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Editorial on the Research Topic

Leveraging phenotyping and crop modeling in smart agriculture
In recent years, the agricultural sector has witnessed a significant transformation driven

by the integration of sensing technologies, big data analytics, and artificial intelligence

(Ahmed and Shakoor, 2025). Cutting-edge innovations, notably high-throughput

phenotyping and crop modeling, have fundamentally altered our understanding and

management of crop systems (Keating and Thorburn, 2018; Yang et al., 2020). In many

cases, phenotyping and modeling are closely intertwined: phenotyping provides accurate

characterization of plant traits, forming the basis for reliable crop models, while modeling

elucidates interactions among phenotypes, genotypes, and the environment, and enables

prediction of phenotypic outcomes (Yu et al., 2023; Zhang et al., 2023b). Despite their

natural synergy, phenotyping and modeling are still frequently treated as separate domains,

limiting their full potential. This Research Topic aims to close that gap by promoting the

development of integrated phenotyping-modeling frameworks to advance smart

agriculture. The following sections provide a categorized overview of the contributions

to this Research Topic (https://www.frontiersin.org/research-topics/62521/leveraging-

phenotyping-and-crop-modeling-in-smart-agriculture), highlighting key findings and

identifying future directions for this rapidly advancing field.
1 Crop phenotyping

Crop phenotyping, which plays a vital role in gene function analysis, plant breeding,

and smart agriculture, can be broadly categorized based on the traits measured.

Morphological and structural traits include leaf length, leaf width, leaf area, and leaf

angle, while physiological and biological traits encompass chlorophyll content, nitrogen

levels, transpiration, and photosynthetic parameters.
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1.1 Morphological and structural
phenotypes

2D imaging combined with machine vision remains the most

widely adopted technique for acquiring plant morphological and

structural phenotypes. In this topic, a range of studies have explored

deep learning-based approaches tailored for specific plant

phenotyping applications, with a particular focus on refining model

architectures and technical strategies to enhance detection accuracy,

computational efficiency, and adaptability to complex field

conditions. Among them, semantic segmentation frameworks have

been effectively employed for fine-grained plant disease identification.

Ding et al. employed DeepLabV3+ with an integrated Attention

Pyramid Fusion (APF) module, achieving rapid and accurate

segmentation of sweetpotato virus disease (SPVD) lesions in field

images. Building on the success of YOLO-based object detection,

several teams developed tailored variants to tackle specific

phenotyping challenges. Pan et al. developed KIWI-YOLO, a

kiwifruit flower pollination detection model based on YOLOv5,

incorporating a frequency domain feature fusion (FDFF) module

and a Bi-Level Routing Attention (BRA) mechanism to improve

feature focus and detection performance. Qiu et al. introduced

YOLO-SDL, which combines the lightweight YOLOv8n framework

with a ShuffleNetV2 backbone and integrates depthwise separable

convolutions (DWConv) and the large separable kernel attention

(LSKA) module in the neck to enhance wheat grain classification

while ensuring compactness and computational efficiency. Wu et al.

proposed TiGra-YOLOv8, which integrates an Attentional Scale

Fusion (ASF) module, Adaptive Training Sample Selection (ATSS),

and Wise-IoU loss, while employing channel pruning to optimize

model size and inference speed for grapefruit detection in dense

orchard environments. Wang et al. presented PDSI-RTDETR for

tomato ripeness detection, improving RT-DETR by replacing the

Basic_Block with PConv_Block and integrating deformable

attention with intra-scale feature interaction. The model also

introduces a slimneck-SSFF fusion structure and replaces GIoU

with Inner-EIoU loss to accelerate convergence and improve small

object detection accuracy. Zhang et al. proposed YOLOv8-FCS for

grading fingered citron slices, enhancing YOLOv8n by substituting

its backbone with the Fasternet module and redesigning the PAN-

FPN structure using BiFPN to improve computational efficiency

and multi-scale feature utilization. Qing et al. also contributed an

improved YOLO-FastestV2 model for wheat spike detection,

incorporating a multi-stage attention mechanism and LightFPN

detection head to optimize detection under variable field conditions.

Beyond object detection, several studies addressed plant organ

counting through CNN-Transformer hybrid models and

lightweight convolutional networks. Hong et al. introduced

CTHNet, which combines a CSP-based CNN for multi-scale local

feature extraction with a Pyramid Pooling Transformer for global

context learning, further enhanced by a feature fusion module to

improve wheat ear counting performance. Yang et al. developed a

wheat ear positioning and counting approach based on FIDMT-

GhostNet, leveraging GhostNet for multi-scale feature extraction,

a dense upsampling module for improved image resolution,
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and a local maximum detection strategy to reduce background

noise and enhance counting accuracy in dense environments.

Complementing these RGB-based imaging approaches, UAV-

based hyperspectral imaging has also been utilized for monitoring

canopy structural traits. Fan et al. proposed a potato leaf area index

(LAI) estimation model by integrating spectral and textural features

selected via the Successive Projection Algorithm (SPA) with

machine learning, finding that spectral data exhibited higher

sensitivity to LAI than Haralick texture features. Collectively,

these studies highlight the diverse technical strategies that are

accelerating plant phenotyping. Through architectural refinements

and targeted module innovations, they offer efficient, accurate,

and scalable solutions suited to real-world, high-throughput

agricultural applications.

2D image-based methods are inherently constrained by issues

such as occlusion, perspective distortion, and the loss of spatial

information. In contrast, 3D approaches are capable of capturing

the complete spatial geometry and topological structure of plants,

offering a richer and more precise foundation for the analysis of

complex phenotypic traits. Nevertheless, reconstructing and

analyzing plant 3D point clouds remains challenging due to dense

occlusions, intricate structural details, complex organ overlaps, and

variations in lighting and background conditions. Overcoming

these challenges is critical for advancing high-throughput, in-situ

plant phenotyping and digital twin modeling in agricultural

research. Song et al. gathered 1,431 ear leaves from 518 maize

inbred lines at the silking stage using a 3D digitizer. Area-preserving

2D leaf models were generated through mesh subdivision and

planar parameterization. Eleven semantic features were identified

via clustering and correlation analysis. A 2D leaf shape indicator

(L2D) and an atlas were developed, allowing precise identification

of inbred lines based on 2D leaf shape. Rodriguez-Sanchez et al.

developed a spatiotemporal registration approach for time-series

terrestrial laser scanning data, enabling continuous 4D monitoring

of cotton canopy traits with high spatial accuracy, and used the

registered models to track growth dynamics and assess genotype

differences throughout the season. Although 3D digitizers, LiDAR,

and similar technologies have been widely applied for crop 3D

reconstruction, their high costs and limited precision have

significantly constrained broader agricultural applications. In

recent years, with the decreasing cost of industrial-grade cameras,

multi-view stereo (MVS) based 3D reconstruction has emerged as a

mainstream solution. Wu et al. developed a fast and accurate 3D

reconstruction platform for the mandarin orange based on Object-

Based NeRF (OB-NeRF). By integrating optimized camera pose

calibration, efficient ray sampling, and exposure adjustment, the

platform reconstructs high-quality neural radiance fields from

videos within 250 seconds. Sun et al. employed a multi-view

imaging platform to capture wheat plant images, generating high-

quality point clouds through Structure-from-Motion and Multi-

View Stereo (SfM-MVS) using Euclidean clustering, color filtering,

and statistical methods. A region-growing algorithm was used for

stem and leaf segmentation, though substantial leaf overlap during

the tillering, jointing, and booting stages made the process

particularly challenging. Plant height, convex hull volume, plant
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surface area, and crown area were extracted, enabling a detailed

analysis of dynamic changes in wheat throughout its growth cycle.

In recent years, ultra-low-altitude UAV-based cross-circling

oblique imaging has become a more efficient and cost-effective

approach for in-field 3D reconstruction (Fei et al., 2025; Sun et al.,

2024). Unlike indoor multi-view imaging systems, 3D phenotyping

conducted directly in the field more accurately reflects real-world

agricultural conditions and population-level dynamics.
1.2 Physiological and biological phenotypes

Physiological and biological phenotypes are typically assessed

rapidly and non-destructively using hyperspectral or multispectral

techniques. Yang et al. combined fractional-order derivatives

(FOD) with machine learning techniques to estimate chlorophyll

density in winter wheat using hyperspectral imagery. Three FOD

methods and eight machine learning models were tested with both

full-spectrum data and CARS-selected bands. The Riemann-

Liouville FOD (RL-FOD) showed superior performance in model

construction. The highest accuracy was achieved by combining 0.3-

order RL-FOD, CARS-based band selection, and extra-trees

regression (ETsR). Su et al. used UAV multispectral sensors to

capture winter wheat canopy images, extracting spectral and texture

features. Feature selection methods (Boruta and Recursive Feature

Elimination) were applied to identify key features, and a feature

fusion strategy combined with Support Vector Machine Regression

was used to develop the SPAD estimation model. The results

indicated that combining NIR spectral features with other bands,

along with red and NIR texture features, effectively captured SPAD

variations during the reproductive growth stage. Jiang et al.

presented a ChlF dataset of hydroponic lettuce seedlings,

consisting of transient images captured under different cultural

conditions. The effectiveness of the threshold segmentation

algorithm and the Deeplabv3+ algorithm for extracting the

seedling canopy was compared. Sun et al. utilized UAV

hyperspectral and ultra-high-resolution RGB images to derive

vegetation indices, texture features, and structural characteristics

for estimating rapeseed aboveground biomass. Various models,

including deep neural networks, random forests, and support

vector regression, were tested with different feature combinations.

Models that incorporated all three feature types delivered higher

accuracy compared to those using individual feature sets, with deep

neural networks consistently outperforming the other algorithms.

Luo et al. reviewed the advancements in applying hyperspectral

imaging technology to obtain information on tea plant phenotypes,

growth conditions, and quality indicators under environmental

stress. Wang et al. applied multi-leaf SPAD measurements

combined with machine learning to improve nitrogen diagnostics

in rice. Integrating SPAD data with models like Random Forest and

Extreme Gradient Boosting enhanced the estimation accuracy of

Leaf Nitrogen Concentration (LNC) and Nitrogen Nutrition Index

(NNI). The second leaf from the top was most important for

predicting LNC, while the third leaf was key for NNI. Shi et al.

evaluated flavonoid content (Flav) and the Nitrogen Balance Index
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(NBI), measured by a Dualex sensor, alongside machine learning

models for nitrogen status assessment. Data from 15 rice varieties

under varying nitrogen rates showed chlorophyll saturation at high

nitrogen levels, while Flav and NBI remained reliable. Random

Forest and Extreme Gradient Boosting achieved high prediction

accuracy, with SHAP analysis identifying NBI and Flav from the top

two leaves as critical predictors. In recent years, these technologies

have been widely applied to precision farmland management. For

example, on farms in Brazil, Castilho Silva et al. (2025) used UAV-

based multispectral remote sensing to monitor leaf nitrogen content

in maize and applied variable-rate fertilization accordingly.

Compared to conventional methods, this approach reduced

nitrogen input by 6.6% to 35% without compromising yield.
1.3 Phenotyping equipment

Phenotyping equipment is essential for the precise monitoring

of plant traits and environmental growth conditions. Liu et al.

developed a portable vegetation canopy reflectance (VCR) sensor

for continuous operation throughout the day, featuring optical

bands at 710 nm and 870 nm. The sensor was calibrated using an

integrating sphere and a solar altitude correction model, with

validation against a standard reflectance gray scale board. Field

measurements taken at 14 sites using both the VCR sensor and an

ASD spectroradiometer showed closely aligned reflectance values.

In Bermuda grass measurements, the intra-day reflectance range

narrowed and the coefficient of variation decreased after solar

altitude correction, demonstrating the sensor’s effectiveness for

precise vegetation monitoring. Compared to remote sensing,

recent developments in flexible sensors enable direct, continuous,

and high-resolution monitoring of plant physiological traits and

environmental conditions (Zhang et al., 2024). These innovative

sensing technologies are poised to significantly enhance

phenotyping applications.
2 Crop modeling

While various models for the direct extraction or inversion of

crop phenotypes have been explored in the crop phenotyping section,

crop modeling in this context specifically refers to growth modeling

designed to predict crop development and growth. Depending on the

approach, crop growth models may be data-based, incorporating

machine learning techniques, or mechanistic, based on process-based

simulations of crop physiological processes (Maestrini et al., 2022). In

this topic, process-based models are limited, with more researchers

focusing on simpler modeling approaches.
2.1 Data-based models

Takahashi et al. proposed a machine learning approach for early

prediction of tomato fruit size at harvest, comparing Ridge

Regression, Extra Tree Regression, and CatBoost Regression
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models. Estimated fruit weight, derived from diameter

measurements at various cumulative temperatures after anthesis,

was used as the explanatory variable, with final harvest weight as the

target. Results indicated that incorporating estimates from multiple

cumulative temperature points improved prediction accuracy,

particularly for cultivars with stable growth patterns. Including

average temperature as a variable further enhanced model

performance. Yang et al. compared classical non-linear models

and deep learning methods for predicting alfalfa leaf area index

(LAI). Logistic, Gompertz, and Richards models were developed

based on growth days, while a time-series model integrating

environmental factors was proposed using a mutation point

detection method and an encoder-attention-decoder BiLSTM

network (TMEAD-BiLSTM). Results showed that the TMEAD-

BiLSTM model outperformed non-linear models in prediction

accuracy and effectively integrated environmental factors. Nian

et al. estimated the rice aboveground biomass based on the first

derivative spectrum and Boruta algorithm. Mustafa et al. developed

a knowledge framework for yield prediction in cereal crops by

leveraging UAVs.
2.2 Data assimilation between phenotyping
and crop models

Gao et al. explored the quantitative relationship between soil

profile salinity and soil depth in drip-irrigated cotton fields in

southern Xinjiang using a multivariate linear regression model

combined with a Kalman filter algorithm. The model effectively

captured the dynamic changes in soil salinity across different
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growth stages and improved prediction accuracy after data

assimilation. Based on the calibrated model and predicted soil

conductivity data, the total cotton yield and income in the study

area were estimated. The results demonstrate that the Kalman filter

can enhance model reliability, providing a practical tool for

monitoring soil salinity dynamics, assessing the relationship

between soil salinity and cotton yield, and supporting efficient

saline soil management in cotton fields. Zhou et al. propose a

method for fruit selection and location in harvesting robots that

accounts for obstacle perception. Synthetic data were generated

using a 3D tomato greenhouse model and pixel-level segmentation

labels. An attention-based feature extraction module (SFM) was

designed to enhance the DeepLab v3+ segmentation network,

improving detection of linear obstructions like stems and wires.

An adaptive K-means clustering method was used to identify

individual fruits. The barrier-free fruit selection algorithm

identifies the largest, non-occluded fruit as the optimal target.

This approach effectively detects and locates barrier-free fruits,

providing a reliable solution for harvesting robots, applicable to

other fruits and vegetables as well.
3 Perspectives

In conclusion, we propose an integrated framework that links

plant phenotype, genotype, and environment (Figure 1), aiming to

better synthesize current research efforts. Environmental

parameters are commonly obtained via in-situ sensing, where

sensors capture electrical signals (e.g., capacitance, resistance) and

convert them into quantitative data such as air temperature,
FIGURE 1

An integrated framework linking plant phenotype, genotype, and environment. The diagram outlines the collection of physiological, biochemical,
morphological, structural, genomic, soil, and meteorological data using rapidly evolving technologies in recent years. These data are integrated
through functional–structural plant models to link the physical and virtual representations of the plant, enabling the creation of a digital twin.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1458337
https://doi.org/10.3389/fpls.2024.1396183
https://doi.org/10.3389/fpls.2024.1396183
https://doi.org/10.3389/fpls.2024.1401246
https://doi.org/10.3389/fpls.2024.1519200
https://doi.org/10.3389/fpls.2024.1460060
https://doi.org/10.3389/fpls.2025.1626622
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2025.1626622
humidity, atmospheric pressure, photosynthetically active

radiation, and soil temperature and moisture. These parameters

facilitate the development of microclimate models, which can be

further coupled with other simulation models. Phenotypic

information is generally acquired through remote sensing and 3D

reconstruction. Multispectral or hyperspectral imagery is processed

through feature extraction and inversion to retrieve physiological

and biochemical traits, while RGB imagery enables extraction of

morphological and structural features at 2D level. Additionally, 3D

point clouds derived from LiDAR or multi-view image

reconstruction are processed through segmentation and surface

modeling to obtain 3D structural traits. Therefore, functional and

structural models are established through system analysis and

dynamic modeling based on these phenotypes. In recent years,

such models have been widely applied to investigate the impacts of

climate change on crop productivity, identify potential yield gaps,

and explore targeted improvement pathways (Gavasso-Rita et al.,

2023). On the genetic level, reference genomes from de novo

sequencing and genomic variations from resequencing support

the development of genotype-based models (Zhang et al.,

2023a).The integration of big data and artificial intelligence

further enables hybrid modeling approaches—such as knowledge-

guided machine learning (KGML) (Li et al., 2025) and improved

phenotype–model data assimilation techniques (Jin et al., 2018).

KGML leverages mechanistic knowledge of biological processes to

guide the learning process, enhancing model interpretability and

generalization capacity. Meanwhile, data assimilation techniques

dynamically update model states and parameters using real-time

phenotypic observations, thereby allowing high-throughput

phenotyping data acquired by modern sensing technologies to be

effectively integrated into the modeling framework. This unified

phenotyping-modeling framework creates a digital twin by linking

physical plants to their virtual counterparts, offering a promising

pathway to integrate phenotyping with modeling for intelligent

breeding and smart agriculture. However, the current framework

remains incomplete, as it primarily emphasizes the virtual

simulation of physical plants. Achieving a true digital twin

requires establishing reverse control mechanisms that enable real-

time feedback from the virtual twin to the physical system—a

process that depends on further advancements in intelligent

agricultural equipment and the seamless integration of agronomic

practices with agricultural machinery.
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