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model for apple leaf disease
classification in natural
environments
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Kaiwen Hu1, Shuncheng Zhou1 and Daoqi Han1

1College of Computer and Information Engineering, Inner Mongolia Agricultural University,
Hohhot, China, 2Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia
Autonomous Region, Hohhot, China
Apple leaf diseases severely affect the quality and yield of apples, and accurate

classification is crucial for reducing losses. However, in natural environments, the

similarity between backgrounds and lesion areas makes it difficult for existing

models to balance lightweight design and high accuracy, limiting their practical

applications. In order to resolve the aforementioned problem, this paper

introduces a lightweight converged attention multi-branch network named

LCAMNet. The network integrates depthwise separable convolutions and

structural re-parameterization techniques to achieve efficient modeling. To

avoid feature loss caused by single downsampling operations, a dual-branch

downsampling module is designed. A multi-scale structure is introduced to

enhance lesion feature diversity representation. An improved triplet attention

mechanism is utilized to better capture deep lesion features. Furthermore, a

dataset named SCEBD is constructed, containing multiple common disease

types and interference factors under natural environments, realistically

reflecting orchard conditions. Experimental results show that LCAMNet

achieves 92.60% accuracy on the SCEBD and 95.31% on a public dataset, with

only 0.03 GFLOPs and 1.30M parameters. The model maintains high accuracy

while remaining lightweight, enabling effective apple leaf disease classification in

natural environments on devices with limited resources.
KEYWORDS

apple leaf disease, image classification, deep learning, triplet attention mechanism,
FGVC8 dataset
1 Introduction

Apple (Malus domestica), a member of the Rosaceae family, is one of the most widely

cultivated and commonly consumed fruits worldwide. China is the largest apple producer

globally, accounting for 58.3% of the world’s total apple production in 2022, ranking first in

the world (Association, 2023). However, the growth of apple leaves is frequently threatened
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by pathogens such as fungi and viruses, which can lead to various

diseases and result in significant economic losses (Ali et al., 2024).

Therefore, timely detection and accurate identification of apple leaf

diseases are of great importance.

Traditional apple leaf disease detection methods primarily rely

on expert visual inspection and experience (Sheng et al., 2022),

which are time-consuming, labor-intensive, and highly susceptible

to subjective factors such as fatigue, expertise level, and

environmental variability (Zhang et al., 2024). To improve

efficiency, researchers have proposed machine learning-based

approaches (Predić et al., 2022a), which extract handcrafted

global features—such as color, texture, and shape—and use

traditional image processing techniques combined with classifiers

for disease recognition (Bacanin et al., 2022; Bukumira et al., 2022).

However, these methods have notable limitations: (1) Handcrafted

features often lack the descriptive power to capture local

characteristics of complex lesions accurately; (2) They are

sensitive to noise, lighting variations, and background clutter,

resulting in unstable features and reduced classification accuracy.

With the rise of deep learning, convolutional neural networks

(CNNs) have demonstrated strong performance in crop disease

classification tasks (Wang et al., 2024; Petrovic et al., 2024; Huang

et al., 2025). CNNs can automatically learn discriminative features

from raw images, eliminating the need for manual feature

engineering. However, existing CNN-based models still face three

major challenges in apple leaf disease recognition: (1) Most models

are trained on images captured in controlled laboratory

environments, lacking high-quality samples collected under real-

world field conditions, which limits generalization and practical

deployment; (2) Many high-accuracy models are architecturally

complex and have large numbers of parameters, making them

difficult to deploy on resource-constrained mobile or edge

devices. While model compression techniques such as pruning

can partially reduce computational demands, it remains

challenging to balance accuracy and efficiency (Predić et al., 2022b).

To address these issues, this study constructs a real-field apple

leaf disease image dataset. Based on this dataset, we propose an

efficient and lightweight deep neural network, named LCAMNet.

The network integrates depthwise separable convolution and

structural re-parameterization techniques to achieve lightweight

yet effective modeling. In addition, it incorporates multi-scale

downsampling and multi-scale feature extraction modules to

enhance the representation of diverse lesion characteristics. An

improved triplet attention mechanism is also introduced to

strengthen the modeling of deep lesion features. Experimental

results demonstrate that LCAMNet achieves an accuracy of

92.60% on the SCEBD dataset and 95.31% on a public dataset,

while requiring only 0.03 GFLOPs and 1.30 million parameters,

making it highly suitable for deployment in resource-limited

environments for apple leaf disease classification.

The main contributions of this paper are as follows:
Fron
1. A dual-branch downsampling module is designed.

Applying different downsampling operations to channels

and using channel shuffle to improve feature fusion
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between channels. This avoids information loss caused by

s ing le downsampl ing strateg ies and improves

recognition accuracy.

2. A multi-scale feature extraction module is proposed. Four

feature extractors are designed to capture diverse features of

the lesion regions from different receptive fields. In

addition, channel separation is used to reduce the

convolutional computation cost, and the channel

shuffling method solves the information isolation issue

caused by grouped convolutions, promoting feature

fusion across different groups of channels.

3. An improved triplet attention mechanism is introduced.

The original 7x7 convolution is replaced by two cascaded

3x3 convolutions, which not only enhance the deep lesion

feature modeling ability but also effectively reduce the

model parameter size.

4. A novel dataset, SCEBD, is developed by aggregating

images from four distinct sources and employing a

variety of data augmentation techniques. It serves to

enable a comprehensive evaluation of LCAMNet and

significantly enhances its generalization capability.
The structure of this paper is as follows: Section 2 reviews

related work. Section 3 presents the dataset and the proposed

model. Section 4 outlines the experimental setup and results.

Section 5 provides the conclusion.
2 Related work

Since extracting effective features from crop disease images is a

critical and challenging task, and deep learning techniques have the

capability to automatically learn features from raw images, research

in this field primarily focus on designing high-performance model

architectures to improve recognition accuracy (Liu et al., 2022b;

Liang and Jiang, 2023; Li et al., 2024).

(Tang et al., 2024) improve the Inception module based on

ResNet50 and integrate the ResNeXt inverted bottleneck module.

Their model is capable of identifying seven categories of apple

leaves. (Sun et al., 2025) develop the EMA-DeiT model based on the

DeiT, achieving 99.6% accuracy on the PlantVillage dataset for

classifying 10 types of tomato diseases and 98.2% accuracy on a

dataset containing 6 disease types. (Zhang et al., 2023) introduce a

Dilated Inception module into AlexNet, replacing the fully

connected layer with global pooling, which effectively recognizes

apple leaf diseases under small sample conditions. (Jiang et al.,

2023) enhance the feature extraction ability for leaf diseases by

integrating channel and spatial attention mechanisms to ResNet18,

achieving 98.25% classification accuracy on a 5-class apple leaf

disease dataset. Although these studies show good performance in

terms of classification accuracy, most models have complex

architectures and large numbers of parameters, which limit their

deployment in real agricultural scenarios. Consequently, research

has shifted toward lightweight designs.
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(Cui et al., 2025) combine CNN and Transformer architectures,

achieving high accuracy with fewer parameters. (Li et al., 2023) use

a multi-branch structure to capture diversified features and apply

residual connections between layers to ensure maximum

information transfer, maintaining fewer parameters while

ensuring good generalization. (Dong et al., 2024) introduce the

ECA module into EfficientNetB0 model and apply knowledge

distillation to further optimize the model, increasing accuracy

without expanding model size. (Ullah et al., 2024) combine

convolutional and ViT blocks to capture both local and global

features, achieving 96.38% classification accuracy on the FGVC8

dataset. While these models have made significant progress in

lightweight design, they still face challenges such as simple

experimental datasets, which limit their adoption in real-world

agricultural environments. Some studies have begun to focus on

more challenging datasets.

(Wang and Cui, 2024) enhance the representational capacity of

the model by modifying the convolutional kernels of ShuffleNetV2

and introducing spatial attention and Ghost modules. They also

construct a dataset comprising five categories of apple leaf disease

images. Experimental results show that the improved model

outperforms the baseline model across multiple metrics, with the

model parameters totaling only 9.8 MB. (Liu et al., 2022a) build the

ALS module based on ShuffleNetV2 using depthwise separable

convolutions and channel shuffling, which reduces the

computational cost and number of parameters. Furthermore, a

knowledge distillation strategy is employed to train the model,

further improving its accuracy. This approach enables real-time,

automated monitoring of apple leaf pests and diseases on mobile

devices. (Liu et al., 2023) also propose a method based on

MobileNetV3, in which model parameters are progressively

optimized using a univariate approach. A flooding technique is

introduced as a novel training strategy to prevent excessive loss

minimization. This method achieves superior results on both

custom and public datasets. (Li et al., 2025) develop a corn leaf

disease recognition model based on MobileNetV3-Large,

incorporating a high-frequency feature extraction (HFFE) module

to integrate high-frequency image information at the network’s

output stage. Additionally, the ACON-C activation function is

introduced to enhance the model’s nonlinear representation

capacity. Experimental results indicate a 2.1% improvement in

average recognition accuracy compared to the baseline model.

(Zheng et al., 2023) propose a network architecture optimized for

both training and inference. By employing depthwise separable

convolutions and structural re-parameterization techniques, along

with embedding a parallel dilated attention module, the model

achieves the fastest inference speed on a CPU.

Current studies have thoroughly validated the effectiveness of

deep learning techniques in plant leaf disease classification,

particularly highlighting their potential for application in natural

environments. However, existing apple leaf disease datasets still fall

short in fully capturing the diversity and complexity of real orchard

conditions. Moreover, the increasing complexity of models

designed to improve classification accuracy poses challenges for

deployment on resource-constrained devices. Therefore, this study
Frontiers in Plant Science 03
focuses on the construction of datasets collected under natural

environmental conditions and the design of lightweight network

architectures, aiming to achieve efficient model deployment while

maintaining high classification accuracy, thus contributing to the

development needs of smart agriculture.
3 Materials and methods

3.1 Image acquisition and preprocessing

This study conducts experiments on two datasets: a public

dataset and a self-constructed dataset with natural environmental

backgrounds. The specifics of these datasets are detailed in Sections

3.1.1 and 3.1.2, respectively, while the data preprocessing process is

explained in Section 3.1.3.

3.1.1 Public dataset FGVC8
The public dataset used in this study is from the CVPR 2021

FGVC8 plant pathology recognition challenge (Thapa et al., 2021).

It consists of 18,632 field-captured apple leaf images. The images are

taken at various apple maturation stages and during different times

of the day, with non-uniform backgrounds. Most of the images have

a resolution of 2676x4000. The dataset includes apple leaf images

with various disease categories, including alternaria leaf spot,

healthy, powdery mildew, rust, and scab. The selected sample

sizes for each category are 489, 529, 485, 503, and 504 images,

respectively. After preprocessing, these images are used to form the

FGVC8 dataset, with the category distribution shown in Table 1.

3.1.2 Self-constructed natural environmental
background dataset

This study also creates a dataset of apple leaf diseases set against

a natural environmental background, called SCEBD. The dataset is

compiled from four data sources: the FGVC8 dataset, Appleleaf9

(Yang et al., 2022), ATLDSD (Feng and Chao, 2022) and self-

collected apple leaf disease images. Some images of alternaria leaf

spot, healthy, rust, powdery mildew, and scab are from the FGVC8

dataset, with the following sample sizes: 293, 183, 154, 485, and 484

images, respectively. Images of mosaic are sourced from the

Appleleaf9 dataset (a total of 105 images), which combines data

from four different apple disease datasets, with varying pixel sizes.

Images of gray spot are taken from the ATLDSD dataset (a total of
TABLE 1 FGVC8 dataset class distribution.

Class number Image type Original image

0 Alternaria leaf spot 489

1 Healthy 529

2 Powdery mildew 485

3 Rust 503

4 Scab 504
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121 images), captured by a Glory V10 smartphone, with images

taken from a real orchard, and the pixel size is 256x256. In addition,

images of apple leaf diseases, including alternaria leaf spot, brown

spot, gray spot, healthy, mosaic, and rust, are collected from real

orchards in Yongning Town, Wafangdian City, Liaoning Province,

China, using a smartphone (iQOONeo9Pro). The number of

images for each disease is as follows: 192 for alternaria leaf spot,

480 for brown spot, 362 for gray spot, 302 for healthy, 376 for

mosaic, and 328 for rust. These images are collected in natural

environmental settings that include tree leaves, weeds, and the

image resolution is not uniform. The distribution of image types

and quantities in the SCEBD is shown in Table 2, and examples of

apple leaf disease images are shown in Figure 1.
3.1.3 Data preprocessing
The collected image data is first cleaned to satisfy criteria, then

resized to 224×224 pixels for easier computation. The dataset is split

into training, validation, and test sets at a 7:2:1 ratio. Data

augmentation is performed only on the training set, while

validation and test sets remain unchanged. Next, normalization is

performed using the mean and standard deviation for the RGB

channels. The data preprocessing flowchart is shown in Figure 2.

To improve the model’s generalization and minimize noise

interference, nine types of data augmentation are used on the

training images. These include rotations (90°, 180°, and 270°),

gaussian blur, random flips (50% probability for both horizontal

and vertical flips), contrast enhancement and reduction, and

brightness enhancement and reduction. These augmentations

increase the number of training images to 10 times the original

size. No data augmentation is applied to the test and validation sets.

Examples of the augmented images are shown in Figure 3.

To prevent instability in model training caused by excessively

large or small pixel values and to reduce the risk of overfitting, the

images are normalized. Specifically, the mean values for the red,

green, and blue channels are set to [0.485, 0.456, 0.406], and the

standard deviations are [0.229, 0.224, 0.225]. This normalization

method helps accelerate model convergence, improves training

stability, and enables more efficient learning of image features.
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3.2 LCAMNet model

3.2.1 Model structure
To address the problem of apple leaf disease classification in

natural environments, this paper proposes a lightweight converged

attention multi-branch network (LCAMNet). The model includes a

3×3 standard convolutional layer (Conv1), a max pooling layer

(MaxPooling), three stage modules (Stage2 to Stage4), a 1×1

convolutional layer (Conv5), a global pooling layer (Global Pooling),

and a fully connected layer (FC). The overall structure of the model is

shown in Figure 4.

LCAMNet initially processes the input image through Conv1 to

extract basic features. It then uses MaxPooling for downsampling,

reducing the dimensionality of the output features. The subsequent

stages, Stage2 to Stage4, contain several key modules, each

consisting of a dual-branch downsampling module (DBDM) and

a multi-scale feature extraction module (MFEM). The DBDM

module performs downsampling on the extracted features,

improving computational efficiency while retaining key features.

On top of this, the MFEM module captures multi-scale features

related to the disease. Both the DBDM and MFEM modules are

stacked three times, with each stack extracting deeper features from

the previous layer. At the end of Stage4, LCAMNet introduces an

improved triplet attention mechanism to further extract crucial

feature information. The model then connects a convolutional layer

for feature fusion, followed by a global pooling layer and a fully

connected layer for classification, outputting the final class results.

3.2.2 Dual-branch downsampling module
Downsampling is often used in convolutional neural networks

(CNNs) to reduce the spatial size of feature maps. Pooling is one of

the most commonly used downsampling methods, which

aggregates pixel values in a local region to decrease the spatial

dimensions of feature map, thereby improving model’s robustness

to translation variations. Unlikepooling, convolution operations

learn convolutional kernel parameters to extract image features,

retaining more useful information during the downsampling

process and adapting better to various tasks (Li et al., 2023).
TABLE 2 SCEBD class distribution.

Class number Image type FGVC8 Private Data Appleleaf9 ATLDSD Total images

0 Alternaria leaf spot 293 192 0 0 485

1 Brown spot 0 480 0 0 480

2 Gray spot 0 362 0 121 483

3 Healthy 183 302 0 0 485

4 Powdery mildew 485 0 0 0 485

5 Mosaic 0 376 105 0 481

6 Rust 154 328 0 0 482

7 Scab 484 0 0 0 484
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However, innatural environmental backgrounds, the classification

performance of apple leaf disease images is often weak. A single

downsampling strategy may cause the loss of important image

features, thus affecting the classification results. To address this

challenge, LCAMNet incorporates a dual-branch downsampling

module, whose structure is shown in Figure 5. This module

performs downsampling on the input feature map through both a

pooling branch and a convolutional branch. It then concatenates the

output features and applies a channel shuffling operation to achieve

feature fusion, producing the final output features. The specific design

of the two branches is described in the following paragraphs.

The pooling branch applies max pooling and average pooling to

extract global and salient features from apple leaf disease images.

Specifically, average pooling averages the pixels within pooling

region, effectively suppressing local noise and enabling stable

feature extraction of diseased areas under complex background

interference. In contrast, max pooling selects the maximum value

from the pooling window to extract salient features, enhancing the

most representative texture and morphological changes in the

diseased area. This is crucial for distinguishing apple leaf lesions

from the salient regions in the complex background. By

concatenating the results of max pooling and average pooling, the

module achieves a complementary combination of global and

salient features. Subsequently, a 1×1 convolution unit is used to

aggregate channels, which includes a 1×1 convolution, batch
Frontiers in Plant Science 05
normalization (BN), and a ReLU activation function. This step

enhances model ’s ability to capture nonlinear feature

representations, as shown in Figure 6.

The convolutional branch consists of convolutional downsampling

modules, which aim to reduce dimensions while effectively extracting

feature information. Specifically, a 3×3 depthwise convolution with a

stride of 2 is used to extract local features, halving the spatial

resolution. The parallel convolutional branches double the number of

channels via channel concatenation to maintain the same channel

dimension as the pooling branch. By concatenating the features

extracted from both branches and applying channel shuffling, the

model enhances the interaction between channels, effectively

preserving the key features of the apple leaf disease areas. The

pseudocode for this module is shown in Algorithm 1.
Input: Initial tensor XC�H� W, where C is the number of

channels, H is the image height, W is the image width.

Output: Downsampled tensor Y(2�C)�H=2�W=2.

1. Feed the initial tensor XC�H� W, into pooling branch

and convolutional branch respectively.

X(2�C)�H=2�W=2
1 = concat(Avg(XC�H�W),Max(XC�H�W)), YC�H=2�W=2

1 = 1�
1 conv(X(2�C)�H=2�W=2

1 ).

YC�H=2�W=2
2 = concat(j1(X

C�H�W),j2(X
C�H�W)), where j1 () is

output from the left pathway of convolutional branch,
FIGURE 1

Examples of apple leaf disease images: (A) Alternaria leaf spot, (B) Brown spot, (C) Gray spot, (D) Health, (E) Powdery mildew, (F) Mosaic, (G) Rust,
(H) Scab.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1626569
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiao et al. 10.3389/fpls.2025.1626569

Fron
j 2 ( ) is output from th e right pathway of

convolutional branch.

2. Concatenate the YC�H=2�W=2
1 ,YC�H=2�W=2

2 .

Y(C,C)�H=2�W=2 = concat(YC�H=2�W=2
1 ,YC�H=2�W=2

2 ).

3. Perform channel shuffle on Y(C,C)�H=2�W=2.

Y(2�C)�H=2�W=2 = Shuffle(Y(C,C)�H=2�W=2), w h e r e S h u ff l e ( )

represents the result of channel shuffle operation.
Algorithm 1. Downsampling Process of DBDM.

3.2.3 Multi-Scale Feature Extraction Module
Apple leaf disease classification is often weak in complex

environments, a single-size convolutional kernel may not

effectively extract image features. To address this issue, this study

constructs a Multi-Scale Feature Extraction Module (MFEM). Its

architecture is shown in Figure 7.

The input features first go through a channel separation operation,

evenly dividing the channels into four independent branches: the

feature-preserving branch, the local detail branch, the deep feature

branch, and the salient feature branch. These branches are arranged

from left to right, each extracting features at different scales of apple

leaf disease image. The feature maps from each branch are fused

through concatenation and channel shuffle to improve channel

interaction. The detailed design of each branch is explained below.
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In the feature-preserving branch, input features are directly

forwarded via a skip connection to produce output. This helps

distinguish low-level information and mitigates the degradation

problem of deep networks. This branch is crucial for capturing

subtle local variations in the image features. For example, in apple

leaf disease classification, it helps distinguish minor differences

between background noise (such as lighting changes, weeds, or

shadows) and disease areas (such as brown spots or

leaf discoloration).

In the local detail branch, the input feature map first goes

through a 1×1 conv unit to adjust the number of channels. Then,

the feature map is passed through a 3×3 depthwise convolution and

BN. The depthwise convolution performs independently on each

input channel, enabling the extraction of fine-grained features

within each channel. Finally, a 1×1 conv unit is applied to fuse

the features extracted by the depthwise convolution from each

channel. This branch mainly extracts features related to the edges of

lesions, local texture changes, and small disease regions in apple leaf

disease images.

In the deep feature branch, input feature map first goes through

a 1×1 conv unit, followed by two 3×3 depthwise convolutions and

BN. Afterward, another 1×1 conv unit is applied. The cascading 3×3

convolution layers form a deeper feature extraction unit, capable of

capturing more complex local patterns and multi-layered details,

such as lesions of varying sizes and morphological changes in apple

leaf disease images.

In the salient feature branch, the input feature map passes

through a max-pooling layer to extract features, followed by a 1×1

conv unit to adjust the number of channels. In natural settings, max

pooling helps enhance the network’s ability to detect salient disease

regions in apple leaf images, especially when the contrast between

the background and disease features is low, making it more effective

in highlighting key features.

At last, the feature maps from all four branches are

concatenated to merge multi-scale features, constructing a richer

global representation. Additionally, channel shuffling is introduced

to promote cross-branch feature exchange and reorganization,

thereby enhancing the module’s ability to represent features of

the apple leaf disease regions. The pseudocode for this module is

shown in Algorithm 2.
Input: Initial tensor XC�H� W, where C is the number of

channels, H is the image height, W is the image width.

Output: The tensor YC�H� W obtained after MFEN.

1. Perform channel separation on the input tensor XC

�H� W, dividing the C channels into separate tensors,

resulting in tensors XC1�H�W ,XC2�H�W ,XC3�H�WXC4�H�W. XC�H�W =

(XC1�H�W ,XC2�H�W ,XC3�H�WXC4�H�W),

where Ci = C
4= ,C1 ≠ C2 ≠ C3 ≠ C4.

2. Feed the separated tensors into different feature

extraction branches.

YC1�H�W
1 = XC1�H�W ,YC2�H�W

2 = Y2(X
C2�H�W),YC3�H�W

3 = Y3(X
C3�H�W),

YC4�H�W
4 = Y4(X

C4�H�W), where Yi is the output from each

branch’s feature extractor.

3. Concatenate the feature-transformed tensors,
FIGURE 2

Data preprocessing flowchart.
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FIGURE 3

Examples of data augmentation for apple leaf disease images: (A) Original, (B) Rotated 90, (C) Rotated 180, (D) Rotated 270, (E) Blurred, (F) Horizontal
flip, (G) Contrast high, (H) Contrast low, (I) Brightness high, (J) Brightness low.
FIGURE 4

Architecture diagram of LCAMNet.
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Y(C1,C2,C3,C4)�H�W = concat(YC1�H�W
1 ,YC2�H�W

2 ,YC3�H�W
3 ,YC4�H�W

4 ).

4. Apply channel shuffle on the concatenated tensor

Y(C1,C2,C3,C4)�H�W.

YC�H�W = Shuffle(Y(C1 ,C2 ,C3 ,C4)�H�W), w h e r e S h u f f l e ( )

represents the result of channel shuffle operation.
Algorithm 2. The feature extraction process of MFEN.

3.2.4 Improved triplet attention mechanism
In recent years, attention mechanisms demonstrate significant

advantages in computer vision by helping the model focus on

important regions, thus enhancing classification accuracy.

Although this study introduces multi-scale branches in the feature

extraction layer to capture rich features, challenges remain in

capturing deeper features. To solve this, this paper introduces an

attention mechanism that captures information from different

dimensions, improving the model’s ability to detect apple leaf

disease regions.

The triplet attention mechanism (Misra et al., 2021) captures

interactions between channels and spatial dimensions through two

branches. A third branch is used to create spatial attention, and the

outputs from all three branches are combined to form the final

attention features. This paper improves upon the original triplet

attention mechanism. Specifically, we replace the original 7×7
FIGURE 5

Architecture of DBDM.
FIGURE 6

Architecture diagram of the 1×1 conv unit.
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convolution used for feature extraction with two cascading 3×3

convolutions. This modification allows us to maintain sufficient

feature extraction capability without increasing the computational

burden. Additionally, we introduce the ReLU activation function

(Nair and Hinton, 2010) between the two 3×3 convolutions, which

effectively controls the network’s sparsity and enhances its ability

for nonlinear transformations. It is worth noting that we remove the

original BN module. Experimental analysis reveals that the BN

module does not have a significant effect and, in fact, increases

computational load. Through these improvements, we significantly

enhance the model’s efficiency and practical application

performance while ensuring effective cross-dimensional feature

modeling. The structure of the improved mechanism is shown

in Figure 8.
4 Experimental analysis

4.1 Experimental environment

The experimental hardware in this study uses an Intel(R) Core

(TM) i7–6700 CPU@ 3.40GHz processor, and the operating system
Frontiers in Plant Science 09
is Windows 10. Model training and testing are accelerated using a

GPU, specifically a Tesla V100S-PCIE-32GB graphics card. The

software environment includes Python 3.8.19, the PyTorch 2.4.1

framework, and the CUDA toolkit 12.4.

The number of iterations is set to Epoch=60, with a batch size of

32. The model training uses the Stochastic Gradient Descent (SGD)

algorithm, which is one of the most commonly used optimization

methods in machine learning. The initial learning rate for SGD is

set to 0.0001. A cosine annealing schedule is applied for the first 50

epochs, gradually decreasing the learning rate from 1e-4 to 1e-6,

and the learning rate is kept constant at 1e-6 from epoch 50 to 60.
4.2 Evaluation criterion

In this study, six evaluation metrics are employed to assess the

performance of the proposed model: Accuracy, Precision, Recall,

F1-Score, Kappa, and Matthews Correlation Coefficient (MCC).

Their definitions are as follows: Accuracy refers to the ratio of

correctly predicted samples to the total number of samples.

Precision is the proportion of correctly predicted positive samples

among all samples predicted as positive. Recall represents the
FIGURE 7

Architecture of MFEM.
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proportion of correctly predicted positive samples among all actual

positive samples. F1-Score is the harmonic mean of Precision and

Recall. Kappa measures the agreement between the model’s

predictions and the ground truth, while accounting for agreement

occurring by chance, thus providing a more objective evaluation of

classification performance. MCC evaluates the overall performance

of a classification model, particularly suitable for handling

imbalanced class distributions. The mathematical formulations of

Accuracy, Precision, Recall, F1-Score, Kappa, and MCC are defined

as follows (see Equations 1–6).

Accuracy =
TP + TN

TP + TN + FP + FN
� 100% (1)

Precision =
TP

TP + FP
� 100% (2)
Frontiers in Plant Science 10
Recall =
TP

TP + FN
� 100% (3)

F1 =
2� Precision� Recall
Precision + Recall

� 100% (4)

Kappa =
P0 − Pe
1 − Pe

� 100% (5)

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p � 100% (6)

TP means the model correctly predicts a positive sample. TN

means the model correctly predicts a negative sample. FP means the

model wrongly predicts a negative sample as positive. FN means the

model wrongly predicts a positive sample as negative. p0 represents

the observed proportion of agreement, i.e., the percentage of
FIGURE 8

Architecture of the improved triplet attention mechanism.
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instances where the raters reach consensus across all samples.

pe represents the expected agreement by chance, assuming that

the raters classify independently and randomly. In multi-class

classification, macro and micro averages are common for

evaluation. This study adopts macro average to compute Recall

and Precision, and uses the global average value for Accuracy. For

example, the macro-averaged Recall is calculated as shown in

Equation 7.

Macro Recall  ¼ 
1
n
 on

i=1Recalli (7)
4.3 Ablation study on SCEBD

To validate the effectiveness of the proposed method, ablation

experiments are conducted on the SCEBD dataset. LCAMNet is an

improved architecture based on the ShuffleNetV2 model (Zhang

et al., 2018). The overall network structure is shown in Table 3.

To verify the effectiveness of each proposed module, multiple

comparative models are designed for experimentation. The baseline

model is ShuffleNetV2. Model1 modifies only the downsampling

module (SDSM) of ShuffleNetV2. Model2 modifies only the feature

extraction module (SFEM). Model3 modifies both the feature

extraction and downsampling modules based on ShuffleNetV2.

Model4 further incorporates the improved triplet attention

mechanism on top of Model3. The detailed configurations of the

networks using different strategies are shown in Table 4.

The experimental results are shown in Table 5. GFLOPs

measures the floating-point operations (in billions) and is used to

evaluate the model’s computational complexity. Parameters refer to

the number of trainable weights in the model and are commonly used

to assess the model’s size. As seen in Table 5, Model1 outperforms the

baseline, indicating that applying DBDM in the downsampling
Frontiers in Plant Science 11
process of apple leaf disease images better preserves feature

information compared to the original SDSM. Model2 also shows

better performance than the baseline on the test set, suggesting that

MFEM is more effective in extracting features from apple leaf disease

images in natural environmental backgrounds than SFEM. Model3

performs better than both Model1 and Model2 on the test set,

demonstrating that the combined application of MFEM and

DBDM has a synergistic enhancement effect on apple leaf disease

image classification, surpassing the performance of each method

individually. Model4 shows further improvement over Model3. The

addition of the enhanced triplet attention mechanism slightly

increases the number of parameters but leads to a significant boost

in performance. Additionally, compared to ShuffleNetV2, Model4

reduces both floating-point operations and parameter count while

achieving a larger improvement in classification performance. In

conclusion, through the stepwise introduction of DBDM, MFEM,

and the improved triplet attention mechanism, the classification

performance of the model continues to improve, validating the

effectiveness of the proposed method.

To further validate the effectiveness of the LCAMNet model in

disease region identification, this study employs the Grad-CAM

(Selvaraju et al., 2017) technique to visualize and analyze the

model’s prediction results, comparing the performance before and

after the improvements, as shown in Figure 9. Figure 9A presents

the original image, Figure 9B shows the visualization result of the

baseline model, and Figure 9C shows the visualization result of

the LCAMNet model. Taking a rust disease image as an example,

the baseline model focuses only on partial features of the diseased

area, leading to missed and false detections, and fails to fully capture

the lesion regions. In contrast, the LCAMNet model accurately

localizes the key diseased regions of the apple leaf, with more

comprehensive and discriminative feature extraction. These results

demonstrate that the integration of the MFEM module, DBDM

module, and the improved triplet attention mechanism in
TABLE 3 LCAMNet architecture diagram.

Layer Output size Attention Ksize Stride Repeat Output channels

Image 224x224 3

Conv1 112x112 3x3 2 1 24

MaxPool 56x56 3x3 2 1 24

stage2
28x28
28x28

2
1

1
1

48
48

Stage3
14x14
14x14

2
1

1
1

96
96

Stage4
7x7
7x7
7x7 1

2
1

1
1
1

192
192
192

Conv5 7x7 1x1 1 1 1024

GlobalPool 1x1 7x7

FC 8
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LCAMNet significantly enhances the model’s ability to focus on

diseased areas, thereby improving its feature learning capacity and

classification accuracy.
4.4 Performance comparison with classic
convolutional neural networks on SCEBD

In this experiment, we compare LCAMNet with several classic

convolutional neural network models, including VGG (Simonyan

and Zisserman, 2014), ResNet (He et al., 2016), ResNext (Xie et al.,

2017), and DenseNet (Huang et al., 2017), on SCEBD. The

experimental results are shown in Table 6. These models exhibit
Frontiers in Plant Science 12
issues when applied to disease classification tasks in natural

environments, which are manifested in the following aspects:

First, while VGG network has a simple structure, it suffers from a

large number of parameters due to its deep architecture, making it

prone to overfitting. As a result, its performance is relatively poor in

the scenarios with small datasets or complex backgrounds. Second,

ResNet and ResNext use residual connections to address the

vanishing gradient problem. However, due to the deep network

layers, they still struggle to effectively capture features in the

presence of high noise and irregular lesions. DenseNet, despite

having advantages in feature propagation, has a dense connectivity

structure that leads to a large number of parameters and

computational overhead, making it inefficient when processing

high-resolution images. Thus, these four networks suffer from low

computational efficiency and high model complexity.

GoogLeNet (Szegedy et al., 2015) designs the Inception module,

which applies multiple convolutional kernels of different sizes in

parallel to capture features at various scales. This improves both

feature representation and computational performance. Although

InceptionResNetV2 (Szegedy et al., 2016) incorporates optimization

techniques such as multi-branch convolutions, residual

connections, and depthwise separable convolutions to improve

performance, the network’s complexity and large number of

parameters limit its advantages in some application scenarios.
TABLE 4 Network configurations with different strategies.

Model Feature
extraction

Downsampling Attention

1 SFEM DBDM \

2 MFEM SDSM \

3 MFEM DBDM \

4 MFEM DBDM Improved triplet
attention
FIGURE 9

Grad-CAM visualization results of different models: (A) Original image; (B) Heatmap generated by the Baseline model; (C) Heatmap generated
by Model4.
TABLE 5 Ablation study on the SCEBD.

Models Accuracy (%) Recall (%) Precision (%) F1 (%) Kappa (%) MCC (%) GFLOPs (G) Parameters (M)

Baseline 88.01 88.00 88.98 88.21 86.30 86.48 0.04 1.31

Model1 88.78 88.80 89.46 88.97 87.17 87.24 0.03 1.29

Model2 91.33 91.36 91.83 91.43 90.09 90.13 0.03 1.28

Model3 92.35 92.34 92.73 92.41 91.25 91.28 0.03 1.29

Model4 92.60 92.64 92.85 92.64 91.55 91.58 0.03 1.30
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EfficientNetB0 (Tan and Le, 2020), ShuffleNetV2 (Zhang et al.,

2018), MobileNetV2 (Howard et al., 2017), and GhostNet (Han

et al., 2020) are lightweight models that have been widely used in

recent years. These models optimize the network structure to

reduce computational overhead while maintaining high accuracy.

They incorporate various lightweight techniques, such as depthwise

separable convolutions, channel reparameterization, and residual

connections, achieving a good balance between computational

efficiency and model accuracy. However, these models may face

performance bottlenecks when handling more complex tasks due to

limited model capacity and expressive power.

LCAMNet, based on ShuffleNetV2 model, optimizes the feature

extraction and downsampling modules. By using depthwise

separable convolutions and structural reparameterization, it

reduces network parameters while still extracting sufficient

features. Compared to classic convolutional neural networks,

LCAMNet has fewer parameters than ShuffleNetV2 and achieves

the highest accuracy. This demonstrates that LCAMNet is a high-

performance, lightweight model for apple leaf disease classification.

The performance comparison of LCAMNet and several classical

CNN models on SCEBD is shown in Table 6. The three-

dimensional visual analysis of accuracy, GFLOPs, and parameter

count on SCEBD is presented in Figure 10.
4.5 Performance comparison with similar
crop disease image classification models
on SCEBD

This study compares the performance of LCAMNet with

similar crop disease image classification models on the SCEBD.

Re-GoogLeNet (Yang et al., 2023) is a network designed for rice

image classification in natural environmental backgrounds, based

on a series of improvements to GoogLeNet. First, the 7×7

convolution kernel in the first layer of GoogLeNet is replaced

with three consecutive 3×3 convolutions. Then, the Inception
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module is enhanced by adding the ECA attention mechanism and

optimized residual connections to strengthen information flow.

Lastly, LeakyReLU replaces the ReLU activation to better capture

irregular features in diseased leaves. ALS-Net (Liu et al., 2022a) adds

an Inception structure after 3×3 convolution in the ShuffleNetV2

model for multi-scale feature extraction. Additionally, the 3×3

convolutions in the ShuffleNet block are replaced with 5×5

depthwise convolutions to obtain the ALS module. The ELU

activation function also replaces ReLU, addressing gradient

vanishing and neuron death issues. To further improve

classification performance, ALS-Net uses DenseNet161 as a

teacher network to guide training and enhance the model’s

classification ability. LBMRNet (Li et al., 2023) is a lightweight

algorithm for recognizing tomato leaf diseases, aimed at tackling the

problem of significant variation within the same class and minimal

variation between different classes in tomato leaf disease images.

LBMRNet consists of alternating complementary group dilation

residual (CGDR) modules and visual enhancement modules. The

CGDR module uses a multi-branch design to capture various

features of tomato leaf diseases from different receptive fields. It

incorporates multiple residual connections to facilitate better

information flow across the network layers. The visual

enhancement module combines average pooling, max pooling,

and 1×1 convolutions as downsampling strategies, effectively

fusing the visual enhancement effects and preventing information

loss during the downsampling process, thus improving

classification accuracy.

From Table 7, it could be seen that the performance of ALS-Net

and LBMRNet are inferior to LCAMNet (for LBMRNet, only the

network structure is restored). This is likely because, although ALS-

Net improves ShuffleNetV2, the multi-scale feature extraction is

only performed at the initial stages of the network and fails to

effectively integrate these features at each stage, limiting its feature

extraction capability. Although LBMRNet improves the feature

extraction and downsampling layers, its multi-residual structure

leads to the continuous retention of irrelevant information, affecting
TABLE 6 Performance comparison of LCAMNet and several classical CNN models on the SCEBD.

Models Accuracy (%) Recall (%) Precision (%) F1 (%) Kappa (%) MCC (%) GFLOPs (G) Parameters (M)

VGG13 89.03 89.04 89.15 89.03 87.64 87.53 11.36 133.05

ResNet34 88.52 88.54 89.02 88.66 86.88 86.94 3.68 21.80

ResNext50 85.97 85.99 86.48 86.12 83.96 84.00 4.29 25.03

DenseNet201 90.56 90.56 90.67 90.60 89.21 89.24 4.39 20.01

GoogLeNet 92.09 92.09 92.20 92.11 90.96 90.98 1.60 7.01

InceptionRes-NetV2 91.58 91.59 92.14 91.71 90.38 90.39 6.50 55.84

EfficientNet-B0 91.33 91.35 91.54 91.34 90.09 90.13 0.42 8.43

ShuffleNetV2 88.01 88.00 88.98 88.21 86.30 86.48 0.04 1.31

MobileNetV2 89.80 89.79 90.52 89.93 88.34 88.41 0.33 3.51

GhostNet 90.31 90.35 91.09 90.45 88.92 88.98 0.16 5.18

LCAMNet 92.60 92.64 92.85 92.64 91.55 91.58 0.03 1.30
Bold values indicate the best results in each column. For Accuracy, Recall, Precision, F1, Kappa, and Matthews Correlation Coefficient (MCC), higher values indicate better performance.
Conversely, for GFLOPs and Parameters, lower values indicate a more lightweight and efficient model.
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the recognition performance. In comparison, Re-GoogLeNet

optimizes GoogLeNet by introducing the attention mechanism to

preserve important features and uses residual connections to retain

original features. While its performance is better than that of

LCAMNet, its higher FLOPs and Parameters may limit its

applicability in resource-constrained scenarios. The confusion

matrices of the models are shown in Figure 11.
4.6 Performance comparison on the public
dataset FGVC8

This study compares the performance of LCAMNet with several

classical CNN models on the FGVC8 dataset to verify its

effectiveness and superiority. Detailed experimental settings are
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provided in Section 4.1. Table 8 presents a performance

comparison between LCAMNet and several classical CNN models

on FGVC8. The results show that LCAMNet achieves a

classification accuracy comparable to GoogLeNet and

InceptionResNetV2, while significantly reducing FLOPs and

Parameters compared to these two models. This indicates that

LCAMNet maintains a high recognition accuracy while lowering

computational resource consumption. In addition, LCAMNet

achieves better classification accuracy than ShuffleNetV2 on the

public dataset, while maintaining slightly lower FLOPs and

parameters. This demonstrates that LCAMNet effectively

integrates techniques like multi-branch feature extraction

modules, dual-branch downsampling modules, and attention

mechanisms into the ShuffleNetV2 architecture, making it

suitable for different datasets. Three-dimensional visual analysis
TABLE 7 Performance comparison of LCAMNet and similar crop disease image classification models on the SCEBD.

Models Accuracy (%) Recall (%) Precision (%) F1 (%) Kappa (%) MCC (%) GFLOPs (G) Parameters (M)

Re-GoogLeNet 93.37 93.36 93.79 93.46 92.42 92.64 2.80 9.11

ALS-Net 91.07 91.09 91.28 91.13 89.80 89.81 0.73 1.18

LBMRNet 90.05 90.06 91.54 90.30 88.63 88.81 0.17 0.91

LCAMNet 92.60 92.64 92.85 92.64 91.55 91.58 0.03 1.30
Bold values indicate the best results in each column. For Accuracy, Recall, Precision, F1, Kappa, and Matthews Correlation Coefficient (MCC), higher values indicate better performance.
Conversely, for GFLOPs and Parameters, lower values indicate a more lightweight and efficient model.
FIGURE 10

3D Visualization of accuracy, GFLOPs, and parameter count on the SCEBD.
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of accuracy, GFLOPs, and parameters on FGVC8 is presented

in Figure 12.

Furthermore, LCAMNet is compared with similar crop disease

image classification models. Experimental results show that LCAMNet

outperforms ALS-Net and LBMRNet in overall performance. Although

its performance is slightly lower than Re-GoogLeNet, LCAMNet has

significantly fewer FLOPs and Parameters, demonstrating a notable
Frontiers in Plant Science 15
optimization in computational resource consumption. In conclusion,

the experimental results fully validate the effectiveness of LCAMNet on

the public dataset. LCAMNet achieves competitive recognition

accuracy while significantly reducing computational complexity,

showcasing strong practical application value and potential for

broader deployment. Detailed results can be found in Table 9, and

the models’ confusion matrices are shown in Figure 13.
FIGURE 11

Confusion matrices of LCAMNet and similar crop disease image classification models on SCEBD: (A) Re-GoogLeNet; (B) ALS-Net; (C) LBMRNet; (D)
LCAMNet.
TABLE 8 Performance comparison of LCAMNet and several classical CNN models on the FGVC8 dataset.

Models Accuracy (%) Recall (%) Precision (%) F1 (%) Kappa (%) MCC (%) GFLOPs (G) Parameters (M)

GoogLeNet 95.31 95.33 95.56 95.39 94.20 95.39 1.60 7.01

InceptionRes-NetV2 94.92 94.93 95.40 95.06 93.71 95.06 6.50 55.84

EfficientNet-B0 91.80 91.88 92.13 91.92 89.76 91.92 0.42 8.43

ShuffleNetV2 91.80 91.96 91.89 91.86 89.91 91.86 0.04 1.31

LCAMNet 95.31 95.29 95.81 95.39 94.22 95.39 0.03 1.30
Bold values indicate the best results in each column. For Accuracy, Recall, Precision, F1, Kappa, and Matthews Correlation Coefficient (MCC), higher values indicate better performance.
Conversely, for GFLOPs and Parameters, lower values indicate a more lightweight and efficient model.
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4.7 Model limitation analysis

Although LCAMNet achieves outstanding performance on both

the SCEBD and FGVC8 datasets, several limitations remain based

on the experimental results:

As shown in Table 6, LCAMNet demonstrates a favorable

balance between accuracy and model complexity compared to

various CNN models on the SCEBD dataset. However, in the

comparative experiments with other crop disease identification

models Table 7, although LCAMNet outperforms ALS-Net and

LBMRNet, its accuracy is slightly lower than that of Re-

GoogLeNet. This indicates that while LCAMNet holds significant

advantages in terms of parameter count and computational cost,

there is still room for improvement in feature fusion and deep
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representation capabilities. Moreover, the staged multi-scale

attention mechanism present in Re-GoogLeNet significantly

enhances performance, suggesting that LCAMNet could benefit

from incorporating richer stage-wise fusion strategies for

further optimization.

Furthermore, LCAMNet maintains competitive performance on

the FGVC8 dataset (as shown in Tables 8, 9), indicating its

generalization capability. However, some classification confusion still

occurs among certain categories in FGVC8, as evidenced by the

confusion matrix in Figure 13. This reveals a risk of misclassification,

especially when dealing with disease symptoms that have similar

morphological patterns and subtle color differences. These

observations suggest that LCAMNet could further enhance its fine-

grained modeling capacity for complex lesion patterns.
FIGURE 12

3D visualization of accuracy, FLOPs, and parameters on the FGVC8 dataset.
TABLE 9 Performance comparison of similar crop disease image classification models on the FGVC8 dataset.

Models Accuracy (%) Recall (%) Precision (%) F1 (%) Kappa (%) MCC (%) GFLOPs (G) Parameters (M)

Re-GoogLeNet 96.48 96.50 96.58 96.49 95.60 96.63 2.80 9.11

ALS-Net 92.97 93.03 93.55 93.08 91.21 91.32 0.73 1.18

LBMRNet 91.02 91.13 91.75 91.30 88.77 88.84 0.17 0.91

LCAMNet 95.31 95.29 95.81 95.39 94.14 94. 22 0.03 1.30
Bold values indicate the best results in each column. For Accuracy, Recall, Precision, F1, Kappa, and Matthews Correlation Coefficient (MCC), higher values indicate better performance.
Conversely, for GFLOPs and Parameters, lower values indicate a more lightweight and efficient model.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1626569
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jiao et al. 10.3389/fpls.2025.1626569
5 Conclusion

The lightweight converged attention multi-branch network,

LCAMNet, proposed in this study achieves high accuracy in apple

leaf disease classification while significantly reducing model

complexity and computational cost. This demonstrates its strong

potential for deployment in resource-constrained and complex

natural environments. By integrating structural re-parameterization,

dual-branch downsampling, and multi-scale attention mechanisms,

LCAMNet effectively enhances lesion feature modeling and the

expression of feature diversity.

Despite its outstanding performance in apple leaf disease

recognition, there remains room for improvement in LCAMNet’s

adaptability and generalization capability. Future research will focus

on two main directions: (1) systematically evaluating the model’s

robustness and stability under complex natural conditions, such as

varying illumination, camera angles, and degrees of leaf occlusion;
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and (2) extending the application of LCAMNet to the classification of

diseases in other crops such as wheat, maize, and rice, in order to

explore its cross-crop generalization performance and domain

adaptability. These efforts will further promote the practical

deployment of LCAMNet in multi-scenario and multi-crop disease

recognition, laying a solid foundation for building an intelligent plant

disease identification system in precision agriculture.
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FIGURE 13

Confusion matrices of similar crop disease image classification models on the FGVC8 dataset: (A) Re-GoogLeNet; (B) ALS-Net; (C) LBMRNet; (D) LCAMNet.
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