrient runoff, are not always adequately
addressed in existing studies. Similarly, although composting is
framed as a strategic tool for sustainable agriculture (Bian et al,
2019; Sharma et al., 2024; Tahsini et al., 2024). Additionally, its
economic feasibility for small-scale farmers remains debatable,
particularly in the absence of composting production and
distribution infrastructure.

The cultivation environment and soil quality significantly
influence tomato growth, whereas compost is widely recognized as
an excellent method to substantially improved many physiological
markers and improve tomato yield (Table 2). However, the variability
in compost quality (e.g., nutrient content, stability) complicates its
standardized use. For example, vermicompost derived from cattle
dung has been shown to improve soil structure and address
agricultural challenges (Aksakal et al., 20165 Glab et al., 2025). But
its effectiveness depends on feedstock purity (e.g., antibiotic-free
manure) and processing methods, which are not always
guaranteed. Application of vermicompost significantly reduce soil
bulk density and increase the content of water-stable
macroaggregates, particularly in the 2.0-3.0 mm and 0.5-1.0 mm
size fractions. Vermicompost can improve soil structure and porosity

TABLE 2 The effects of different types of compost on tomato growth.

Compost

Composting = Composting

10.3389/fpls.2025.1626136

and enhance aggregate stability, which are key factors in improving
soil quality and potentially increasing crop yields (Aksakal et al., 2016;
Zhang et al., 2023). Nevertheless, the long-term sustainability of these
benefits is uncertain, as repeated application may alter soil microbial
communities in ways that are not yet fully understood. Combined
application of 30% chemical fertilizer and 70% cow manure compost
compared to chemical fertilizer significantly improved soil
nutrientswith an elevation of 46%, 312%, and 46%; nitrogen,
phosphorus, and organic matter, respectively. This treatment also
enhanced tomato yield by 17% to 69% compared to pure chemical
fertilizer (Aksakal et al., 2016; Hasnain et al., 2020; Zhang et al., 2023).
This also demonstrates that compost application can be highly
beneficial for tomato cultivation.

The compost industry is anticipated to undergo significant
expansion and evolve towards greater specialization, scalability,
and intelligence. Cocurrently, advancements in composting
technology will prioritize high efficiency and environmental
sustainability. This includes enhanced conversion efficiency,
reduce greenhouse gas emissions and pollutant discharge, and
improvements in the composition and biological activity of the
resulting fertilizers.

5.3 Microbial agents

The application of microbial agents to improve tomato growth
and yield has garnered significant attention as a novel research

: Application effects References
types methods time PP
Zizania latifolia Add eFZymatic The optimal treatment of applying wild rice leaf compost incr-eased‘ soluble protein by (Chen et al,
bacteria speed 21 days 31.93%, Vc by 36.64%, soluble sugar by 18.55%, and sugar-acid ratio by 23.92%
leaf compost R K R i . 2023)
rotting agent compared with commercial organic fertilizer.
Addition of crude T}'le 3% compost treatment promoted tomato root development and seedling growth
Tomato straw with the best (Yang D et al,
cellulose- 60 days C Lo .
compost degrading bacteria results. 3% compost application significantly increased root length by 52.98%, root 2024)
& 8 volume by 102.69%, and root surface diameter by 89.87%
Add the . . . .

. . . Soil total nitrogen increased by 125%, total phosphorus by 100%, total potassium by .
ermicomposting earthworm species R i (Cao et al.,
L . 3 years 57.14%, total carbon by 80%, adequate nitrogen by 160%, effective phosphorus by
in situ Akako Aiso K X 2022)

240%, and fast-acting potassium by 600%

Earthworms.
Tomato waste 90 d 1% tomato waste compost + chemical fertilizers increased yield by 28.9% over (Durmus and

- ays
compost th chemical fertilizers only Kizilkaya, 2022)
Water hyacinth

ater fyacin Using drum Tomato yield in the control group was 6.50 t/ha, drum composting 13.67 t/ha, an (Goswami et al.,

and cow manure . 30 days . ~

composting increase of about 110.6% 2017)
compost

In-vessel N e . . - . ,

. . Replacing mineral fertilizers with compost in greenhouse tomato cultivation maintains = (Martinez-
Municipal decomposition R o X .
. . . 10 weeks yield and quality, improves soil health, reduces water and pesticide use, and Blanco et al.,
organic waste with curing in L . . o
. minimizes environmental impact by avoiding landfill waste. 2011)
windrows
The addition of Indole-3-acetic acid (IAA)-producing bacteria were obtained by screening for
addition
Pig manure and indole-3-acetic application in pig manure composting, and the screened IAA-producing bacteria had (Cai et al
-3- Cai et al.,

corn straw . 41 days an enormous colonization potential in the composting process. The germination of

acid (IAA)- L R K 2022)
compost roducin tomato seeds and seedlings’ early growth and development were effectively assisted,

p 8 and the compost quality was improved.
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focus. In agricultural practices, bioactive compounds are critical
components of tomato fruits, and microbial agents enhance soil
quality through various mechanisms (Toth et al., 2024). Microbial
agents directly or indirectly improve soil microbiota, enhance
nutrient availability, improve disease resistance, yield, and fruit
quality in tomato plants (Meshram and Adhikari, 2024; Beyari,
2025). Microbial agents can promote tomato plant growth (Yan
et al., 2024).

Cheraghi et al. (2023) demonstrated that in greenhouse
experiments under high chemical fertilizer conditions, the
combined application of vermicompost, PGPR and AMF
significantly enhanced tomato root growth, zinc/iron uptake and
soil respiration. This study systematically validated the synergistic
mechanisms among organic inputs, microorganisms, root systems
and plants at four interconnected levels. In addition, microbial
agents have been used in tomato cultivation to control diseases
(Tiwari et al,, 2024; Zenelt and Krawczyk, 2025). Many microbial
agents in tomatoes have exhibited considerable inhibition of wilt,
green wilt, early blight, root-knot nematode, and bacterial wilt
(Table 3). The primary parameters impacting microbial agents to
enhance yields are complex and variable. Plant-growth-promoting
inter-root bacteria (PGPB) produce various chemical compounds
that diminish reliance on synthetic fertilizers and enhance tomato
growth (Cochard et al., 2022). Beneficial soil fungi, specifically the
fungal strains Trichoderma afroharzianum T22 and Funneliformis
mosseae enhanced tomato yield by 13% and 15%, respectively
(Minchev et al., 2024). These microorganisms are a viable
sourceto diminish reliance on artificial fertilizers and pesticides by

TABLE 3 Inhibition of tomato diseases by different microbial agents.

Microbial agents

Methods of application

Soil conditions

10.3389/fpls.2025.1626136

directly enhancing plant nutrient absorption and indirectly
stimulating plant defense mechanisms. However, the field
performance remains inconsistent due to variations in
environmental conditions, soil microbiomes, and farming practices.

Beyond biological limitations, economic and practical barriers
hinder widespread adoption. Commercial microbial formulations
often struggle with shelf life, precise application timing, and farmer
accessibility compared to conventional agrochemicals.
Furthermore, the regulatory for microbial inoculants remains
underdeveloped in many regions, creating uncertainty for
growers. To realize the full potential of microbial agents, future
research should prioritize field validation under diverse conditions,
optimize microbial consortia for stability and synergy, and develop
cost-effective delivery systems that align with existing agricultural
practices. Without addressing these gaps, microbial agents risk
remaining a promising but underutilized tool in sustainable
tomato production.

6 Conclusions

Effective nutrient management is critical for advancing
sustainable tomato production, but future research better
prioritize precision strategies tailored to varietal needs, growth
stages, and environmental conditions. By bridging the gap
between laboratory research and field application, this integrative
approach has the potential to revolutionize tomato production
systems, making them more adaptive to climate variability,

Types of disease = References

Erythrobacter sp. YH07

Bacillus siamensis
QN2MO-1

Multiple functional
strain combinations of
Bacillus

Bacillus velezensis
YXDHD1-7

Trichoderma harzianum
agent and Paecilomyces
lilacinus complex agent

Aspergillus tubingensis
GX3

Bacillus subtilis (strain
R31)
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Cow dung compost with rice straw
composting

As a biological control agent alone

Application of fungicide
suspensions to tomato roots

Bacterial suspension is applied
directly to tomato plants.

Together with organic fertilizers
(organic fertilizers are made from
Hartz mycorrhizal fungicides mixed
with well-rotted cow and sheep
manure)

Seed coating is applied in a manner.

Injection of R31 fermentation broth
into the inter-root soil of tomato
plants

Vegetable production greenhouse soil
(containing pathogenic bacteria of tomato
wilt)

Tomato field soil was sieved and treated with
three days of exposure to sunlight.

Natural mountain black and red soils

In greenhouses with high root-knot nematode
disease

One is to use sterilized mixed nutrient soil
(nutrient soil mixed with vermiculite in a 1:1
weight ratio). Another is to use yellow clay
soil and vegetable planting soil (3:1 weight
ratio mix)

10

Tomato fusarium wilt

Tomato fusarium wilt

Tomato bacterial wilt

Tomato early blight

Tomato root-knot
nematode disease

Tomato root-knot
nematode disease

Tomato bacterial wilt

(Tang et al., 2023)

(Zhang et al., 2024)

(Guo et al., 2024)

(Li et al., 2024)

(Yang B et al,, 2024)

(Sikandar et al., 2023)

(Sun et al., 2023)
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resource constraints, and market demands. Key focus areas include
optimizing dynamic nutrient formulations using real-time soil
sensors and modeling to enhance uptake efficiency while
minimizing waste. Additionally, organic fertilizers require
standardization through improved composting techniques such as
microbial consortia augmentation to ensure stability, safety, and
consistent effects on yield and stress resistance. Field trials should
validate these approaches under diverse agro-ecosystems fostering
widespread adoption and enhancing sustainability of
agricultural practices.

Biostimulants offer a promising pathway to reduce chemical
dependency, but their mechanisms of action demand deeper
investigation. Future studies should integrate multi-omics
approaches including transcriptomics, metabolomics and
microbiome analysis provides unprecedented insights into tomato
physiological responses to nutrient management strategies.
Metabolomic profiling for instance can reveal how specific
nutrient formulations influence secondary metabolite synthesis
and thereby link management practices to fruit quality attributes.
Similarly microbiome sequencing elucidates how soil amendments
modulate rhizosphere communities to enhance nutrient uptake and
disease resistance. These methods deepen our understanding of
plant-soil-microbe interactions while facilitating the development
of precision nutrient management systems tailored to varietal needs
and environmental conditions. Concurrently, research must explore
the long-term impacts of organic amendments, such as biochar and
cover crops on rhizosphere microbial communities using high-
throughput sequencing. Understanding these interactions will
enable microbiome engineering to enhance nutrient cycling and
disease suppression while maintaining soil health.

To accelerate progress, interdisciplinary collaboration is
essential, combining biotechnology, nanotechnology and data-
driven tools for precision agriculture. Short-term efforts should
focus on validating sensor-based nutrient models and biostimulant
efficacy in controlled trials, while mid-term goals include piloting
microbial-engineering approaches and nano-encapsulated nutrient
delivery systems. Long-term strategies must integrate successful
innovations into scalable farming practices and policy frameworks,
ensuring global tomato production meets quality and sustainability
targets. By adopting this structured yet adaptable roadmap, research
can address current inconsistencies in yield and quality while
promoting food security and ecological resilience.
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