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The capacity of plants to protect themselves from stress and efficiently assimilate

CO2 depends on dynamic regulation of photosynthetic electron transport

pathways. In the cyclic electron transport around photosystem I (PSI-CET), the

ferredoxin (Fd) reduced by PSI donates electrons to plastoquinone (PQ), which

then enter the pathway of photosynthetic linear electron transport (LET). It has

been postulated that PSI-CET generates the additional proton motive force

needed to drive sufficient ATP synthase activity for CO2 assimilation. The rate of

PSI-CET relative to LET responds dynamically to environmental conditions and the

metabolic demands of the chloroplast, but themechanism for this regulation is still

under debate. The rate of PSI-CET has been quantified as the oxidation rate of

reduced Fd that exceeds the oxidation rate due to LET, which we term vFd(CET). In

this study, the effects of the redox states of both PQ and Fd on vFd(CET) were

analyzed in relation to the dependence of CO2 assimilation on light intensity in the

C3 plant Helianthus annuus. In contrast to the rate of CO2 assimilation, the rate of

PSI-CET demonstrated phases of acceleration and deceleration as the light

intensity increases. The acceleration of vFd(CET) correlated with reduction state

of Fd, while the deceleration correlated with reduction state of PQ. Plants grown

with high nitrogen exhibited higher CO2 assimilation rates, more oxidized PQ and

greater vFd(CET). Furthermore, a strong correlation was observed between vFd

(CET) and the usage rate of proton motive force. These findings demonstrate that

in vivo, vFd(CET) is regulated by the redox states of both Fd and PQ.
KEYWORDS

photosyntheis, photosynthetic electron transport, cyclic electron transport around PSI,
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Introduction

Oxygenic photosynthesis can be divided into two main

reactions: the light reaction, which synthesizes ATP and NADPH,

and the dark reaction, which uses these molecules to assimilate CO2.

The light-driven electron transport reaction occurs when light

energy is absorbed by two photosystems, PSI and PSII, which are

located in the thylakoid membrane of chloroplasts. In PSII, the

absorbed light energy excites the reaction center Chl P680, thereby

initiating the oxidation of water through the Mn cluster. The

electrons produced from water oxidation are transported through

plastoquinone (PQ), the cytochrome (Cyt) b6/f complex,

plastocyanin (PC), and PSI to ferredoxin (Fd). Subsequently, Fd-

NADP oxidoreductase (FNR) reduces NADP+, forming NADPH,

with Fd acting as the electron donor. This series of electron

transfers, from water oxidation to NADPH production, is referred

to as linear electron transport (LET). During LET, H+ are released

into the thylakoid lumen during water oxidation in PSII and as

electrons are transported from the reduced PQ to the Cyt b6/f

complex and then to PC. Consequently, a proton gradient (DpH)

and membrane potential (DY) are established between the

thylakoid lumen and the stroma, both of which serve as the

proton motive force (pmf) to drive ATP synthase (Cruz et al.,

2004; Tikhonov and Vershubskii, 2014). In C3 plants, the NADPH

and ATP produced by these light reactions power so called “dark

reactions”, such as CO2 assimilation and photorespiration (Genty

et al., 1990; Miyake, 2020).

In addition to LET, cyclic electron transport around PSI (PSI-

CET) has been proposed to play a role in photosynthesis based on

findings from in vitro studies (Arnon et al., 1954; Arnon, 1959;

Tagawa et al., 1963). In PSI-CET, Fd, which is reduced by PSI,

donates electrons back to oxidized PQ, with the reduced PQ then

re-entering LET to contribute to pmf, thus supporting additional

ATP synthesis (Cramer and Zhang, 2006). A number of mediators

have been proposed as potential intermediates in PSI-CET,

including FNR, the Cyt b6/f complex, NAD(P)H dehydrogenase

(NDH), and PGR5/PGRL1 (Sazanov et al., 1998; Joliot and Joliot,

2002; Munekage et al., 2002; Kurisu et al., 2003; Laisk et al., 2010;

Miyake, 2010; Strand et al., 2016; Fisher et al., 2019). However, their

mechanistic roles and relative contributions remain to

be confirmed.

In order to elucidate the role of the mediators in PSI-CET in C3

plant leaves, it is first necessary to establish the existence and

characteristics of PSI-CET in vivo within intact leaves. This

necessitates the presentation of evidence pertaining to electron

transport that is independent of LET and in accordance with the

theoretical model of PSI-CET (Allen, 2003). The electron transport

rate of Fd (vFd), the stromal electron carrier in both LET and PSI-

CET, was assessed in vivo in intact Arabidopsis thaliana leaves

(Ohnishi et al., 2023; Maekawa et al., 2024). In anticipation of

fluctuations in the PSI-CET rate, we examined changes in the

relationship between the rate of LET and vFd in response to

alterations in the intercellular partial pressure of CO2 (Ci) within

the leaves. A plot of vFd against LET rate revealed a bimodal

distribution, with vFd proportional to the rate of LET at low Ci
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levels. However, at higher Ci, the increase in vFd exceeds that due to

LET, indicating an Fd oxidation reaction independent of LET

(Ohnishi et al., 2023; Maekawa et al., 2024).

The correlation between increased vFd at high Ci, and a reduced

PQ pool was also observed in Arabidopsis crr4 mutants, which lack

the NDH component of PSI-CET. This indicates that the dominant

Fd-oxidizing reactions in these conditions are independent of not

only LET, but also NDH dependent PSI-CET.

The effects of Fd redox state on LET-independent and Fd-

dependent electron transfer have also been investigated. The

analysis of Ci dependence on LET demonstrated that reduced Fd

levels remained stable even when Ci decreased, leading to decreased

CO2 assimilation (Ohnishi et al., 2023; Maekawa et al., 2024). The

suppression of the dark reaction as an electron sink results in a

decrease in both luminal pH and PQ oxidation by the Cyt b6/f

complex, which limits electron transport to PSI (Miyake, 2020;

Wada et al., 2020). Moreover, the accumulation of reduced PQ

inhibits the Cyt b6/f complex’s Q-cycle (through lack of oxidized PQ

substrate), thereby suppressing the further oxidation of reduced PQ.

This mechanism is referred to as “reduction-induced suppression of

electron flow,” or RISE (Shaku et al., 2016; Shimakawa et al., 2018).

This down-regulation of the Cyt b6/f complex limits the

accumulation of electrons on the PSI acceptor side (Furutani

et al., 2023; Shimakawa et al., 2024). This is the likely reason why

the reduction state of Fd remains constant even in the lower Ci. A

PGR5-deficient Arabidopsis mutant was utilized, which is unable to

maintain DpH due to elevated proton conductance, resulting in a

lower DpH compared to the wild type (DalCorso et al., 2008;

Furutani et al., 2023). The PGR5-deficient mutant exhibited Fd in

a more reduced state than the wild type, and LET-independent vFd

was greater (Maekawa et al., 2024). It is noteworthy that this

increase in vFd could only be measured in conditions of oxidized

PQ, irrespective of Fd redox state. These findings corroborate the

hypothesis that a rate of Fd-oxidation, independent of that driven

by LET, adheres to the theoretical PSI-CET model, with the rate

represented by the following equation: k × PQ × Fd- (Allen, 2003).

In this context, the rate constant k is contingent upon the catalytic

efficiency and quantity of electron transport mediators from

reduced Fd to oxidized PQ in PSI-CET. These observations serve

to confirm the veracity of the PSI-CET hypothesis as an Fd-

dependent electron transport process that is independent of LET

in Arabidopsis leaves (Ohnishi et al., 2023; Maekawa et al., 2024).

The present study employed the C3 plant sunflower (Helianthus

annuus) to evaluate this theoretical PSI-CET model and its

physiological function. Sunflower leaves generally have a high

nitrogen content in their leaves and exhibits a high CO2

assimilation capacity. Therefore, the dynamic range of changes in

CO2 assimilation rate due to differences in leaf nitrogen content is

large. This characteristic of sunflower makes it easier to observe

changes in the redox state of electron carriers in the photosynthetic

electron transport chain in response to variations in CO2

assimilation capacity. In our previously reported studies, the

intercellular CO2 concentration (Ci) was decreased under

constant light intensity (Ohnishi et al., 2023; Maekawa et al.,

2024). In the wild-type Arabidopsis thaliana, the level of reduced
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ferredoxin (Fd) remained unchanged upon Ci reduction, while

plastoquinone (PQ) became more reduced. As a result, the PSI-

CET rate (vFd(CET)) decreased, indicating that oxidized PQ is

required for the operation of PSI-CET (Ohnishi et al., 2023).

Furthermore, the necessity of reduced Fd for PSI-CET activity is

supported by the observation that the pgr5 mutant, which

maintains a high level of reduced Fd, exhibits a higher vFd(CET)

than the wild type (Maekawa et al., 2024). The redox states of PQ

and Fd depend on the CO2 assimilation capacity of the intact leaf

and respond dynamically to changes in light intensity. In the

present study, we analyzed how changes in the redox states of PQ

and Fd individually affect vFd(CET) and how they influence the

functional activation of PSI-CET. To this end, we prepared two

types of plants differing in leaf nitrogen content (control and High-

N). Compared with control plants, High-N plants exhibited higher

CO2 assimilation capacity, with more oxidized PQ and more

reduced Fd under high light conditions. Moreover, increasing

light intensity reduced both PQ and Fd, and the interaction of

these reductions revealed their influence on vFd(CET). In addition,

the rate of proton motive force (pmf) utilization for ATP synthesis

(vH+) correlated with vFd(CET), supporting the role of PSI-CET in

pmf formation as its physiological function.
Materials and methods

Plant materials

Sunflower (Helianthus annuus) plants were grown from seeds

under standard air-equilibrated conditions with 30°C/25°C, light

(16 h)/dark (8 h) cycles, 50 – 60% relative humidity, and 800 µmol

photons m-2 s-1 light intensity in the control chamber, made from

NK system (model: LPH-100LED-NCS). Seeds of sunflower for

green manure purchased from TAKII & Co., Ltd (Kyoto, Japan).

Seeds were sown in 0.8 dm3 pots containing a 1:1 mixture of

vermiculite (Akagi Engei Co., Ltd, Gunma, Japan) and seeding-

culture soil (Tanemakibaido, TAKII & Co., Ltd, Kyoto, Japan). The

compost mainly contains N 380mg/L, P 290 mg/L, K 340mg/L.

Plants were watered daily and fertilized (Hyponex 6-10-5; Hyponex

Japan) only tap water for the control-grown plants and five times a

week for the high-nitrogen (HN)-grown plants. All measurements

were made using fully expanded leaf 3–4 weeks after sowing. All

plants were adapted to the dark for > 30 min before measurements.

Arabidopsis thaliana wild type (Col-0) and the mutant, 35S;

PpFlv no. 13 (Yamamoto et al., 2016) were grown from seeds under

standard air-equilibrated conditions with 23°C/20°C, light (10 h)/

dark (14 h) cycles, 50 – 60% relative humidity, and 70 - 85 µmol

photons m-2 s-1 light intensity in control chamber.
Biochemical assays

The contents of both chlorophyll (Chl) and nitrogen (N) in the

leaves of sunflower plants were determined by the method reported

in the previous study (Ohnishi et al., 2023). Chl was determined
Frontiers in Plant Science 03
using Arnon’s method (Arnon, 1949). Nitrogen was determined

using Kjeldahl methods. Rubisco was determined by formamide

extraction of Coomassie Brilliant Blue R-250-stained bands

corresponding to the large and small subunits of Rubisco

separated by sodium dodecyl sulfate-polyacrylamide gel

electrophoresis as described by Makino et al. (1985) and Suzuki

et al. (2022). Contents of Chl, N, and Rubisco in the leaves of both

the control- and HN-grown plants were shown in Supplementary

Table S1.
Simultaneous measurements of chlorophyll
fluorescence, P700, plastocyanin, and
ferredoxin with CO2/H2O-exchange

Chl fluorescence, P700, Plastocyanin, Ferredoxin, and CO2

exchange were simultaneously measured using Dual/KLAS-NIR

(Heinz Walz GmbH, Effeltrich, Germany), and an infrared gas

analyzer (IRGA) LI-6262/7000 (Li-COR, Lincoln, NE, USA)

measuring system equipped with a 3010-DUAL gas exchange

chamber at several atmospheric conditions (40 Pa CO2, 21 kPa

O2) (Heinz Walz GmbH) was used (Ohnishi et al., 2023). The gases

were saturated with water vapor at 14 ± 0.1°C. The leaf temperature

was controlled at 25 ± 0.5°C (relative humidity: 50 – 60%). The light

intensity at the upper position on the leaf in the chamber was

adjusted to the indicated intensity. The net CO2 assimilation rate

(A) and the dark respiration rate (Rd) were measured.

The Chl fluorescence parameters were calculated as follows

(Baker, 2008): Fo, minimum fluorescence from a dark-adapted leaf;

Fm, maximum fluorescence from a dark-adapted leaf; Fm’,

maximum fluorescence from a light-adapted leaf; Fs, fluorescence

emission from a light-adapted leaf; the maximum quantum yield of

PSII, Fv/Fm = (Fm – Fo)/Fm; the effective quantum yield of PSII, Y

(II) = (Fm’ - Fs)/Fm’ (Genty et al., 1990); non-photochemical

quenching, NPQ = (Fm - Fm’)/Fm’ (Bilger and Björkman, 1994);

and PQ oxidized state derived from the lake model of Chl

fluorescence (qL) = Y(II)/[1-Y(II)] � [(1 - Fv/Fm)/(Fv/Fm)] �
(NPQ + 1) (Miyake et al., 2009). To obtain Fm and Fm’, a saturating

pulse light (630 nm, 8000 µmol photons m−2 s−1, 300 ms) was

applied. Red light (630 nm, 400 µmol photons m−2 s−1) was supplied

using a chip-on-board LED array. The values of Fv/Fm in the leaves

of both the control- and HN-grown plants were shown in

Supplementary Table S1. LET rate was calculated as follows: LET

rate = a × Y(II) ×PFD. The value of a was supposed to be 0.42.

The signals for oxidized P700 (P700+), oxidized plastocyanin

(PC+), and reduced ferredoxin (Fd-) were calculated based on the

deconvolution of four pulse-modulated dual-wavelength difference

signals in the near-infrared region (780 – 820, 820 – 870, 840 – 965,

and 870–965 nm) (Klughammer and Schreiber, 2016). Both P700

and PC were completely reduced, and Fd was fully oxidized in the

dark. To determine the total photo-oxidizable P700 (P700max) and

PC (PCmax), a saturation flash was applied after 10 s of

illumination with far-red light (740 nm). The following formulas

were used: The quantum yield of oxidized P700 (P700+), Y(ND) =

P700+/P700max. In the present research, we showed Y(ND) as
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P700+. Total photo-reducible Fd (Fdmax) was determined by

illumination with red light (450 µmol photons m−2 s−1) after

plant leaves were adapted to the dark for 5 min. The redox states

of both P700 and PC under light illumination were evaluated as the

ratios of P700+ and PC+ to total P700 and total PC, respectively. The

redox state of Fd was also determined similarly. The values of

P700max, PCmax, and Fdmax in the leaves of both the control- and

HN-grown plants were shown in Supplementary Table S1.

For the analysis of dark-interval relaxation kinetics (DIRK

analysis) (Sacksteder and Kramer, 2000), the red light was

temporarily turned off for 400 ms at steady-state photosynthesis.

The oxidation rate of Fd- was estimated by a Dual/KLAS-NIR

spectrophotometer and expressed as a relative value by estimating

the initial decay of Fd-. The detected signal was confirmed as

reduced Fd by comparison with a mutant expressing the

flavodiiron protein (FLV) in Arabidopsis thaliana (Yamamoto

et al., 2016), which showed the higher rate of the reduced Fd

(Supplementary Figure S1). FLV reduces O2 to H2O using Fd as the

electron donor (Sétif et al., 2020). vFd(CET) was estimated as

follows; if only LET is driving the vFd, then the light dependence

of the vFd should follow LET rate. In other words, vFd independent

LET reflects the vFd(CET). In the low light intensities, as vFd(CET)

is considered to have little function, the vFd was plotted to match

the LET rate, and the vFd produced by the LET was then estimated

from the graph. The gap between the vFd obtained from the analysis

and estimated from the LET rate was then used as the vFd(CET).

The other set different from the above set were used for the

simultaneous analysis of the electrochromic shift (ECS) signal

with CO2/H2O-exchange, as follows.
Simultaneous measurements of
electrochromic shift signal with CO2/H2O-
exchange

Electrochromic shift (ECS) signal with CO2/H2O-exchange in

sunflower plants (Helianthus annuus) were simultaneously

analyzed by the method reported in the previous study (Maekawa

et al., 2024). The magnitude of the ECS signal was analyzed by

DIRK analysis (Sacksteder and Kramer, 2000; Avenson et al., 2004)

and normalized as follows (Klughammer et al., 2013). A single

turnover flash (50 ms) was used to illuminate the leaf for the single

turnover (ST) flash-induced ECS signal (ECSST). Then, the

measured ECS signal was divided by ECSST and was used as

proton motive force (pmf) (Shimakawa and Miyake, 2021). The

contribution of both DpH and DY to the total ECS signal was

separately evaluated after turning off the AL illumination over

longer periods of darkness (Cruz et al., 2004).
Statistical analytics

Statistical analysis of the Welch’s t-test was performed using the

commercial software JMP8 (ver. 14.2.0, SAS Institute Inc., Cary,

NC, USA).
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Results

The dependence of the parameters: CO2 assimilation rate,

chlorophyll (Chl) fluorescence [Y(II), qL, NPQ] and the redox

states of P700, PC, and Fd on light intensity were examined in

sunflower leaves grown in both the control- and high-nitrogen

(HN) conditions (Figure 1). In control-grown conditions, the CO2

assimilation rate reached a maximum at light intensities of

approximately 800 – 1,000 µmol photons m-2 s-1. In contrast,

CO2 assimilationrates by HN-grown leaves increased with light

intensity, even up to 1,600 µmol photons m-2 s-1 where they were

higher than the control-grown leaves (Figure 1A). The value of Y(II)

decreased with increasing light intensity in both the control- and

the HN-grown leaves, but the Y(II) values were higher in the HN-

grown leaves (Figure 1B). Similarly, the qL decreased with

increasing light intensity in both conditions, with higher values

observed in HN-grown leaves (Figure 1C). The qP also showed the

similar response to the light intensity in the control- and HN-grown

leaves (Supplementary Figure S2). Both the control- and the HN-

grown leaves demonstrated an increase in NPQ with increasing

light intensity, with the HN-grown leaves exhibiting lower NPQ

values than the control (Figure 1D). For both growth conditions,

P700+ demonstrated an increase with light intensity; however, HN-

grown leaves exhibited lower P700+ levels than the control-grown

leaves at higher light intensities (Figure 1E). Similarly, PC+

increased with light intensity in both growth conditions, with

HN-grown leaves exhibiting lower PC+ levels than the control,

indicating a more reduced redox state (Figure 1F). Both the control-

and HN-grown leaves demonstrated an increase in Fd- with

increasing light intensity. In control-grown condition, the Fd-

reached a maximum at light intensities of approximately 800 –

1,000 µmol photons m-2 s-1, similar to the CO2 assimilation rate. In

contrast, the Fd- in HN-grown leaves maintained the maximum

level, even up to 1,600 µmol photons m-2 s-1 (Figure 1G). Both the

control- and HN-grown leaves demonstrated an increase in the

oxidation rate of Fd- (vFd) with increasing light intensity. The vFd

was estimated using DIRK analysis, as described in MATERIALS

AND METHODS section. In control-grown conditions, vFd

reached a maximum at the light intensity of 800 – 1,000 µmol

photons m-2 s-1, similar to Fd- (Figure 1H). In contrast, the HN-

grown leaves maintained the maximum rate, even up to 1,600 µmol

photons m-2 s-1.

The trend of vFd values over light intensity in control-grown

leaves clearly showed extra electron transport catalyzed by Fd, other

than LET to CO2 assimilation. Both vFd and LET rate were then

plotted against light intensity (Figure 2). At low light intensities (50

µmol photons m-2 s-1), vFd was minimal (Figure 1), indicating that

the PSI-CET rate can be considered negligible (Ohnishi et al., 2023;

Maekawa et al., 2024). The values were plotted in order to compare

vFd in low-light conditions with the LET rate. In both the control-

and HN-grown leaves, LET rate increased with light intensity

(Figures 2A, B), but unlike vFd, rates of LET did not show a

decrease at higher light intensities. A light-saturated rate of LET in

the control-grown leaves was observed at 800 – 1,000 µmol photons

m-2 s-1, while HN-grown leaves did not saturate even at 1,600 µmol
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FIGURE 1

The impact of light intensity on photosynthesis parameters. (A) The gross CO2 assimilation rate, A + Rd; (B) The effective quantum yield of PSII, Y(II);
(C) The redox state of plastoquinone, qL; (D) Non-photochemical quenching of Chl fluorescence, NPQ; (E) The oxidation state of P700, P700+;
(F) the oxidation state of plastocyanin, PC+; (G) the reduced state of ferredoxin, Fd-; (H) the oxidation rate of Fd-, vFd in sunflower plants. The net
CO2 assimilation rates (A) were measured concurrently with the other parameters under atmospheric conditions (40 Pa CO2, 21 kPa O2). The dark
respiration rates (Rd) were measured prior to the commencement of light illumination. Once the net CO2 assimilation reached a steady state at a
light intensity of 800 mmol photons m-2 s-1, the intensity was decreased to 50 and then increased to 1,600 in a sequential manner, following each
attainment of a new steady-state CO2 assimilation. The gross CO2 assimilation rates are expressed as A + Rd. Each parameter is plotted against the
light intensity. The black symbols represent data from the control-grown plants (n = 3), while the red symbols represent data from HN-grown plants.
Data are means ± SD (n = 3). Where not visible, error bars are smaller than the symbols. *p< 0.05; **p< 0.01 (Welch’s t-test).
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photons m-2 s-1, a phenomenon that mirrored the CO2 assimilation

rates (Figure 1).

The PSI-CET rate was estimated according to the following

methodology: If the LET rate and vFd exhibited an identical light

intensity dependence, then PSI-CET was deemed to be inactive

(Ohnishi et al., 2023; Maekawa et al., 2024). Conversely, if vFd

exhibited a more pronounced response, this increase indicated

active PSI-CET, vFd(CET), which is represented by a shaded area

(Supplementary Figure S3). In the control-grown leaves, which

show a decrease in vFd at the highest light intensities, the extra

electron transport catalyzed by Fd relative to LET indicates the

existence of PSI-CET. As for the control-grown leaves, HN-grown

leaves showed vFd additional to that required for LET,

demonstrating the existence of PSI-CET. In both the control- and

HN-grown leaves, vFd(CET) was plotted against the light intensity

(Figure 2C). In the control-grown leaves, the activity of vFd(CET)

over increasing light intensity was found to mirror the increase and

decrease in overall vFd (Figure 1H), indicating that variable vFd

(CET) is responsible for the difference between control- and HN-

grown plants.

To elucidate the physiological role of PSI-CET, a correlation

analysis was conducted between vFd(CET) and proton motive force

(pmf). The dependence of the proton motive force (pmf) and its

components, DpH and DY, on light intensity was evaluated using

ECS analysis (Figure 3). In both the control- and HN-grown leaves,

the dependence of pmf on light intensity was analyzed (Figure 3). It

is noteworthy that the pmf in HN-grown leaves was observed to be

slightly (but not significantly) lower than that in the control-grown

leaves. This could be due to the higher consumption rate of ATP

required to support the elevated CO2 assimilation observed in HN-

grown leaves relative to that in the control-grown leaves

(Figure 1A). Such a model is supported by the significantly higher

H+-conductance (gH+) seen in HN plants (Figure 3B). The gH+

depends on the catalytic activity of ATP synthase, and the recovery

rates of its substrates, ADP and Pi. A higher CO2 assimilation rate
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would regenerate ADP and Pi more rapidly, which contributes to

the lower pmf (Miyake, 2020; Wada et al., 2020). In the control- and

HN-grown leaves, DpH continued to increase with light intensity

(Figure 3C). In contrast, both the control- and HN-grown leaves

showed an increase of DY up to approximately 800 µmol photons

m-2 s-1, followed by a light dependent decrease in DY (Figure 3D),

mirroring the response in vFd(CET). Interestingly, the increase in

DY was significantly slower in HN plants, and the decrease of DY at

light intensities above 800 µmol photon m-2 s-1 was less pronounced

relative to control-grown leaves. These responses of DY to

increasing light intensity correspond to those in vFd(CET)

(Figure 2C) and might suggest that PSI-CET, as represented by

vFd(CET), plays a role in CO2 assimilation related to the

development of greater DY. Furthermore, the dependence of the

rate of pmf utilization (vH+ = gH+ × pmf) on light intensity were

compared between the control- and HN-grown leaves (Figure 3E).

In the both leaves, showed an increase of vH+ up to approximately

800 µmol photons m-2 s-1, followed by a light dependent decrease in

vH+. The extent of the decrease in vH+ in the control-grown leaves

was larger than that in the HN-grown leaves (Figure 3E). These

responses of vH+ to increasing light intensity also correspond to

those in vFd(CET) (Figure 2C). LET rate increased with light

intensity (Figures 2A, B), but unlike vH+, LET rate did not show

a decrease at higher light intensities. Only LET could not support

the ATP usage in CO2 assimilation. That is, PSI-CET would support

the ATP usage by the development of pmf with LET.

To elucidate what causes the rise and then fall in vFd(CET) over

increasing light intensity (Figure 2C), we analyzed the responses of

PSII and PSI acceptors and donors to rates of LET (Figure 4). In all

plants, increasing LET rates correlated with decreasing qL

(proportional to acceptor availability at PSII), increasing

protective non-photochemical quenching (NPQ), increasing

oxidation of PSI (P700+) and PC (PC+) (Figures 4B–D). In all

cases, saturation of LET above around 100 µmol e- m-2 s-1 in

control-grown plants correlates with divergence from HN-grown
FIGURE 2

The effects of light intensity on photosynthesis parameters, including the linear electron transport (LET) rate, and the oxidation rate of Fd- (vFd), were
investigated in sunflower plants. The both LET rate and vFd were estimated from data presented in Figure 1, as detailed in the materials and methods
section. Both LET rate and vFd are plotted against the light intensity. (A) control-grown plants; (B) HN-grown plants. The black symbols represent
the LET rate, while the red symbols represent vFd. (C) vFd(CET) were plotted against the light intensity. The black symbols represent data from the
control-grown plants, while the red symbols represent data from HN-grown plants. Data are means ± SD (n = 3). Where not visible, error bars are
smaller than the symbols. *p< 0.05 (Welch’s t-test).
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plants values of qL, NPQ, P700+ and PC+, where changes are

attenuated. Saturation of LET correlated exactly with saturation of

Fd- in control-grown plants, while neither parameter reached

saturation in HN-grown plants (Figure 4E). In both control- and

HN-grown leaves, vFd increased with LET (Figure 4F), but control-

grown leaves showed a downregulation of vFd as the LET rate

saturates. By contrast, HN-grown leaves maintained vFd, as LET

rates increased further. The relationship between LET and vFd is

reflected in that between LET and vFd(CET) (Figure 5A), with a

drop in vFd(CET) as LET rates saturate. This saturation also

correlates with a drop in qL values (Figure 4A), presumably
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because PSI-CET requires both the electron donor Fd-, and the

electron acceptor PQ to catalyze the electron transport around PSI.

Fd- and PQ availability (qL) were then plotted against LET rate

(Figure 5). In the control-grown leaves, as LET saturates, Fd- also

saturates at about 25%, while qL drops from 0.5 to 0.25 (50%)

(Figure 5B). In HN-grown leaves, Fd- continued to increase to about

30%, and qL continued to decrease (Figure 5C). These results

strongly indicate that vFd(CET) in the leaves adheres to the PSI-

CET functional model proposed by Allen (2003). In the control-

grown leaves, as LET increases, Fd- levels rise, stimulating PSI-CET

until it is suppressed by limited PQ availability (Figures 5A, B). By
frontiersin.org
FIGURE 3

The impact of light intensity on photosynthesis parameters: (A) proton motive force (pmf); (B) gH+; (C) DpH; (D) DY; (E) vH+ in sunflower plants.
These parameters were measured under atmospheric conditions (40 Pa CO2, 21 kPa O2), as detailed in the materials and methods section. Each
parameter is plotted against the light intensity. The black symbols represent control-grown plants, and the red symbols represent HN-grown plants.
Data are means ± SD (n = 3). Where not visible, error bars are smaller than the symbols. *p< 0.05; **p< 0.01 (Welch’s t-test).
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contrast, in HN-grown leaves, vFd(CET) does not drop at high LET

(Figure 5A) due to a more gradual decline in qL levels relative to

LET (Figures 5A, C).

As described above, PSI-CET rate was evaluated as vFd(CET),

and the data indicates it is regulated by the redox state of both Fd

and PQ. These results strongly suggest the existence of a mediator to

catalyze PSI-CET. The rate of PSI-CET as proposed by (Allen,

2003), is expressed as:

vFd(CET) = k � Fd� � PQ (1)

The constant k depends on the catalytic rate and the abundance

of a PSI-CET mediator, and can be estimated from the data in

Figures 1 and 2. From Equation 1, the k value was calculated using
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the parameters; qL as oxidized PQ availability and Fd- as reduced Fd

availability (Figure 6). These k values increased with light intensity

and above 350 µmol photons m-2 s-1, k values reached values for

HN-grown leaves (0.170 ± 0.019), significantly higher than for

control-grown leaves (0.129 ± 0.015) (p< 0.01) (Figure 6).
Discussion

The present research explores the mechanism and physiological

function of PSI-CET in vivo. It was observed that over increasing

light intensity both the PQ and Fd redox states altered in intact

sunflower leaves. These experimental conditions were therefore
FIGURE 4

The dependence of photosynthesis parameters: (A) qL; (B) NPQ; (C) PC+; (D) P700+; (E) Fd-; (F) vFd on LET rate in sunflower plants. These
parameters were from Figures 1 and 2. Each parameter is plotted against LET rate. The black symbols represent data from the control-grown plants,
while the red symbols represent data from HN-grown plants. Data are means ± SD (n = 3). Where not visible, error bars are smaller than the
symbols.
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judged conducive to experiments into how rates of PSI-CET are

regulated in vivo. A more reduced state of Fd increased rates of PSI-

CET while a more reduced state of PQ decreased rates of PSI-CET

(Figure 5). In other words, the maximum rate of PSI-CET was

found to be dependent on the redox state of both PQ (the end

acceptor) and Fd (the electron donor). At higher light intensities,

control of PSI-CET was dominated by the reduction state of PQ,

with Fd remaining at a constantly reduced level around 25%

(Figure 5). In comparison to the control-grown plants, the HN-

grown plants exhibited a higher rate of PSI-CET at higher light,

presumably due to the more oxidized state of PQ relative to LET in

these plants (Figure 4).

This study provides key insight into the physiological function

of PSI-CET. It has long been proposed that PSI-CET, in contrast to

LET, contributes to the generation of ATP by supplying proton

motive force (pmf) without producing NADPH (Heber andWalker,

1992; Yamori and Shikanai, 2016). Therefore, if the PSI-CET rate

(vCET), which serves as an indicator of its activity, correlated with

parameters associated with pmf—namely DpH, DY, gH+, and vH+

—this would provide circumstantial evidence supporting the

physiological significance of PSI-CET. We observed a positive

correlation between vCET and DY (Figures 1–3), and similarly

between vCET and vH+ (Figures 4, 5). At this point, however, it

must be noted that the presence of a DY component has been

challenged in the literature (Wilson et al., 2021). In Arabidopsis

mutants lacking non-photochemical quenching (NPQ) capacity,

DY formation is reportedly suppressed (Wilson et al., 2021).

Likewise, in the mutants deficient in zeaxanthin or lutein—key

pigments in the xanthophyll cycle—DY formation is impaired.

Ruban group argued that pmf reflects DpH only (Wilson et al.,

2021). Our own findings raise similar concerns regarding the

validity of DpH and DY estimation using the methods developed

by the Kramer group (Figure 3). We observed that DpH did not

saturate with increasing light intensity, which cannot be explained

by the saturating LET rate or the peaked response of vCET. These

findings underscore the need for careful interpretation of DpH
and DY measurements. Therefore, we focused on alternative
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pmf-related parameters—specifically pmf, gH+, and especially

vH+ (Figures 3–5). Notably, vH+ exhibited a peaked response to

light intensity, similar to vFd, which encompasses vCET. Moreover,

vH+, vFd, and vCET all showed comparable dependencies on the

LET rate. These findings strongly support the conclusion that PSI-

CET contributes to the formation of pmf and thereby promotes

ATP synthesis.

As shown in Figure 6, we confirmed the existence of the PSI-CET

mediator, ferredoxin quinone oxidoreductase (FQR). So far,

ferredoxin NADP oxidoreductase (FNR), NADH dehydrogenase

(NDH), cytochrome (Cyt) b6/f complex, and pgr5/pgrL1 have been

proposed as PSI-CETmediators. However, it has already been clarified

that NDH and pgr5/pgrl1 are not involved in the major pathway of

PSI-CET in higher plants (Ohnishi et al., 2023; Maekawa et al., 2024).

In cyanobacteria, NDH is the major mediator of PSI-CET, and the

PSI-CET rate catalyzed by NDH is comparable to the LET rate (Hu

et al., 2013; Han et al., 2017; Theune et al., 2021; Hualing, 2022; Liu

et al., 2024). In higher plants, however, the amount of NDH is very low

compared to other components of the thylakoid membrane electron

transport chain. For example, in Arabidopsis thaliana, the amount of

NDH is approximately 1% of that of PSI (Pribil et al., 2014; Johnson,

2025). This likely explains why the NDH-dependent PSI-CET rate is

low in higher plants. The involvements of FNR and Cyt b6/f complex

as FQR in PSI-CET must be clarified in the future. However, FNR

does not interact with Cyt b6/f complex (Zakharov et al., 2022).

Furthermore, we found an increase of the k value with light intensity,

until it reached a constant level above 400 µmol photons m-2 s-1. These

facts demonstrate the activation of this FQR pathway.

How is the PSI-CET functional expression mode revealed in

this study related to the light-dependent structural reorganization of

thylakoid membranes that underpins the functional expression of

PSI-CET and LET (Garty et al., 2024)? When Arabidopsis leaves

that have been kept in darkness are transferred to light, part of the

grana with appressed thylakoid membranes is transformed into

stacked thylakoid doublets possessing properties characteristic of

the non-appressed stroma thylakoid membranes. This structural

change is reversible: phosphorylation of PSII–LHCII complexes in
FIGURE 5

The impacts of the redox state of Fd and PQ on vFd(CET). (A) vFd(CET) was from Figure 2, and plotted against LET rate. The black symbols represent
data from the control-grown plants, while the red symbols represent data from HN-grown plants. (B) Both Fd- and qL were from Figures 1 and 2,
and plotted against LET rate in the control-grown plants. The black symbols represent data from the control-grown plants, while the red symbols
represent data from HN-grown plants. (C) Both Fd- and qL were from Figures 1 and 2, and plotted against LET rate in the HN-grown plants. The
black symbols represent data from the control-grown plants, while the red symbols represent data from HN-grown plants. Data are means ± SD
(n = 3). Where not visible, error bars are smaller than the symbols.
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grana thylakoids under illumination induces their transition into

stacked thylakoid doublets, while dephosphorylation triggers the

return to grana structures. The appressed thylakoid membranes are

enriched in PSII and LHCII, whereas the non-appressed stroma

thylakoid membranes are enriched in PSI, ATP synthase, and the

Cyt b6/f complex (Jennings et al., 1979; Andersson and Anderson,

1980; Albertsson, 2001; Danielsson et al., 2004; Caffarri et al., 2014;

Kirchhoff et al., 2017). This physical separation of PSI and PSII is

thought to suppress plastoquinone (PQ) diffusion and thereby

promote PSI-CET (Garty et al., 2024). As illumination continues,

the appearance of stacked thylakoid doublets reduces the physical

distance between PSI and PSII, which has been proposed to

promote LET activity (Garty et al., 2024). As shown in Figures 4

and 5, in control-grown plants, PSI-CET rates decreased when light

intensity increased beyond the saturation point of the LET rate.

However, compared to control-grown plants, HN-grown plants

maintained a more oxidized PQ pool and a more reduced Fd pool

even at higher light intensities. Consequently, PSI-CET rates

remained high in HN-grown leaves under strong light. At first

glance, this appears contradictory to the notion that the formation

of stacked thylakoid doublets under illumination suppresses PSI-

CET. It is possible that PSI-CET activity is strongly influenced by

the redox states of PQ and Fd. The relationship between the

formation of stacked thylakoid doublets and the PSI-CET

functional expression model (Equation 1) remains an intriguing

question and warrants future investigation.

Although a more reduced state of Fd was necessary for the

activation of PSI-CET, Fd- (%) reached a plateau in response to

increasing the light intensity (Figures 1, 2). In the control-grown

plants, the Fd- (%) reached a plateau at approximately 800 − 1,000
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µmol photons m-2 s-1 (Figure 1). A constant redox state of Fd is

contingent upon equilibrium between the rates of reduction and

oxidation of Fd. The oxidation rate of Fd was saturated, as

evidenced by the saturation of both the CO2 assimilation rate and

the LET rate (Figures 1, 2). This indicates that the photorespiration

rate also reached a saturation point by approximately 800 – 1,000

µmol photons m-2 s-1 (Sejima et al., 2016; Wada et al., 2020).

Despite this saturation of electron sink activity, the redox state of Fd

remained largely unaltered with increasing light intensity. That is,

the reduction rate of Fd should be downregulated. The acidification

of the luminal side of thylakoid membranes has been demonstrated

to reduce the activity of PQH2 oxidation by the Cyt b6/f complex

(Tikhonov, 2014; Degen and Johnson, 2024). However, the pmf

reached a saturation point in response to further increases in light

intensity above approximately 900 µmol photons m-2 s-1. In other

words, if the pmf reflected DpH mainly (Wilson et al., 2021), the

acidification control of PQH2 oxidation by the Cyt b6/f complex was

not operational at higher light intensities, although the increase in

light intensity resulted in the further oxidation of P700 in PSI. It can

be inferred that an alternative regulatory mechanism of PQH2

oxidation is responsible for suppressing the electron flow from

PQH2 to PSI. We have put forth a hypothesis regarding the

suppression mechanism of PQH2 oxidation, reduction-induced

suppression of electron flow, RISE (Shaku et al., 2016; Shimakawa

et al., 2018; Furutani et al., 2020; Malone et al., 2021; Wada et al.,

2020; Degen and Johnson, 2024; Johnson, 2025). A higher reduced

state of PQ inhibits the Q cycle in the Cyt b6/f complex, resulting in

the oxidation of P700 in PSI. Indeed, the reduction of PQ persisted

even when the light intensity was augmented above approximately

800 µmol photons m-2 s-1 (Figure 1C). It is conceivable that RISE

could serve to maintain a constant reduction level of Fd at higher

light intensities in the control-grown leaves. Conversely, both

luminal acidification and RISE would act in concert to inhibit the

further reduction of Fd at the higher light intensity in HN-grown

leaves. The pmf increase and reduction of PQ persisted at the light

intensities exceeding 800 µmol photons m-2 s-1 (Figures 1, 5).

The suppression of electron transport from PQH2 to the PSI

acceptor side by both luminal acidification and RISE indicates that

the supply of both NADPH and ATP necessary for the dark

reaction is sufficient. Furthermore, this demonstrates that PSI

should be protected from photoinhibition under the higher light

intensity. The accumulation of electrons at the acceptor side of PSI,

and the reduction of electron carriers: A0, A1, FX, and FA/FB in the

PSI complex elevates the likelihood of the carriers’ reaction with O2,

resulting in the production of O2
- (Asada, 1999; Khorobrykh et al.,

2020; Miyake, 2020). Indeed, the experiment of filling the

aforementioned electron carriers with electrons has been

demonstrated to result in oxidative damage to PSI (Sejima et al.,

2014; Furutani et al., 2023; Shimakawa et al., 2024). The oxidation

of PSI, which is induced by both the acidification of the luminal side

and RISE, has been demonstrated to suppress the photoinhibition

of PSI by oxidizing the electron carriers on the acceptor side of PSI

(Sejima et al., 2014; Shimakawa et al., 2016; Furutani et al., 2023).
FIGURE 6

The dependence of the catalytic constant k in PSI-CET on the light
intensity. The k value was estimated from the values of qL, Fd- and vFd
(CET) from Figure 5, following the Equation 1: k = vFd(CET)/(qL x Fd-).
The estimated k values were plotted against the light intensity. Both
black and red horizontal lines: the mean values of k, 0.170 and 0.129 in
control- and HN-grown leaves.
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The aforementioned facts, in conjunction with the constant

reduction in Fd levels, illustrate that the prevention of oxidative

damage is of greater significance than PSI-CET.

Additionally, non-photochemical quenching (NPQ) of Chl

fluorescence demonstrated a positive correlation with increasing

light intensity in both the control- and HN-grown leaves (Figure 1).

In general, the induction of NPQ requires the luminal acidification

of thylakoid membranes, as observed in pmf formation (Baker et al.,

2007; Ruban et al., 2012; Suzorsa et al., 2016). As previously

outlined, the pmf reached a saturation point at approximately 800

µmol photons m-2 s-1, particularly in the control-grown leaves

(Figure 3A). Nevertheless, the NPQ continued to increase with

increasing light intensity. The various Chl fluorescence parameters

are interrelated and none can be considered independent (Miyake

et al., 2009). Consequently, alterations in the remaining parameters

will result in a corresponding change in NPQ, even when the pmf

remains constant (Miyake et al., 2009; Ruban and Murche, 2012).

The relationship between these parameters in Chl fluorescence, as

observed in both the lake and puddle models, can be described as

follows: In the lake model, NPQ is defined as follows: NPQ = [1/Y

(II)] × {qL × [1-Y(II)] × [(Fv/Fm)/(1-Fv/Fm)]} - 1 (Miyake et al.,

2009); in the puddle model, NPQ is given by the following equation:

NPQ = [1/Y(II)] × qP × [(Fv/Fm)/(1-Fv/Fm)] - [1 + (Fv/Fm)/(1-Fv/

Fm)] (Ruban and Murche, 2012). In the puddle model, qP

represents the parameter for photochemical quenching of Chl

fluorescence (Oxborough and Baker, 1997; Schreiber et al., 1986).

The continuation of the increase in NPQ will be the result of the

continuation of the decrease in both Y(II) and qL (Figure 1).
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The characteristics of PSI-CET, as elucidated in the present

research, are summarized in Figure 7. Ferredoxin-quinone

oxidoreductase (FQR) catalyzes PSI-CET. The expression of

PSI-CET is contingent upon the redox state of both PQ and Fd,

which in turn is responsive to changes in light intensity. In

conditions of low light intensity, the rate of CO2 assimilation is

limited by the availability of light energy. The ratios of both PQ/

PQH2 and Fd/Fd- are high. Subsequently, the rate of PSI-CET is

found to be negligible in comparison to that of LET (Figure 7A).

As light intensity is increased to a level at which CO2 assimilation

is saturated, for example, approximately 800 – 900 µmol photons

m-2 s-1, the rate of LET is observed to increase. Furthermore, the

reduction of both PQ and Fd results in an increase in the PSI-CET

rate to its maximum value (Figure 7B, Optimum light). The

increase in both LET and PSI-CET rates results in the formation

of the proton motive force (pmf). The acidification of the luminal

side, as observed in the pmf, induces the oxidation of both PC and

P700 (Figure 1). Furthermore, an additional increase in light

intensity beyond the saturation point of the CO2 assimilation rate

facilitates a greater reduction in PQ to a higher value of PQH2/

PQ. Conversely, the reduction level of Fd remains unaltered

(Figure 7C, High Light). The reduction of PQ has the effect of

suppressing the PSI-CET rate. At high light, the highly reduced

state of PQ induces RISE, which maintains the redox level of the

electron carriers of the acceptor-side of PSI in the oxidized state,

as indicated by the constant reduced state of Fd. This inhibits the

production of reactive oxygen species (ROS) and safeguards PSI

from oxidative damage (Furutani et al., 2023).
FIGURE 7

The expression model of PSI-CET in response to the light intensity: (A) Low light; (B) Optimum light; (C) High light. Please see the details in the
discussion section.
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SUPPLEMENTARY FIGURE 1

Responses of Fd- to actinic light illumination in WT and FLV overexpressed
(35S; PpFlv no.13) in Arabidopsis thaliana. Actinic light illumination (200 µmol

mol photons m-2 s-1, 3 s) to the leaves of WT (A) and 35S; PpFlv no.13 (B)
reduced Fd. Dark periods are indicated with a black bar, light period is
indicated with a white bar. Signals of the reduced Fd were monitored by

DUAL/KLAS-NIR, as described in MATERIALS AND METHODS section.

SUPPLEMENTARY FIGURE 2

Dependence of qP on both (A) the light intensity and (B) LET rate. The values

of qP were estimated from the data in Figure 1 (Ruban andMurche, 2012). The

black symbols represent the control-grown plants, while the red symbols
represent the HN-grown plants. Where not visible, error bars are smaller than

the symbols. *, p< 0.05 (Welch’s t-test).

SUPPLEMENTARY FIGURE 3

The effects of light intensity on photosynthesis parameters, including the linear

electron transport (LET) rate, and the oxidation rate of Fd- (vFd), were investigated

in sunflower plants. The both LET rate and vFd were estimated from data
presented in Figure 1, as detailed in the MATERIALS AND METHODS section.

Both LET rate and vFd are plotted against the light intensity to align as described in
theMATERIALS ANDMETHODS section. (A) control-grown plants; (B)HN-grown

plants. The black symbols represent the LET rate, while the red symbols represent
vFd. The shaded area depicts the rate of Fd-dependent cyclic electron transport

around PSI, represented by vFd(CET) as shown in Figure 2C. Data are means ± SD

(n = 3). Where not visible, error bars are smaller than the symbols.

SUPPLEMENTARY TABLE 1

Contents of chlorophyll (Chl), total nitrogen (N), and Rubisco, Fv/Fm,

P700max, PCmax, and Fdmax in the leaves of sunflower plants. Contents of
Chl, total nitrogen (N), and Rubisco were measured, as described in the

MATERIALS AND METHODS section. Data are means ± SD (n = 3). *p< 0.05,

**p< 0.01 (Welch’s t-test).
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