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Identification of DNA N6-
methyladenine modifications in
the rice genome with a fine-
tuned large language model
Yichi Zhang, Hao Chen, Shicheng Xiang and Zhibin Lv*

College of Biomedical Engineering, Sichuan University, Chengdu, China
DNA N6-methyladenine (6mA) plays a significant role in various biological

processes. In the rice genome, 6mA is involved in important processes such as

growth and development, influencing gene expression. Therefore, identifying the

6mA locus in rice is crucial for understanding its complex gene expression

regulatory system. Although several useful prediction models have been

proposed, there is still room for improvement. To address this, we propose an

architecture named iRice6mA-LMXGB that integrates a fine-tuned large

language model to identify the 6mA locus in rice. Specifically, our method

consists of two main components: (1) a BERT model for feature extraction and

(2) an XGBoost module for 6mA classification. We utilize a pre-trained

DNABERT-2 model to initialize the parameters of the BERT component.

Through transfer learning, we fine-tune the model on the rice 6mA

recognition task, converting raw DNA sequences into high-dimensional feature

vectors. These features are then processed by an XGBoost algorithm to generate

predictions. To further validate the effectiveness of our fine-tuning strategy, we

employ UMAP(Uniform Manifold Approximation and Projection) visualization.

Our approach achieves a validation accuracy of 0.9903 in a five-fold cross-

validation setting and produces a receiver operating characteristic (ROC) curve

with an area under the curve (AUC) of 0.9994. Compared to existing predictors

trained on the same dataset, our method demonstrates superior performance.

This study provides a powerful tool for advancing research in rice

6mA epigenetics.
KEYWORDS
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1 Introduction

N6-methyladenine(6mA) is produced by methylation of the N6 position of adenine

and has been found in bacteria, eukaryotes, and archaea (Zhang et al., 2015; O’Brown and

Greer, 2016). Rice is one of the most important cereal crops in the world. Within the rice

genome, 6mA serves as a critical epigenetic modification, regulating gene expression
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through methylation at the N6 position of adenine (Lv et al., 2020;

Chen et al., 2022; Jin et al., 2022). Studies have shown that 6mA in

rice plays a vital role in many biological functions. For example,

6mA in rice is associated with stress response and helps rice to

better adapt to adversity (Zhang et al., 2018; Ding et al., 2023). It is

also associated with reproduction and regulates the growth and

development of rice (Zhou et al., 2021; Yang et al., 2024). Zhou et al.

discovered that 6mA is highly enriched in specific sequence motifs,

conserved DNA sequence patterns that serve as recognition sites for

epigenetic regulators. These motifs include AGG and GAGG, which

are assumed to represent the binding elements of methyltransferase

complexes or chromatin associated proteins. 6mA methylation

preferentially occurred on these specific nucleotide motifs,

indicating their functional significance in epigenetic regulation

(Lee et al., 2018). And this methylation pattern is tightly linked to

the drought stress response in rice (Zhou et al., 2018; Yang et al.,

2024). In addition, 6mA can directly affect seed size and yield

formation by regulating the expression of endosperm development-

related genes (Zhou et al., 2021). In recent years, epigenetic

breeding strategies based on CRISPR-6mA editing technology

have provided new ideas to improve disease resistance and yield

in rice by targeting modification of the 6mA locus (Romero and

Gatica-Arias, 2019). However, traditional experimental methods

such as SMRT-seq for detecting 6mA locus have the limitations of

high cost and low throughput, and there is an urgent need to

develop efficient computational prediction models to guide

subsequent functional studies (Zhu et al., 2018; Wang L. et al.,

2023; Chen et al., 2024; Liu et al., 2024; Shao et al., 2024; Xie H.

et al., 2024; Zhou et al., 2024).

In recent years, machine and deep learning approaches have

successfully addressed many challenges in identifying 6mA

modifications in rice genomes (Sinha et al., 2023; Wang R. et al.,

2023). In 2019, Chen et al. developed the first method for predicting

DNA 6mA sites in rice, called i6mA-Pred, utilizing nucleotide

chemical property (NCP) features and a support vector machine

(SVM) as the classifier (Chen et al., 2019; Zou et al., 2022; Meher

et al., 2024; Wang Y. et al., 2024). Subsequent research has seen the

emergence of various single-classifier-based prediction methods,

including MM-6mAPred (Pian et al., 2019), i6mA-DNCP (Park

et al., 2020), iN6-methylat (Le, 2019), and iDNA6mA-rice (Lv et al.,

2019). Moreover, ensemble learning models combining multiple

classifiers, such as csDMA (Liu et al., 2019), SDM6A (Basith et al.,

2019), 6mA-Finder (Xu et al., 2020), Meta-i6mA (Hasan et al.,

2021), i6mA-VC (Xue et al., 2021), i6mA-Vote (Teng et al., 2022),

and EpiSemble (Sinha et al., 2023), have been developed to enhance

model performance and robustness. Deep learning techniques have

evolved from traditional artificial neural network frameworks and

have shown significant improvement in predictive power across

multiple research domains. With the development of deep learning

and its excellent performance, researchers began to apply it to the

problem of DNA 6mA site prediction. In 2019, Yu et al. developed a

prediction model called SNNRice6mA (Yu and Dai, 2019) based on

convolutional neural networks (CNNs) through single-nucleotide

one-hot coding, obtaining an accuracy of 0.920. Another group of

researchers, Lv et al., proposed a convolutional neural network
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iRicem6A-CNN (Lv et al., 2021) based on a dinucleotide one-hot

encoder in 2020, achieving an accuracy of 0.938 for 5-fold cross-

validation. However, it is worth noting that CNNs are limited in

focusing on only part of the information. Deep6mA (Li Z. et al.,

2021), which consists of a convolutional neural network (CNN) and

a bidirectional LSTM (BLSTM) module to solve the long-distance

nucleotide association problem by learning contextual

dependencies of the sequences, was proposed by Li et al. in 2021

and achieved a 5-fold cross-validation accuracy of 0.940.

Over the last few years, large-scale language modeling (LLM)

has progressed tremendously (Li H. et al., 2021; Xie X. et al., 2024;

Chen et al., 2025). The well-known model, ChatGPT, is a fine-tuned

version of the base GPT-3 model. By learning contextual text in a

self-supervised manner, it can both understand and generate

human language (Devlin et al., 2019; Wang G. et al., 2024). DNA

sequences exhibit similarities to natural language. Nucleotides, the

building blocks of nucleic acids, serve as “words” within biological

systems’ “languages”. LLMs can be adapted for the analysis of

biological sequence data by leveraging the structure of DNA and

protein sequences as analogous to natural language texts (Jumper

et al., 2021; Rives et al., 2021; Wei et al., 2021; Li T. et al., 2024; Li Y.

et al., 2024; Qiao et al., 2024; Lai et al., 2025; Xie et al., 2025). There

have been many breakthroughs in LLMs for applications in biology,

such as AlphaFold2, a protein prediction model with very high

accuracy (Jumper et al., 2021), the Geneformer model trained on

data from about 10 million human single-cell RNA sequences (Zou

et al., 2019; Theodoris et al., 2023), and DNABERT, a transformer-

based DNA pre-training model (Ji et al., 2021). While LLMs

demonstrate potential for identifying patterns and correlations in

noisy biological datasets (Lam et al., 2024; Soylu and Sefer, 2024; Xie

X. et al., 2024; Liu et al., 2025), they have yet to gain acceptance

within plant science research. To date, LLMs have not been

employed in the study of 6mA locus prediction in rice.

In this study, we develop a large language model-based transfer

learning model called iRice6mA-LMXGB. it consists of a pre-

trained DNABERT2 model and an XGBoost model. It contains a

unique fine-tuning architecture that relies exclusively on DNA

sequence data to distinguish 6mA sequences from non-6mA

sequences. Experimental results demonstrate the model’s

outstanding performance, achieving a validation accuracy of

0.9903 through 5-fold cross-validation. Compared to all previous

methods tested on standard datasets, iRice6mA-LMXGB

significantly outperforms them, suggesting that this novel

approach has the potent ia l to t rans form bio log ica l

sequence modeling.
2 Materials and methods

2.1 Benchmark dataset

In this study, we utilized the rice dataset constructed by Lv et al.

(2020) for model training and evaluation using 5-fold cross-

validation. To ensure the high quality of the data, sequences with

greater than 80% similarity were removed via the CD-HIT program
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(Li and Godzik, 2006). The dataset is made of 154,000 sequences

with 6mA sites and 154,000 sequences without 6mA sites. This is a

widely adopted and balanced rice dataset. During model training,

unbalanced datasets may lead to unreliable results. The majority

class samples are dominant and the model will favor the majority

class during training, thus ignoring the minority class. This may

result in the model having high accuracy for the majority class but

low recognition for the minority class during prediction. For ease of

reference, we denote it as “rice-Lv” throughout this study. Both

positive and negative sequences in the rice-Lv dataset are 41 base

pairs in length. Positive sequences represent 6mA modifications at

their centers, while negative sequences lack such modifications at

theirs. By employing this well-established dataset, we enable a fair

comparison between our method and those previously reported.
2.2 Architecture of iRice6mA-LMXGB

The architecture of iRice6A-LMXGB is presented in Figure 1,

comprising two main components: the pre-trained DNABERT-2

module and the XGBoost module. DNABERT-2 is a pre-trained

BERT model specifically designed for encoding DNA sequences. It

can efficiently identify complex long-range dependencies in these

sequences (Zhou et al., 2023). And this module will undergo further

fine-tuning in this study. XGBoost’s superior performance,

particularly in terms of speed and accuracy when processing

large-scale datasets, enables its extensive use in solving

classification problems (Chen and Guestrin, 2016; Yang et al.,

2021). It utilizes the feature vectors output from the DNABERT-2

model to generate final prediction results. A detailed explanation of

the model follows.

2.2.1 DNABERT-2
DNABERT-2 is an iterative version of DNABERT. DNABERT

is the first BERT-based DNA language model (Ji et al., 2021).

Rigorously trained on a comprehensive genomic dataset

encompassing the entire human genome, DNABERT offers a

linguistic perspective for genomic analysis. While widely adopted,

the initial version of DNABERT exhibited notable technical

limitations. Specifically, DNABERT faced two critical challenges:

first, its training data is limited to a single-species genome, which

makes it difficult for the model to capture sequence-conserving

patterns and diversity features across species; second, the k-mer

sequence partitioning mechanism it employs not only triggers the

hidden danger of data leakage during the training process, but also

significantly increases the computational complexity (Moeckel

et al., 2024). Such limitations underscore the pressing need for

innovation and improvement in DNA-based language modeling

research. To address these challenges, DNABERT-2 introduced

significant improvements in both areas. First, it breaks through

species boundaries and employs cross-species genomic datasets for

pre-training, significantly enhancing the model’s ability to

recognize evolutionarily conserved regions and species specificity.

Second, at the data processing stage, DNABERT-2 employs byte-
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pair encoding (BPE), a novel tokenization method that replaces

traditional k-mer partitioning. This is a data compression algorithm

widely used in large-scale language models (Sennrich et al., 2015),

which effectively solves the risk of data leakage and improves

computational efficiency, successfully overcoming the limitations

of k-mer tokenization. As demonstrated by Zhihan et al.’s

comparative analysis, compared to conventional 6-mer

tokenizat ion methods, the byte-pair encoding (BPE)

implementation exhibits superior sequence compression

efficiency, reducing the tokenized sequence length by a factor of

5. The dramatic reduction in dimensionality directly improves the

computational efficiency of processing genome sequences (Zhou

et al., 2023).

The BERT model consists of two independent components: the

module responsible for preprocessing BERT input and the pre-

training BERT module. In the BERT input preprocessing module,

DNABERT-2 utilizes BPE to tokenize DNA sequences. Byte Pair

Encoding (BPE) is a subword tokenization algorithm commonly

employed in NLP Natural Language Processing) tasks. Its key

mechanism lies in iteratively merging character pairs of the

highest frequency to construct a vocabulary of subwords. During

tokenization, DNABERT-2 appends a [CLS] token at the sequence

start and a [SEP] token at the end. Then, each token is put into an

embedding module and converted into a vector. The DNABERT-2

model uses the ALiBi(Attention with Linear Biases) (Press et al.,

2021) approach, which does not add positional embeddings to the

input, but rather adds a non-learned embedding in every Attention

computation to add a non-learning bias and a fixed set of statics to

combine the location information with the Attention score.

DNABERT-2 employs a transformer encoder architecture as the

backbone of its pre-trained BERT module. The feature matrix is

constructed by cascading encoders layer by layer across the

network’s layers (L). Each encoder comprises three components:

multi-head self-attention units, position-wise feed-forward neural

networks, and normalization layers. Within the i-th encoder stage,

the multi-head self-attention mechanism operates as follows.

Multihead(Xi) = Concat(head1, head2,…, headn)W
O,i

For the i-th encoder, the input matrix Xi  is handled through n

self-attentive heads for processing. The outputs of these heads are

then transformed by the output transformation matrix Wo,i, which

is computed in detail for each headi as follows.

headi = softmax
WQ,iXi(WK ,iXi)Tffiffiffiffiffi

dk
p !

 WV ,iXi

WQ,i, WK ,i and WV ,i serve as the transformation matrices for

the query, key, and value components of each head, respectively. dk
denotes the dimension of the matrix.

Specifically, after computing MultiHead(Xi) in the multi-head

attention mechanism, this resultant output is added to the residual

connection of the original input Xi for normalization. The

computation proceeds according to the formula below.

Yi = LayerNorm(MultiHead(Xi) + Xi)
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After normalization, the processed data is passed through a

feed-forward neural network using the following formula:

FFN(Yi) = max (0,YiW1 + b1)W2 + b2

W1, W2, b1 and b2 are the trainable weight parameters within

the feed-forward layer.
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The output of the i-th encoder is achieved through

normalization of the residual connection between Yi and FFN(Yi)

. Below is the corresponding formula.

Xi+1 = LayerNorm(Yi + FFN(Yi))

Finally, the output of the DNABERT-2 can be obtained by

cascading the L encoders as follows.
FIGURE 1

The proposed modeling framework, iRice6mA-LMXGB.
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X1 = Xi+1 ∈ Rd�N

where d denotes the dimension of the word vector and N

represents the total number of tokens.

DNABERT-2 follows the BERT model architecture, defined by

three key parameters: L = 12, H = 768, and A = 12. The parameter L

specifies the number of transformer layers (totaling 12). The

parameter H determines the hidden layer size, with each token

represented as a 768-dimensional vector. The parameter A specifies

the number of attention heads (totaling 12). In this study, we use the

full fine-tuning (FFT) (Church et al., 2021) method, which treats rice

DNA sequences as “sentences in natural language” and inputs them

into the DNABERT-2 module to adjust and update all the

parameters. Finally, we use the BERT model to convert them into

fixed-length feature vectors to obtain the original feature matrix

before fine-tuning and the feature matrix after 200 cycles of updating.

2.2.2 XGBOOST
The XGBoost classifier is a gradient boosting method that

integrates regression trees (Basith et al., 2019). The objective

function of the model is obj(q) = L(q) +W(q), L(q) is the training
loss function with the expression:

L(q) =o
n

i=1
l(yi, byi)

Where l(yi, ŷi) represents the training loss function for each

sample. yi represents the true value of the i-th sample. ŷi represents

the estimated value of the i-th sample.

Then the estimated value of the i-th sample is expressed as:

byi = oK
k=1

fk(xi), fk ∈ F

K is the number of integrated trees, and F denotes the space of

all possible decision trees. fk is a specific categorical regression tree

(CART).W(f ) is the tree structure complexity function, and its

specific form is:

W(f ) = gT +
1
2
lo

T

i=1
w2
i

The parameter g restricts the number of leaf nodes T of the tree to

control the complexity of the model. And the parameter l constrains

the sum of the weights w2
i   of each leaf node to suppress overfitting.

The objective function is continuously optimized by adjusting the

parameters for the optimal result. In this way, the XGBoost classifier

finally outputs the prediction results of the rice sequence about 6mA by

receiving the extracted feature vectors from DNABERT-2.
2.3 Evaluation metrics and methods

In this study, we validate our approach using a traditional 5-fold

cross-validation method and compare it to previous studies based

on the benchmark dataset rice-Lv.
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we will combine five metrics, including accuracy (ACC),

sensitivity (Sn), specificity (Sp), Matthew’s correlation coefficient

(MCC), and area under the curve (AUC), to comprehensively

evaluate the prediction performance of our model (Zou et al.,

2023; Zulfiqar et al., 2023; Guo et al., 2024; Huang et al., 2024;

Zhu et al., 2024).

ACC indicates the overall correctness of the model prediction

and is a basic benchmark used to evaluate the model performance,

which can be expressed as:

ACC =
TP + TN

TP + TN + FP + FN

The sensitivity Sn, also known as the true positive rate (TPR), is

expressed as:

SN =
TP

TP + FN

The specificity Sp, also known as the true negative rate (TNR), is

expressed as:

SP =
TN

TN + FP

MCC is a composite metric that assesses the overall quality of

classification model predictions by examining the performance of

the classification model in each of the four quadrants of the

confusion matrix. The superior score reflects the balanced

excellence between true positives (TP), true negatives (TN), false

negatives (FN) and false positives (FP). It can be defined as:

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p

The last performance metric we use is AUC, defined as the value

of the area under the subject’s operating characteristic curve. AUC

is also an important measure of the performance of a dichotomous

model. The larger the value of AUC, the better the model performs.

AUC is a floating-point number between 0 and 1. 1 indicates that

the model predicts perfectly, whereas 0.5 indicates that the model is

similar to a random prediction (Zhang et al., 2025).
3 Results and discussion

3.1 Model performance analysis

In this study, we developed three models. For the first model, we

directly used the pre-trained DNABERT-2 to extract 768-

dimensional features from rice DNA and fed them into an

XGBoost classifier for prediction tasks. The XGBoost classifier

shows unique advantages in genomics data classification tasks,

mainly due to its ability to efficiently handle high-dimensional

sparse data and its built-in regularization mechanism. Our

dataset, with more than 300,000 samples, is characterized by high

feature dimensionality, and XGBoost is able to efficiently capture

nonlinear interaction effects through the gradient boosting
frontiersin.org
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framework combined with second-order derivative optimization.

Its regularization term can in turn suppress overfitting and enhance

model generalization (Chen and Guestrin, 2016). Cross-validation

results showed ACC=0.6259, Sn=0.6207, Sp=0.6312, MCC=0.2519,

and auROC=0.6728 for this configuration. For the second model,

we loaded the rice-Lv dataset into the DNABERT-2 module and

conducted 200 iteration loops to develop a fine-tuned version of the

model. The 5-fold cross-validation scores were ACC=0.9903,

Sn=0.9898, Sp=0.9907, MCC=0.9805, auROC=0.9994 which are

58.22%, 59.47%, 56.96%, 289.24%, and 48.54%, respectively

higher than those of the non-fine-tuned model. For the third

model, we utilized LightGBM’s built-in function to assess and

prioritize feature importance using features extracted from the

fine-tuned DNABERT-2 model (Ke et al., 2017). The feature

ranking principle of LightGBM is based on the Gradient Boosting

Decision Tree (GBDT) framework, which evaluates feature

importance by quantifying the contribution of features in the

process of constructing the decision tree (Ke et al., 2017).

Following this, we selected the top 300 features for modeling with

XGBoost. The 5-fold cross-validation yielded ACC=0.9899,

Sn=0.9890, Sp=0.9908, MCC=0.9799, and auROC=0.9994. As

shown in Figure 2, our cross-validation results indicate that: (1)

Fine-tuned models outperformed non-fine-tuned counterparts

significantly. (2) However, applying feature selection after fine-

tuning caused minor performance degradation compared to models

without feature selection, not much difference overall. These

findings demonstrate the effectiveness of our fine-tuning strategy.

The pre-training model is usually trained on multi species datasets,

and may not be able to capture the 6mA distribution pattern unique

to rice. Through the fine-tuning strategy, the model parameters are

recalibrated, which can give priority to the local features in the rice

genome, and the sensitivity of the model to the sequence context of

rice 6mA is improved. Additionally, while XGBoost’s tree-based

architecture excels at managing high-dimensional data through

regularization techniques, our results suggest that applying
Frontiers in Plant Science 06
LightGBM-based feature selection after fine-tuning may slightly

reduce model performance due to fewer feature interactions. We

selected the second model with the best performance, performing

fine-tuning for 200 iterations without feature selection, to name

iRice6mA-LMXGB.
3.2 UMAP dimensionality reduction
visualization

In order to perform an in-depth analysis of the interpretability

of the iRice6mA-LMXGB model after integrating DNABERT-2

with XGBoost, we used the UMAP (Uniform Manifold

Approximation and Projection) technique. This is a nonlinear

dimensionality reduction and visualization algorithm for large-

scale datasets. Umap assumes that the data is distributed on a low

dimensional manifold. Firstly, the probability weight is defined in

the high dimensional space using the neighborhood graph to reflect

the similarity between points. Then the cross entropy loss function

is used to optimize the embedding in the low dimensional space to

align the low dimensional similarity with the high dimensional

structure. Based on graph theory and flow learning methods, it is

assumed that the available data samples are uniformly distributed in

the topological space and can be approximated and mapped from

these finite data samples to a lower-dimensional space for

visualization and analysis (McInnes and Healy, 2018).

To be more specific, we will visualize the distribution of 6mA and

non-6mA by projecting each feature vector onto a 2D view using the

UMAP technique. Figure 3 shows the arrangement of 6mA and non-

6mA samples in 2D space before and after fine-tuning, and the decision

boundary drawn in black by the XGBoost algorithm. Blue markers

denote non-6mA samples, and orange markers denote 6mA samples.

The first subplot represents the UMAP results of the original features

without fine-tuning, which can be interpreted as all the sample points

not showing any representative clustering. In Figure 3A, poor
FIGURE 2

(A) Comparison of model performance with or without fine-tuning and with or without feature selection; (B) Average ROC curves for five-fold
cross-validation of the three models. Where no fine-tuning_768 features denotes the model with no fine-tuning, 200 fine-tunings_768 features
denotes the model with two hundred fine-tunings without feature selection, and 200 fine-tunings_300 features denotes the model that was fine-
tuned 200 times and ranked for feature importance and the top 300 features are selected after the feature importance ranking.
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separation indicates significant feature overlap between the 6mA

sample points and the non-6mA sample points (Figure 3A),

suggesting a high degree of overlap in their distributions. The second

subfigure shows the results of projecting the high-dimensional feature

space learned from the iRice6mA-LMXGB model into a 2D view,

which shows much improved clustering, indicating a significant

increase in separation and a decrease in overlap in the feature space

(Figure 3B), resulting in improved performance. In summary, our

approach allows for better learning of model decision boundaries.

Through this visualization technique, we can more intuitively

understand the impact of features on model predictions, further

deepening our exploration of model interpretability.
3.3 Comparison of the proposed model
with existing models

To better evaluate the performance of our model, we compare it

with the following state-of-the-art methods, includingMM-6mAPred

(Pian et al., 2019), iDNA6mA-Rice (Lv et al., 2019), SNNRice6mA

(Yu and Dai, 2019), iRicem6A-CNN (Lv et al., 2021), ENet-6mA

(Abbas et al., 2022), Deep6mA (Li Z. et al., 2021) and SpineNet-6mA

(Abbas et al., 2020). Our model is evaluated using the same five-fold

cross-validation protocol on the same dataset as previous studies,

employing the identical metrics: ACC, MCC, Sn, Sp, and AUC. As

shown in Table 1, our iRice6mA-LMXGB model outperforms all

previous predictors across all metrics and demonstrates more stable

performance with less fluctuation in ACC, MCC, Sn, Sp, and AUC

values. In ACC, MCC, Sn, and AUROCmetrics, our model improves

over the previous best predictor SpineNet-6mA by 5%, 11.42%,

3.42%, 6.62%, and 1.98%, respectively. Furthermore, it outperforms

the previous best model, ENet-6mA, by 6.08% in Sp metric. To

facilitate visualization of the comparison results, we created a box-

and-whisker plot, as illustrated in Figure 4. To sum up, our

iRice6mA-LMXGB model demonstrates superior performance

compared to both machine learning-based and CNN/LSTM-based
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deep learning models for 6mA prediction in rice, showcasing its

robustness as a predictive tool.
4 Conclusions

In this article, we develop a novel computational model called

iRice6mA-LMXGB that combines fine-tuned large language modeling

to efficiently distinguish and identify 6mA and non-6mA loci in the rice

genome. We utilized the large language model, DNABERT-2, to

represent the DNA sequence as a continuous word vector, thus

effectively capturing the DNA sequence features. Subsequently, we

applied the robust machine learning method XGBoost to make

accurate predictions based on the extracted features. We compare

and analyze the performance of iRice6mA-LMXGB with other

predictors, and the results show that iRice6mA-LMXGB obtains the

best performance compared to previous models. Our model

outperforms all existing models on ACC, SN, SP, MCC, and AUC

(5-fold cross-validation: ACC = 0.9903, MCC = 0.9805, Sn = 0.9898, Sp
TABLE 1 5-fold cross-validation results of iRice6mA-LMXGB with several
previous methods on the rice-Lv dataset.

Method ACC MCC Sn Sp AUROC

MM-6mAPred 0.9149 0.8300 0.9347 0.8951 0.9600

iDNA6mA-Rice 0.9170 0.8350 0.9300 0.9050 0.9640

SNNRice6mA 0.9204 0.8400 0.9433 0.8975 0.9700

iRicem6A-CNN 0.9382 0.8770 0.9434 0.9331 0.9790

ENet-6mA 0.9437 0.8700 0.9467 0.9339 0.9800

Deep6mA 0.9401 0.8800 0.9506 0.9296 0.9800

SpineNet-6mA 0.9431 0.8800 0.9571 0.9292 0.9800

iRice6mA-LMXGB (ours) 0.9903 0.9805 0.9898 0.9907 0.9994
fron
Bold values indicate that the model proposed in this study achieves optimal results in each of
the assessment metrics.
FIGURE 3

UMAP dimensionality reduction visualization. (A) UMAP results of the original features of the unfine-tuned model. (B) UMAP results of features
learned by the iRice6mA-LMXGB model.
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= 0.9907, and auROC = 0.9994), suggesting that the iRice6mA-

LMXGB is a powerful and robust predictor that can help researchers

to identify and analyze the 6mA locus in the rice genome more

effectively, thus providing a deeper understanding of the complex

mechanisms of gene regulation and advancing the field of life sciences.

It is demonstrated through UMAP visualization that the fine-tuning

strategy for large language models significantly enhances the model’s

feature extraction ability. This raises the possibility that large language

models can be fine-tuned for various purposes and deployed for plant-

specific domains to solve biological problems. Moving ahead, we plan

to expand our dataset and perform model optimization to enhance the

generalizability of our model for broader applications.
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