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Tomato is a vital crop within agricultural production systems and ranks among

the most in-demand vegetables on the market, but tomato production faces

significant challenges due to long-term cultivation practices, including soil

successive cropping obstacles, nutrient imbalances, reduced microbial

diversity, and the accumulation of allelopathic substances. Previous studies

show that tomatoes exhibit substantial differences in yield and quality between

integrated and conventional systems, primarily attributed to its high nutrient

demands. This review synthesizes the most relevant scientific literature

worldwide to examine the current state of knowledge regarding crop nutrition

and soil fertility management in tomato production systems. It systematically

analyzes the impacts of nutrient solutions, green manures, soil amendments, and

biostimulants on both tomato yield and quality. The main findings indicate that

conventional management methods lead to constrained tomato yields due to

degraded soil fertility and inadequate nutrient supply. Therefore, integrated soil-

tomato system strategies are required to enhance productivity and meet

consumer demands. Addit ionally , this review uniquely integrates

multidisciplinary approaches to highlight synergistic strategies for optimizing

both yield and quality. We identify a critical gap in long-term comparative studies

on soil-tomato system management and emphasize the need for consumer-

oriented quality metrics in future research. By synthesizing global evidences, this

work provides a comprehensive framework for sustainable tomato production

beyond conventional nutrient-focused practices.
KEYWORDS

tomato, soil fertility, nutrient management, integrated systems, yield and quality
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/articles/10.3389/fpls.2025.1626136/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2025.1626136&domain=pdf&date_stamp=2025-09-24
mailto:wangcan_1983@catas.cn
mailto:sywxx@hebau.edu.cn
https://doi.org/10.3389/fpls.2025.1626136
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2025.1626136
https://www.frontiersin.org/journals/plant-science


Li et al. 10.3389/fpls.2025.1626136
1 Introduction

Tomato (Solanum lycopersicum L.) is an extensively cultivated

vegetable to meet the dietary needs of populations worldwide, as its

enriched with vitamin C, antioxidants, and lycopene. In the context

of ongoing advancements in economic conditions and living

standards, it is essential to prioritize the exploration of taste and

nutritional qualities alongside agricultural yield, particularly in

crops such as tomatoes (Perveen et al., 2015; Kumar et al., 2022).

Breeders and researchers are dedicated to developing tomato

varieties that exhibit superior flavor and quality, with the goal of

meeting market demands and enhancing the overall economic

efficiency of the tomato industry (Klee, 2010; D’Amico et al., 2024).

Soil nutrient dynamics play a pivotal role in tomato

productivity and fruit quality (Masih et al., 2020; Sharma et al.,

2023). Soil fertility management is vital for a optimized nutrient

level and plant development such as optimal pH, electrical

conductivity (EC), and nitrogen levels showed positive effects on

plant height, length, and width in tomatoes (Putranta et al., 2019).

However, conventional intensive farming, particularly in

greenhouse systems, often relies on excessive synthetic fertilizers,

leading to soil acidification, nutrient imbalances, and secondary

salinization (Liu et al., 2021). These issues not only hinder plant

growth but also threaten the sustainability of agricultural systems.

Organic fertilizers enhance soil quality, stability, and microbial

diversity by altering soil microbial composition (Zhou et al.,

2024). Excessive or improper use can promote surface water

eutrophication and chemical or biological pollution, ultimately

reducing soil fertility and adversely impacting vegetable yield and

quality over time. Therefore, the judicious application of organic

fertilizers and biostimulants is crucial for improving soil health and

promoting the sustainable development of facility agriculture (Thi

Kieu Oanh et al., 2023; Jana et al., 2024).
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Recent advances in soil fertility research underscore the potential

of integrated nutrient management (INM) to reconcile yield and

quality objectives in tomato production, with bibliometric analysis

indicating a threefold increase in relevant studies since 2000

(Figure 1). However, unregulated organic inputs may contribute to

nutrient leaching and eutrophication, necessitating precision

management strategies. Despite this growing research focus, critical

knowledge gaps remain concerning the trade-offs between short-term

productivity and long-term soil health, the complex interactions

between organic amendments and microbial consortia, and the

practical scalability of precision nutrient delivery systems for

smallholder farmers. These findings are particularly relevant for

transitioning from conventional to integrated production systems,

where the synergy between nutrient management and soil health can

lead to more resilient and economically viable tomato cultivation.

This review therefore synthesizes the latest of research to evaluate the

efficacy of various soil fertility management strategies including

optimized fertilization, biostimulants, and soil amendments in

enhancing both tomato yield and quality, while critically assessing

their impacts on fruit physicochemical properties, nutritional profiles,

and economic viabil i ty to identify key priorit ies for

sustainable intensification.
2 Effects of nutrient solution on
tomato production

2.1 The effects of nutrient solution
application on soil-grown tomatoes

Optimized nutrient solutions (ONS) markedly enhance

fertilizer efficiency and tomato fruit quality (Figure 2). Studies

show that adjusting EC and organic components (e.g., ONS) can
FIGURE 1

Annual counts of journal articles indexed in the Web of Science database from 2000 to 2024 containing the keywords “tomato yield,” “tomato
quality,” and “tomato stress resistance.
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increase total soluble solids (TSS) by 0.7%, soluble sugars by 23.3%,

and organic acids by 33.4%, directly improving flavor and

marketability (Ma et al., 2021; Lu et al., 2022). Additionally,

optimal drainage rates with elevated EC promote sugar and

aromatic compound accumulation (Ou et al., 2023).
Frontiers in Plant Science 03
However, imbalanced or excessive nutrient solutions may

counter these benefits. High nitrogen/potassium concentrations

can cause leaf chlorosis, fruit cracking, and yield loss

(Gholamnejad et al., 2023; Xie et al., 2024), while prolonged over-

application risks soil salinization and root dysfunction (Tarolli
FIGURE 2

A systematic outline of nutrient solution utilization into plant and its effects on the yield, growth, defense, physiological and chemical mechanism in
tomato plants.
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et al., 2024). Notably, the same EC levels that enhance sugar

accumulation at optimal ranges may induce salt stress if

exceeded, highlighting the need for precise management.

Likewise, the implementation of ONS in commercial

production systems faces multiple challenges. Over reliance on

nutrient solutions often leads to over fertilization especially under

non precision based management (Fathidarehnijeh et al., 2024).

This problem is exacerbated in systems without real time

monitoring where imbalances in electrical conductivity or pH

may accumulate resulting in nutrient leaching, soil salinization,

and reduced microbial diversity (Tarolli et al., 2024; Mohmed et al.,

2025). Furthermore economic and technical barriers such as the

high cost of sensor based systems and the need for skilled labour

limit the scalability of ONS in smallholder and resource limited

settings (Awal et al., 2025). These limitations emphasise the

necessity of integrating ONS with other sustainable practices like

organic amendments and biostimulants to enhance system

resilience and reduce environmental impacts.

Therefore, achieving high-quality yields requires a trade-off

between nutrient optimization and salt stress mitigation,

including dynamic adjustments of EC, pH, and drainage rates

based on real-time plant responses (Putranta et al., 2019;

Langenfeld et al., 2022). While nutrient solution optimization

demonstrates significant potential for enhancing tomato quality,

its long-term sustainability remains uncertain. Current research

predominantly focuses on short-term agronomic effects, leaving

critical gaps in our understanding of how continuous nutrient

solution application impacts soil health over extended periods.

Additionally, the economic viability of organic versus inorganic

nutrient solutions in commercial-scale production systems requires

rigorous assessment, particularly in resource-limited settings.

Further complexities arise when considering climatic variability,

as optimal nutrient management strategies must be adapted to

seasonal conditions, such as summer’s high temperatures versus

winter’s reduced light availability to maintain consistent yield and

quality. To address these challenges, future studies should leverage

advanced multi-omics methodologies, including metabolomics and

microbiome analysis, to holistically optimize nutrient formulations.

Such approaches could simultaneously maximize crop performance

while reducing adverse environmental impacts, ensuring a balance

between productivity and ecological stewardship.
2.2 The effects of nutrient solution
application on hydroponically grown
tomatoes

Modern agriculture has widely used hydroponics as an efficient

soilless method for tomato production (Al-Gaadi et al., 2024).

Tomato plants grown hydroponically depend on the formulation

and maintenance of the nutrient solution, which has a direct impact

on yield and quality (Hochmuth and Hochmuth, 2018). An

adequate availability of nutrient solutions is essential to enhance

the plant growth and development at all growth stages to maintain

the of tomatoes, equilibrium between vegetative and reproductive
Frontiers in Plant Science 04
stages (Liu et al., 2024). High-quality hydroponic items are

becoming more and more in demand, and buyers are willing to

pay more for hydroponic tomatoes (D’Amico et al., 2024).

However, the economic viability of hydroponic systems remains

questionable for small-scale farmers due to high initial

infrastructure costs and energy demands for lighting and climate

control. The premium prices hydroponic tomatoes command may

not offset these expenses unless production is scaled significantly,

r a i s ing concerns about acce s s ib i l i t y and equ i ty in

agricultural innovation.

Tomato plants can be successfully grown using hydroponic

tanks with the necessary modifications in a variety of environments,

such as indoors and greenhouses. In comparison to applying the

same fertilizer every two weeks and not replenishing the nutrient

solution, renewing the nutrient solution every two weeks enhanced

the leaf area and fresh weight of tomato plants by 18% and the 28%,

respectively (Solis-Toapanta et al., 2020). The closed hydroponic

system offered significant advantages in terms of water and fertilizer

conservation, allowing nutrient solution consumption by 96% and

fertilizer consumption by 97% without adversely affecting crop yield

provide substantial benefits regarding water conservation and

fertilizers (Fayezizadeh et al., 2021). Desalinated seawater (DSW)

used in hydroponic systems instead of conventional water resources

is most accurate alternative tofacilitating nearly year-round

continuous production and elevated crop yields. Irrigation with

DSW sepreate and along with conventional water sources did not

impact tomato quality (Antolinos et al., 2020). However,

desalination is an energy-intensive process that contributes to

carbon emissions unless powered by renewable energy. Relying

on DSWmay simply shift water scarcity challenges from freshwater

sources to energy demands, without addressing the root causes of

resource depletion. A single cherry tomato plant could produce up

to 682 g when grown hydroponically using a deep bed system (DBS)

and irrigated with purified agricultural wastewater. This shows how

agricultural waste can be used and provides a sustainable method of

recycling agricultural wastewater (Afonso et al., 2023). Using DSW

and agricultural wastewater to grow tomatoes hydroponically is a

new way to recycle agriculture that effectively uses marine resources

while reducing need on traditional freshwater sources. While

wastewater recycling is commendable, potential contamination

risks from heavy metals or pathogens must be rigorously

managed. Without strict regulatory oversight, the use of treated

wastewater in hydroponics could introduce food safety hazards,

undermining consumer trust in soilless agriculture. The substantial

upfront investment required for hydroponic systems makes their

economic viability heavily contingent on high-value crops whose

market prices can fully offset costs and generate surplus, thereby

restricting their adoption for lower-margin produce (Souza et al.,

2019). In addation, the nutrient uptake process in hydroponic

systems critically affects crop yield and quality, influenced by

nutrient interactions, availability, and chemical forms in the

growth medium (Valentinuzzi et al., 2015). While hydroponic

systems demonstrate superior operational cost-efficiency

compared to conventional soil-based agriculture post-

establishment, they present distinct technical limitations. The
frontiersin.org
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primary challenges include non-uniform nutrient distribution

throughout the solution and heightened vulnerability to

waterborne pathogen proliferation (Suárez-Cáceres et al., 2021;

Sangeetha and Periyathambi, 2024). These constraints necessitate

rigorous implementation of advanced crop health surveillance

protocols and precision management strategies by cultivators. The

focus should remain on holistic sustainability rather than isolated

technological fixes.
3 The effects of green manure on
tomatoes

Green manure is a crucial type of organic fertilizer derived from

green plant materials used to improve soil structure, soil fertility,

promotes nutrient availability and increases agricultural

productivity (Wang et al., 2025). This agricultural practice

involves cultivating specific green manure crops, collecting wild

green manure species which are then incorporated into the soil
Frontiers in Plant Science 05
through plowing or composting (Behera et al., 2025; Kama et al.,

2025). While studies demonstrate benefits such as enhanced tomato

yield, nutrient uptake, and soil quality, these findings may not be

universally applicable due to contextual factors like soil types,

climate, and management practices.

For instance, incorporating leguminous green manure is helpful

to increase tomato fruit yield by 10%-30% relative to animal

manure alone which directly supports tomato growth (Gatsios

et al., 2019). However, this advantage varies across agroecological

conditions, and improper incorporation timing or excessive use

may disrupt soil balance or compete with cash crops for resources.

Additionally, green manure significantly increased soil microbial

biomass carbon (MBC) and microbial biomass nitrogen (MBN) by

20.0% and 18.5%, respectively (Behera et al., 2025). Nevertheless,

such improvements may come with trade-offs, such as short-term

nitrogen immobilization or pathogen risks under certain green

manure regimes.

Green manure demonstrates substantial potential in tomato

production systems (Table 1). This agricultural practice enhances
TABLE 1 The benefits of green manure for tomato production in different countries.

Green manure crops Country
Planting/application
pattern

Main benefits References

Oats (Avena sativa L.) and Barley mixture
(Hordeum vulgare L.);
Rye (Secale cereale L.);
Brown Mustard (Brassica juncea L.);
Flax (Linum usitatissimum L.);
Pigeon Bean (Vicia faba L. var. minor)

Italy Monoculture

Enhanced nitrogen availability; Increased
marketable tomato yield;
Improved nitrogen uptake by tomato;
Reduced need for external fertilizers;
Tomato quality maintenance

(Lenzi et al.,
2009)

Jack Bean (Canavalia ensiformis);
Velvet Bean (Mucuna pruriens)

Ghana
Monoculture and
intercropping

Reduced cash expenditure on fertilizer;
Reduced weed growth;
Possible benefit to subsequent crops;
Lower rates of abortion and flower drop (due
to lower temperatures)

(Dorward et al.,
2003)

Vetch (Vicia villosa Roth.);
Barley (Hordeum vulgare L.)

Italy
Monoculture and
intercropping

Reduced nitrate leaching;
Enhanced biomass accumulation;
Improved leaf area index (LAI);
Higher yield potential

(Farneselli et al.,
2018, 2020)

Faba bean (Vicia faba L.);
Alfalfa (Medicago sativa L.)

Greece Mobile green manure

Increased soil nitrogen availability;
Sustainable nitrogen input through biological
nitrogen fixation (BNF);
Higher economic returns due to increased yield

(Gatsios et al.,
2021)

Jack bean (Canavalia ensiformis DC);
Sun hemp (Crotalaria juncea L.);
Dwarf velvet bean (Mucuna deeringiana
(Bort));
Mung bean (Vigna radiata (L.) Wilczek);
White lupine (Lupinus albus L.);
Cowpea bean (Vigna unguiculata (L.) Walp)

Brazil Intercropping

Increased N transfer to cherry tomato;
Higher N concentration in leaves and fruits;
N transfer increases with tomato development;
Sufficient N supply for cherry tomato

(Salgado et al.,
2021)

Mexican sunflower (Tithonia diversifolia);
Banana (Musa spp)
leaves

Nigeria
Individual or combined
application

Improved soil physical properties;
Enhanced soil chemical properties;
Increased tomato growth and yield;
Enhanced soil mineral contents;
Cost-effective and sustainable

(Adekiya, 2019)

Soybean (Glycine max L. Merr.);
Indigofera (Indigofera tinctoria L.);
Mungbean (Vigna radiata L. Wilcz.)

China and
Philippines

Monoculture

Increased tomato yield;
Enhanced nitrogen uptake;
Improved soil fertility;
Reduced need for synthetic fertilizers;
Sustainable soil health;

(Tho Nnissen
et al., 2000)
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soil fertility and structural integrity by providing essential

macronutrients for optimizing tomato growth parameters and

yield potential, including nitrogen, phosphorus, and potassium

(Wei et al., 2025). However, claims of universal improvements in

nutrient cycling and plant vigor require further scrutiny, as the

effectiveness of green manure depends on decomposition rates,

microbial communities, and farming practices, factors often

overlooked in short-term studies. Furthermore, while green

manure is often promoted for its carbon sequestration potential,

long-term stability depends on complex interactions that are rarely

examined in depth (Behera et al., 2025).

Beyond agronomic benefits, practical application remain

understudied. Green manure species selection, frequently

presented as straightforward, is highly sensitive to local

conditions such as rainfall, soil pH, and microbial activity.

Moreover, economic and labor constraints, including land

opportunity costs and mechanization limitations for smallholder

farmers, are frequently neglected in the study despite their critical

influence on adoption rates. A more nuanced assessment is needed

to determine the feasibility and effectiveness of green manure across

diverse agricultural systems.
4 Biostimulants in tomato cultivation

4.1 Humic acid

Humic acids are natural organic substances found in soil as a

result of the chemical breakdown and decomposition of plant

matter, animal waste, and microorganisms due to microbial

activity (Hayes, 1983; Calvo et al., 2014). By triggering

biochemical and metabolic processes within plant cells and either

directly or indirectly boosting mineral nutrition, humic acids can

have biostimulant effects on plants, promoting growth (Shah et al.,

2018; Quijia Pillajo et al., 2024; Zamljen et al., 2024). Moreover,

humic acids particularly influence the growth hormones to facilitate

the lateral and primary root development and regulate the

metabolism of the root system (Zandonadi et al., 2007). These

compounds stimulate the activity of plasma membrane H+-ATPase

in roots, threby boosting the proton gradient in the cell membrane

(Zandonadi et al., 2010; Jindo et al., 2012). This stimulation

facilitate the nutrient absorption and concurrently influencethe

expression of relevant genes (Zandonadi et al., 2010; Jindo et al.,

2012). Addationally, humic acid improve soil structure and nutrient

availability and strengthen the plant resilience to environmental

stressors (Maffia et al., 2025).

Humic acid treatment resulted in a 1.5- to 2.6-fold increase in

the number of lateral roots in tomato plants. Conversely, lateral root

length exhibited an even more pronounced enhancement, ranging

from 4.05- to 22.8-fold (Dobbss et al., 2007). This phenomenon was

attributed to the similarity between the effects of humic acid and the

stimulatory responses induced by the application of exogenous

growth hormones regardless of their concentrations whether

applied in small or large quantities (Cordeiro et al., 2011; Rathor

et al., 2024). Application of 120 L/ha humic acid considerably
Frontiers in Plant Science 06
enhanced soluble solids content, titratable acidity, tomato

plantheight, stem diameter, SPAD, and yield (Asri, 2021). Humic

acid also enhance the plant tolerance in response to osmotic stress

by modulating the phytohormone and antioxidant metabolism,

which promotes plant development and interestingly influences

the modified the composition of the inter-root endophytic bacterial

community (Lengrand et al., 2024). Pre-treatment with 4 mM

humic acids significantly increased H+-ATPase activity by 60%

and maintain the maximum quantum yield of Photosystem II (PSII;

Fv/Fm) and significantly reduce the lipid peroxidation levels. These

combined effects maintain plant growth parameters and

substantially reduce salt-induced oxidative damage in tomato

plants (Souza et al., 2021). However, excessive use of humic acid

may cause tomato infection by root rot bacteria and elevate the

prevalence of tomato root rot (Yigit and Dikilitas, 2008).

Although extensive research has substantiated the efficacy of

humic acid applications in tomato cultivation, several

criticallimitations warrant further investigation. Firstly, existing

studies has predominantly focused on assessing short-term growth

parameters and yield metrics, resulting in a limited understanding of

the long-term effects of humic acids on sustainable tomato cultivation

practices and their subsequent impacts on soil ecosystem dynamics.

Secondly, variations in the source, extraction technique, and

application method of humic acid across different studies

complicate the comparison of experimental results. Thirdly,

additional research is essential to determine the optimal dosage and

frequency of humic acid treatments across various soil types and

climatic conditionsSuch research is crucial to optimize application

protocols and establishing consistency and adaptability across various

agricultural environments and management practices.
4.2 Arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi (AMF) are soil microorganisms,

considered as plant root symbionts globally that establish a

symbiotic association with plant roots (Smith et al., 2003). Most

vegetable crops has potential to act as host plants for AMF including

tomato, which can enhance nutrition and water availability,

promote tolerance to environmental stressors, root and

nematodes diseases (Smith et al., 2003; Baum et al., 2015; Flor-

Peregrín et al., 2016; Leventis et al., 2021). However, the extent of

these benefits may vary depending on environmental conditions,

AMF species, and host genotypes. For instance, Yu et al. (2022)

observed a 20% increase in root length and 15% improvement in

root surface area in AMF-inoculated tomatoes, but similar studies

in different soil types or climates might yield divergent results.

Consequently, the optimized implementation of AMF to enhance

yield and quality is essential for advancing the sustainable growth of

the tomato-producing sector.

The synergistic interaction between AMF and plant growth-

promoting bacteria (PGPB) demonstrates considerable potentialto

attain sustainable agriculture. The synergistic application of AMF

along with required fertilizer helps to improve the tomato growth

and 13% yield compared to the non-AMF-inoculated plants,
frontiersin.org
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although a 50% reduction in chemical fertilizer was implemented

(Ziane et al., 2017; Bernados et al., 2024). However, the mechanisms

by which AMF enhances phosphorus uptake or alters root exudates

remain unclear and require further mechanistic investigation.

Utkhede (2006) reported a 46% reduction in root rot and 15%

yield improvement, the efficacy of AMF against pathogens likely

depends on the specific AMF-pathogen interaction. Devi et al.

(2022) found that combining AMF with endophytes reduced wilt

incidence by 77%, yet such high efficacy may not be universal across

pathosystems. These inconsistencies highlight the importance of

optimizing AMF strains and application methods for tomato

production in practice.
4.3 Biofertilizers

Biofertilizers are a category of fertilizers comprising

microorganisms, substitute for conventional chemical fertilizers

that enhance soil nutrients and facilitate nutrient absorption in

crops (Kour et al., 2020; Mamouni et al., 2025). While the benefits of

biofertilizers are well-documented, their widespread adoption faces

several challenges that warrant critical examination.

Prolonged and excessive application of chemical fertilizers to

mitigate the pest and disease effects, might result in environmental

contamination and diminished food safety (Tallou et al., 2021; Jin

et al., 2022). However, the claim that biofertilizers universally

improve soil fertility and crop quality requires nuanced scrutiny.

Although studies demonstrate that biofertilizers can enhance

microbial activity, soil structure, and crop growth, their efficacy is

highly dependent on environmental conditions, microbial strain

specificity, and farming practices (Jin et al., 2022; Ruiz and Salas

Sanjuan, 2022). For instance, the simultaneous use of biofertilizers

with inorganic nitrogen fertilizers has been shown to improve

tomato growth, with treated plants exhibiting significantly greater

height, fresh weight, and dry weight compared to untreated

controls. Yet, these results may not be replicable across all soil

types or climatic conditions, raising questions about the

generalizability of such findings.

Similarly, plant growth-promoting microorganisms (PGPM)

and algal-based biostimulants markedly enhanced the soil fertility

and yield of organic tomatoes. Specifically, PGPM-treated tomato

plants showed enhanced characteristics including, height, leaf

count, and root biomass, which attained 9.22 g per plant root

biomass compared to 6.35 g per plant in the absence of PGPM

application. The synergistic combination of PGPM with 1.0% algal

biostimulant yielded 67.2 t/ha of tomatoes (Valentina et al., 2025).

These outcomes may not account for variability in microbial

survival rates in different soils or the potential for inconsistent

product formulations in commercial biofertilizers. Additionally,

tomato fruits treated with biofertilizers exhibited 40% higher

soluble sugars, 23% increased vitamin C, and 62% reduced nitrate

levels compared to those subjected to standard chemical fertilizers

(Ye et al., 2020). However, long-term studies are needed to assess

whether these benefits persist over multiple growing seasons or

under stress conditions.
Frontiers in Plant Science 07
Biofertilizers generally enhance tomato growth and quality, but

there can be adverse effects when they completely replace chemical

fertilizers or in saline conditions. The detrimental consequences are

primarily defined by imbalanced nutrient availability, soil microbial

competition, and unfavorable impacts on various plant

development metrics under saline stress (Deng et al., 2025; Pan

et al., 2025; Tian et al., 2025). This implies that biofertilizers do not

represent a universally applicable solution and may necessitate

supplementary chemical inputs in specific agroecosystems to

achieve optimal efficacy. Therefore, while biofertilizers offer a

sustainable alternative to chemical fertilizers, their application

must be carefully optimized, considering soil-specific conditions,

microbial compatibility, and integrated nutrient management

strategies. Overstating their benefits without addressing these

limitations could lead to unrealistic expectations and suboptimal

agricultural outcomes. Future research should focus on long-term

field trials, standardization of biofertilizer formulations, and

tailored recommendations for different cropping systems to

ensure their effective and sustainable use.
5 Soil amendments in tomato
cultivation

5.1 Biochar

Biochar, a source of rich organic matter and minerals,

significantly influences tomato growth and yield by enhancing

soil structure and fertility (Figure 3) (Carril et al., 2025; Parasar

and Agarwala, 2025; Waheed et al., 2025). It is the porous structure

facilitates water and air retention in the soil, fostering an optimal

growth condition for the tomato root system (Ikram et al., 2024;

Waheed et al., 2025). However, the extent of these benefits may vary

depending on soil type, biochar feedstock, and pyrolysis conditions,

suggesting that universal applicability cannot be assumed.

Furthermore, biochar augments enzyme activity in the soil,

which is crucial for the decomposition of organic matter and

nutrient transformation. This increasing enzyme activity improves

the soil’s detoxification capacity, which facilitates the removal of

harmful substances, and foster healthier growth conditions for

tomato plants (Pokharel et al., 2020; Murtaza et al., 2024).

However, the long-term stability of these effects remains

uncertain, as the impact of biochar on microbial activity may

diminish over time, necessitating further research on its

sustained benefits.

Biochar with particle sizes less than 3 mm enhanced 69%

tomato fruit yield and improved key fruit quality parameters,

particularly fruit diameter and carotenoid content by a

remarkable 210% increase in soil organic matter, 100% mineral

nitrogen content, available phosphorus by 29%, and available

potassium by 30% (Zeeshan et al., 2020). While these results are

impressive, it is important to consider whether such high gains are

replicable across different agricultural systems or if they are context-

specific. Furthermore, biochar was shown to effectively alleviate the

concentrations of heavy metals such as copper, nickel, and
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cadmium in the soil, significantly reducing their levels compared to

untreated soil. This alleviation significantly decreased the

bioavailability of these heavy metals, thereby mitigating their

toxic impact on tomato plants and promoting healthier growth

(Alam et al., 2021; Zhou et al., 2022; Pir Dad et al., 2024). However,

the mechanisms underlying this reduction, including potential roles

of adsorption, pH modification, or microbial mediation, require

further investigation to optimize biochar application in

contaminated soils. Biochar application considerably enhanced

tomato yield by up to 29.6%, increasing total soluble solids (TSS)

and vitamin C content in the fruits (Lei et al., 2024). Various

biochar types considerably influenced secondary metabolites which

not only enhances tomato productivity but also elevates the

nutritional quality of the tomato fruit (Petruccelli et al., 2015).

Nevertheless, the variability in biochar feedstock (e.g., wood, crop

residues, manure) and pyrolysis temperatures introduces

complexity, as these factors significantly alter biochar’s chemical

properties. For instance, biochar produced through pyrolysis at

550°C could enhance 42% fruit yield compared to the control group

(Tartaglia et al., 2020). However, the optimality of this pyrolysis

temperature across different biochar types has not been conclusively

established. Biochar withnitrogen fertilizer enhanced the yield and

quality of tomatoes while decreasing the quantity of nitrogen

fertilizer utilized (Guo et al., 2021). This suggests potential

economic and environmental benefits, but the optimal biochar-to-

fertilizer ratio must be carefully calibrated to avoid unintended

nutrient imbalances.
Frontiers in Plant Science 08
Conversely, biochar application positively affected tomato

growth under saline stress conditions (Figure 3). Incorporating

biochar effectively alleviated oxidative damage and enhanced the

antioxidant capacity of plant, thereby enhance the growth and

tomato yield (Kul et al., 2021; Yuan et al., 2023). Biochar

application resulted in a 32% reduction in malondialdehyde levels

and a 132% increase in peroxidase activity, indicating a substantial

improvement in the plant’s antioxidant defense system under salt

stress conditions (Coppa et al., 2024). Thus, while biochar shows the

potential as a salinity mitigation tool, its efficacy in highly saline or

arid regions warrants further validation.
5.2 Composting

Composting convert organic waste into stable organic additives

appropriate for waste management at various scales (Sayara et al.,

2020). While this process is widely promoted for its environmental

benefits, its efficiency can vary significantly depending on feedstock

composition, operational conditions, and microbial activity, which

are often overlooked in generalized claims. The physicochemical

qualities of compost and the succession of microbial communities

can be markedly enhanced through the incorporation of mature

compost (Figure 3) (Wang et al., 2022). However, the practicality of

this approach may be limited by the availability of mature compost

in resource-constrained settings, raising questions about scalability.

Composting alleviates the environmental impact of agricultural
FIGURE 3

Schematic diagram of the role of soil amendments in remediating soil pollution and promoting tomato growth.
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waste and fosters agricultural sustainability by improving soil

fertility and facilitating crop development. The significance of

composting in the circular economy has been underscored by

assessing its efficacy in managing organic waste and its leachate

in practical scenarios (Oueld Lhaj et al., 2024). Nevertheless, the

long-term effects of compost application, including potential heavy

metal accumulation and nutrient runoff, are not always adequately

addressed in existing studies. Similarly, although composting is

framed as a strategic tool for sustainable agriculture (Bian et al.,

2019; Sharma et al., 2024; Tahsini et al., 2024). Additionally, its

economic feasibility for small-scale farmers remains debatable,

particularly in the absence of composting production and

distribution infrastructure.

The cultivation environment and soil quality significantly

influence tomato growth, whereas compost is widely recognized as

an excellent method to substantially improved many physiological

markers and improve tomato yield (Table 2). However, the variability

in compost quality (e.g., nutrient content, stability) complicates its

standardized use. For example, vermicompost derived from cattle

dung has been shown to improve soil structure and address

agricultural challenges (Aksakal et al., 2016; Głab̨ et al., 2025). But

its effectiveness depends on feedstock purity (e.g., antibiotic-free

manure) and processing methods, which are not always

guaranteed. Application of vermicompost significantly reduce soil

bulk density and increase the content of water-stable

macroaggregates, particularly in the 2.0–3.0 mm and 0.5–1.0 mm

size fractions. Vermicompost can improve soil structure and porosity
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and enhance aggregate stability, which are key factors in improving

soil quality and potentially increasing crop yields (Aksakal et al., 2016;

Zhang et al., 2023). Nevertheless, the long-term sustainability of these

benefits is uncertain, as repeated application may alter soil microbial

communities in ways that are not yet fully understood. Combined

application of 30% chemical fertilizer and 70% cow manure compost

compared to chemical fertilizer significantly improved soil

nutrientswith an elevation of 46%, 312%, and 46%; nitrogen,

phosphorus, and organic matter, respectively. This treatment also

enhanced tomato yield by 17% to 69% compared to pure chemical

fertilizer (Aksakal et al., 2016; Hasnain et al., 2020; Zhang et al., 2023).

This also demonstrates that compost application can be highly

beneficial for tomato cultivation.

The compost industry is anticipated to undergo significant

expansion and evolve towards greater specialization, scalability,

and intelligence. Cocurrently, advancements in composting

technology will prioritize high efficiency and environmental

sustainability. This includes enhanced conversion efficiency,

reduce greenhouse gas emissions and pollutant discharge, and

improvements in the composition and biological activity of the

resulting fertilizers.
5.3 Microbial agents

The application of microbial agents to improve tomato growth

and yield has garnered significant attention as a novel research
TABLE 2 The effects of different types of compost on tomato growth.

Compost
types

Composting
methods

Composting
time

Application effects References

Zizania latifolia
leaf compost

Add enzymatic
bacteria speed
rotting agent

21 days
The optimal treatment of applying wild rice leaf compost increased soluble protein by
31.93%, Vc by 36.64%, soluble sugar by 18.55%, and sugar-acid ratio by 23.92%
compared with commercial organic fertilizer.

(Chen et al.,
2023)

Tomato straw
compost

Addition of crude
cellulose-
degrading bacteria

60 days

The 3% compost treatment promoted tomato root development and seedling growth
with the best
results. 3% compost application significantly increased root length by 52.98%, root
volume by 102.69%, and root surface diameter by 89.87%

(Yang D et al.,
2024)

ermicomposting
in situ

Add the
earthworm species
Akako Aiso
Earthworms.

3 years
Soil total nitrogen increased by 125%, total phosphorus by 100%, total potassium by
57.14%, total carbon by 80%, adequate nitrogen by 160%, effective phosphorus by
240%, and fast-acting potassium by 600%

(Cao et al.,
2022)

Tomato waste
compost

– 90 days
1% tomato waste compost + chemical fertilizers increased yield by 28.9% over
chemical fertilizers only

(Durmus ̧ and
Kızılkaya, 2022)

Water hyacinth
and cow manure
compost

Using drum
composting

30 days
Tomato yield in the control group was 6.50 t/ha, drum composting 13.67 t/ha, an
increase of about 110.6%

(Goswami et al.,
2017)

Municipal
organic waste

In-vessel
decomposition
with curing in
windrows

10 weeks
Replacing mineral fertilizers with compost in greenhouse tomato cultivation maintains
yield and quality, improves soil health, reduces water and pesticide use, and
minimizes environmental impact by avoiding landfill waste.

(Martıńez-
Blanco et al.,
2011)

Pig manure and
corn straw
compost

The addition of
indole-3-acetic
acid (IAA)-
producing

41 days

Indole-3-acetic acid (IAA)-producing bacteria were obtained by screening for
application in pig manure composting, and the screened IAA-producing bacteria had
an enormous colonization potential in the composting process. The germination of
tomato seeds and seedlings’ early growth and development were effectively assisted,
and the compost quality was improved.

(Cai et al.,
2022)
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focus. In agricultural practices, bioactive compounds are critical

components of tomato fruits, and microbial agents enhance soil

quality through various mechanisms (Tóth et al., 2024). Microbial

agents directly or indirectly improve soil microbiota, enhance

nutrient availability, improve disease resistance, yield, and fruit

quality in tomato plants (Meshram and Adhikari, 2024; Beyari,

2025). Microbial agents can promote tomato plant growth (Yan

et al., 2024).

Cheraghi et al. (2023) demonstrated that in greenhouse

experiments under high chemical fertilizer conditions, the

combined application of vermicompost, PGPR and AMF

significantly enhanced tomato root growth, zinc/iron uptake and

soil respiration. This study systematically validated the synergistic

mechanisms among organic inputs, microorganisms, root systems

and plants at four interconnected levels. In addition, microbial

agents have been used in tomato cultivation to control diseases

(Tiwari et al., 2024; Zenelt and Krawczyk, 2025). Many microbial

agents in tomatoes have exhibited considerable inhibition of wilt,

green wilt, early blight, root-knot nematode, and bacterial wilt

(Table 3). The primary parameters impacting microbial agents to

enhance yields are complex and variable. Plant-growth-promoting

inter-root bacteria (PGPB) produce various chemical compounds

that diminish reliance on synthetic fertilizers and enhance tomato

growth (Cochard et al., 2022). Beneficial soil fungi, specifically the

fungal strains Trichoderma afroharzianum T22 and Funneliformis

mosseae enhanced tomato yield by 13% and 15%, respectively

(Minchev et al., 2024). These microorganisms are a viable

sourceto diminish reliance on artificial fertilizers and pesticides by
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directly enhancing plant nutrient absorption and indirectly

stimulating plant defense mechanisms. However, the field

performance remains inconsistent due to variations in

environmental conditions, soil microbiomes, and farming practices.

Beyond biological limitations, economic and practical barriers

hinder widespread adoption. Commercial microbial formulations

often struggle with shelf life, precise application timing, and farmer

accessibility compared to conventional agrochemicals.

Furthermore, the regulatory for microbial inoculants remains

underdeveloped in many regions, creating uncertainty for

growers. To realize the full potential of microbial agents, future

research should prioritize field validation under diverse conditions,

optimize microbial consortia for stability and synergy, and develop

cost-effective delivery systems that align with existing agricultural

practices. Without addressing these gaps, microbial agents risk

remaining a promising but underutilized tool in sustainable

tomato production.
6 Conclusions

Effective nutrient management is critical for advancing

sustainable tomato production, but future research better

prioritize precision strategies tailored to varietal needs, growth

stages, and environmental conditions. By bridging the gap

between laboratory research and field application, this integrative

approach has the potential to revolutionize tomato production

systems, making them more adaptive to climate variability,
TABLE 3 Inhibition of tomato diseases by different microbial agents.

Microbial agents Methods of application Soil conditions Types of disease References

Erythrobacter sp. YH07
Cow dung compost with rice straw
composting

Vegetable production greenhouse soil
(containing pathogenic bacteria of tomato
wilt)

Tomato fusarium wilt (Tang et al., 2023)

Bacillus siamensis
QN2MO-1

As a biological control agent alone
Tomato field soil was sieved and treated with
three days of exposure to sunlight.

Tomato fusarium wilt (Zhang et al., 2024)

Multiple functional
strain combinations of
Bacillus

Application of fungicide
suspensions to tomato roots

Natural mountain black and red soils Tomato bacterial wilt (Guo et al., 2024)

Bacillus velezensis
YXDHD1-7

Bacterial suspension is applied
directly to tomato plants.

– Tomato early blight (Li et al., 2024)

Trichoderma harzianum
agent and Paecilomyces
lilacinus complex agent

Together with organic fertilizers
(organic fertilizers are made from
Hartz mycorrhizal fungicides mixed
with well-rotted cow and sheep
manure)

In greenhouses with high root-knot nematode
disease

Tomato root-knot
nematode disease

(Yang B et al., 2024)

Aspergillus tubingensis
GX3

Seed coating is applied in a manner. –
Tomato root-knot
nematode disease

(Sikandar et al., 2023)

Bacillus subtilis (strain
R31)

Injection of R31 fermentation broth
into the inter-root soil of tomato
plants

One is to use sterilized mixed nutrient soil
(nutrient soil mixed with vermiculite in a 1:1
weight ratio). Another is to use yellow clay
soil and vegetable planting soil (3:1 weight
ratio mix)

Tomato bacterial wilt (Sun et al., 2023)
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resource constraints, and market demands. Key focus areas include

optimizing dynamic nutrient formulations using real-time soil

sensors and modeling to enhance uptake efficiency while

minimizing waste. Additionally, organic fertilizers require

standardization through improved composting techniques such as

microbial consortia augmentation to ensure stability, safety, and

consistent effects on yield and stress resistance. Field trials should

validate these approaches under diverse agro-ecosystems fostering

widespread adoption and enhancing sustainabi l ity of

agricultural practices.

Biostimulants offer a promising pathway to reduce chemical

dependency, but their mechanisms of action demand deeper

investigation. Future studies should integrate multi-omics

approaches including transcriptomics, metabolomics and

microbiome analysis provides unprecedented insights into tomato

physiological responses to nutrient management strategies.

Metabolomic profiling for instance can reveal how specific

nutrient formulations influence secondary metabolite synthesis

and thereby link management practices to fruit quality attributes.

Similarly microbiome sequencing elucidates how soil amendments

modulate rhizosphere communities to enhance nutrient uptake and

disease resistance. These methods deepen our understanding of

plant–soil–microbe interactions while facilitating the development

of precision nutrient management systems tailored to varietal needs

and environmental conditions. Concurrently, research must explore

the long-term impacts of organic amendments, such as biochar and

cover crops on rhizosphere microbial communities using high-

throughput sequencing. Understanding these interactions will

enable microbiome engineering to enhance nutrient cycling and

disease suppression while maintaining soil health.

To accelerate progress, interdisciplinary collaboration is

essential, combining biotechnology, nanotechnology and data-

driven tools for precision agriculture. Short-term efforts should

focus on validating sensor-based nutrient models and biostimulant

efficacy in controlled trials, while mid-term goals include piloting

microbial-engineering approaches and nano-encapsulated nutrient

delivery systems. Long-term strategies must integrate successful

innovations into scalable farming practices and policy frameworks,

ensuring global tomato production meets quality and sustainability

targets. By adopting this structured yet adaptable roadmap, research

can address current inconsistencies in yield and quality while

promoting food security and ecological resilience.
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