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Accurate detection of sugarcane nodes in natural environments is crucial for 
realizing intelligent sugarcane cutting and precise planting localization. However, 
current sugarcane node detection models often face challenges such as large 
parameter sizes, poor adaptability to deployment environments, and limited real-
world detection accuracy. To address these challenges, this research proposes a 
high-precision and lightweight EdgeSugarcane detection model. Firstly, based 
on YOLOv8, an improved EdgeSugarcane model is proposed. By introducing an 
interactive attention mechanism across channel and spatial dimensions, the 
model’s ability to represent node features is enhanced. Then, combined with 
TensorRT acceleration and optimization, the optimal FP16 quantization 
deployment scheme is proposed. Finally, end-to-end deployment is 
implemented on the NVIDIA Orin NX edge device, and its performance and 
resource consumption in practical applications are analyzed in depth. The 
experimental results show that EdgeSugarcane achieves a precision of 0.935, a 
recall of 0.8, and a mAP of 0.87 on the test set, with a model size of 89.9 MB. 
Compared to YOLOv8, the mAP is improved by 0.6%, and the inference speed is 
increased by 44%. With lossless precision, the inference time after FP16 
quantization is only 1.9ms, a 3.3-fold improvement compared to before 
optimization, and the model size changes very little. On the NVIDIA Orin NX 
device, the single-frame inference, pre-processing, and post-processing times 
are 1.5ms, 60.6ms, and 4.4ms, respectively. The EdgeSugarcane model 
demonstrates excellent real-time performance and high accuracy under 
natural field conditions, offering a viable solution for integration into edge-
based robotic systems for intelligent sugarcane cutting and precision planting. 
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1 Introduction 

Sugarcane is an important strategic agricultural commodity 
widely cultivated globally, playing a significant role in people’s lives  
and national economic development (Karp et al., 2022; Huang et al., 
2020; Qian et al., 2024). China is the world’s third-largest sugarcane 
producer, after Brazil and India, and the low level of harvesting 
mechanization is one of the key factors affecting the sustainable 
development of China’s sugarcane industry (Que et al., 2024; Liu 
et al., 2024; Lu and Wu, 2023). Automation of sugarcane node cutting 
and harvesting is a crucial part of achieving sugarcane mechanization. 
In this study, the focus is specifically on intelligent sugarcane node 
cutting, where accurate identification of sugarcane nodes enables 
precise segmentation and planting. Node detection remains a key 
research topic in this process. The application of sugarcane node 
recognition technology helps to significantly improve production 
efficiency, reduce costs, enhance crop monitoring capabilities, and 
support precision agriculture. Existing sugarcane node detection 
methods suffer from shortcomings such as low detection accuracy, 
high model complexity, and less-than-ideal efficiency. Therefore, 
designing a high-performance, easy-to-deploy, and low-cost 
sugarcane node detection system is essential for intelligent 
sugarcane field operations. 

Scholars have conducted relevant research on sugarcane node 
detection systems. Tan et al. (2014) designed a sugarcane node 
sorting system based on machine vision to automatically sort 
sugarcane nodes with nodes and sugarcane nodes without nodes. 
Huang et al. (2017) proposed sugarcane node recognition based on 
local mean value, which performs threshold segmentation, 
morphological processing, and maximum area selection on the H 
component of its HSV color space, achieving a recognition rate of 
90.77% with a better combination, and an average time of 
0.481539s. Zhou et al. (2020) proposed a new design for a 
machine vision-based sugarcane node cutting system, with a 
recognition rate of 93% and an average time of 0.539s. Chen et al. 
(2021b) proposed a sugarcane node recognition algorithm based on 
the local pixel sum of the minimum point of the vertical projection 
function. The dual-node recognition rate was 98.5%, with an 
average time consumption of 0.21s. Yang et al. (2020) proposed a 
gradient-based method for sugarcane multi-node identification, 
achieving an accuracy rate of 96.8952%. Chen et al. (2021) 
explored sugarcane node detection based on wavelet analysis, 
detecting 99.63% of sugarcane node samples with an error rate of 
0.37% and a response time of 0.25 seconds. Meng et al. (2019) 
proposed a sugarcane node recognition technology based on 
wavelet analysis, with a maximum positioning error of less than 
2.5 mm and a maximum delay of 0.25 seconds. Despite these 
methods have achieved some success in sugarcane node detection 
tasks, there are still some significant shortcomings. The above 
studies automate the identification of sugarcane node numbers by 
fusing artificially extracted features and using traditional machine 
learning algorithms. However, in terms of real-time performance 
and robustness, traditional methods still have considerable room for 
Frontiers in Plant Science 02 
improvement, and there is an urgent need for more adaptable new 
algorithms to cope with complex and ever-changing sugarcane 
image data. 

In recent years, many researchers have gradually devoted 
themselves to the related fields of sugarcane node detection, 
especially through deep learning technology to improve detection 
accuracy and efficiency. Zhou et al. (2022) studied a sugarcane node 
identification and localization algorithm combining YOLOv3 with 
traditional computer vision methods to improve recognition rates 
during automatic cutting. Chen et al. (2021a) conducted field 
sugarcane node recognition based on deep learning combined 
with data expansion, achieving an average accuracy of 95.17% 
and a detection speed of 69f/s. Wang et al. (2022b) proposed a 
machine vision-based sugarcane node cutting system in seed-front 
mode, with a recognition rate of no less than 94.3% and an average 
accuracy of 98.2%. Zheng et al. (2024) developed an efficient 
sugarcane node detection method based on YOLOv8, with a 
precision of 0.973, recall of 0.958, and mAP of 0.974. Zhu et al. 
(2022) explored binocular vision-based sugarcane node spatial 
localization for harvesting robots using improved YOLOv4, which 
improved average accuracy. Dai et al (2024b) proposed an 
improved YOLOv5-based intelligent recognition system for 
sugarcane joints, achieving a mean average precision (mAP) of 
89.89% with a single image detection time of approximately 1.87 
seconds. Dai et al (2024a) proposed an intelligent sugarcane node 
recognition system based on enhanced YOLOv5s, with recognition 
accuracy, recall, and mAP values reaching 89.89%, 89.95%, and 
92.16%, respectively, and a single image inference time of only 
22ms. Xie et al. (2024) proposed a cane node detection method 
based on improved YOLOv5s, with a stem node recognition 
accuracy rate of 96.4%, a recall rate of 96.8%, and an average 
precision mean mAP0.5of 98.4%. Chen et al. (2023) adopted 
YOLOv4-tiny with a network slimming algorithm for sugarcane 
node identification, effectively reducing model complexity and 
making it suitable for embedded and mobile devices. Wang et al. 
(2022b) proposed the use of deep learning for sugarcane node 
detection and localization, with an average accuracy of 99.11% and 
a detection accuracy of 97.07%. Hu et al. (2025) proposed an 
improved YOLOv8n-ghost model, with a real-time detection 
speed of nearly 30FPS. Xie et al. (2023) proposed a sugarcane 
node recognition algorithm based on improved YOLOv5, with an 
average accuracy of 97.6% and a model size of 2.6MB. Although 
deep learning technology has shown promise in sugarcane node 
detection, most related research and practices tend to rely on high-
performance computing equipment, often requiring significant 
computing resources, storage space, and high hardware 
investment. This is significantly different from the needs of actual 
agricultural operations. Many small-scale farmers have limited 
affordability in terms of equipment and funding, making it 
difficult to adopt these technologies widely. Based on the above 
multi-dimensional analysis and comprehensive consideration, this 
high-cost deep learning method does not meet the requirements of 
low cost and high efficiency in practical applications, and it is 
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difficult to be effectively deployed and promoted in widespread 
agricultural production. 

Despite the promising results of deep learning in sugarcane node 
detection, most existing solutions still suffer from limited 
generalizability in outdoor environments, large model sizes that 
hinder deployment, and high computational demands that are 
impractical for real-world use, especially in resource-constrained 
farming contexts. In response to these challenges, this paper 
proposes a lightweight and hardware-adaptive sugarcane node 
detection method based on an improved YOLOv8 framework. The 
proposed approach emphasizes accuracy, low latency, and minimal 
resource consumption, aiming to meet the practical needs of 
intelligent sugarcane planting on affordable edge devices. The main 
contributions of this research include: (1) To address the issue of poor 
feature representation and background interference in complex 
natural scenes, we embed a Triplet Attention module into the 
YOLOv8 backbone, enhancing spatial-channel feature interaction 
and boosting node recognition accuracy. (2) To overcome 
computational inefficiency and large model sizes that hinder 
deployment, we employ a TensorRT-based FP16 quantization and 
acceleration strategy tailored for edge hardware, ensuring low-
latency, resource-efficient inference without sacrificing precision. 
(3) To validate practical feasibility, we implement a full end-to-end 
deployment on the NVIDIA Orin NX edge platform and verify the 
model’s robustness through real-environment field tests under 
varying light and background conditions. 
Frontiers in Plant Science 03 
2 Materials 

2.1 Image acquisition 

This study was conducted from November 2023 to October 
2024 at the sugarcane field (21°10′N, 110°16′E) of the Agricultural 
Machinery Research Institute, Chinese Academy of Tropical 
Agricultural Sciences in Zhanjiang City, Guangdong Province, 
China. The region belongs to the tropical monsoon climate zone, 
characterized by fertile soil and synchronous water and heat 
availability, providing a coordinated ecological base for sugarcane 
growth in terms of light, temperature, water, and soil. 

Based on this foundation, we employed a self-developed 
automated sugarcane node cutting machine as the primary 
acquisition device, equipped with a power supply, display screen, 
NVIDIA ORIN edge processor, and a conveyor belt with an input 
port, as shown in Figure 1. For indoor image acquisition, we used an 
Apple iPhone 11 and an Intel RealSense D455 camera in a 
laboratory environment with consistent natural lighting. The 
iPhone 11 captured RGB images under standard auto settings, 
with a focal length of 26 mm and an aperture of approximately f/ 
1.8, while the RealSense D455 was operated using its default RGB 
parameters to ensure reliable spatial consistency and color 
representation. For outdoor image acquisition, sugarcane in 
natural field conditions was photographed using Huawei Mate 60 
Pro and iPhone 11 devices, also under automatic settings with 
FIGURE 1 

Automated sugarcane node cutting machine. 
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similar optical parameters (26 mm focal length, ~f/1.8 aperture). 
This allowed the dataset to capture realistic variations in light, 
background, and occlusion. In total, 626 high-quality sugarcane 
images were collected, including 360 from indoor scenes and 266 
from outdoor scenes. The inclusion of both controlled and natural 
conditions ensures diversity in data characteristics, which enhances 
the model’s generalization capability and robustness. These 
acquisition conditions are fully replicable, providing a reliable 
basis for future studies in sugarcane node detection and localization. 
2.2 Data preprocessing 

This study began with the selection and annotation of 600 clear 
and representative sugarcane images. Labelmg (GitHub Repository. 
http://github.com/tzutalin/labelImg), a commonly used software in 
the field of object detection, was employed as the annotation tool. 
To ensure that the category information and coordinate location of 
each sugarcane within the images were accurately recorded, each 
image underwent meticulous labeling. The filtered dataset was 
divided into training, validation, and testing sets in a 7:1.5:1.5 
ratio. Specifically, 350 images from indoor scenes and 250 images 
from outdoor scenes were allocated to the training, validation, and 
testing sets according to this ratio, as shown in Table 1. 
 

3 Lightweight sugarcane node 
detection network 

3.1 YOLOv8 model 

In intelligent planting and harvesting systems in the wild, the 
accurate identification of sugarcane nodes is crucial for achieving 
automatic positioning and management. YOLOv8 has emerged as a 
mature and stable object detection framework, offering an ideal 
balance of efficiency and accuracy that makes it particularly suitable 
for intelligent planting and harvesting systems across diverse 
agricultural scenarios. 

The core advantage of YOLOv8 lies in its advanced network 
architecture design. This model employs a lightweight backbone 
network and effectively fuses multi-scale feature information 
through a feature pyramid network (FPN) structure in the neck. 
Finally, a novel output head is used for object recognition and 
localization. This architecture allows YOLOv8 to significantly 
improve computational efficiency while maintaining high 
detection accuracy. In addition, the deployment cost of YOLOv8 
is extremely low, allowing it to run easily on edge computing devices 
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without relying on powerful hardware support. Therefore, YOLOv8 
is selected as the basic framework for sugarcane node detection. 

However, despite the excellent performance of YOLOv8 under 
ideal conditions, its detection accuracy is still insufficient in 
complex natural environments. Furthermore, its model size and 
computational resource requirements still make it difficult to 
achieve optimal performance on some edge devices. Therefore, in 
order to improve the environmental adaptability and lightweight 
characteristics of the model, we need to improve the existing 
YOLOv8 model. 
3.2 EdgeSugarcane model 

To address the challenges of occlusion, inter-class differences, 
and computational resource limitations encountered by YOLOv8 in 
complex environments, we propose the Triplet Attention module. 
This module enhances feature fusion and attention mechanisms by 
considering three information sources simultaneously to overcome 
these issues. In the EdgeSugarcane network, we introduce this 
module to achieve a lightweight design and inter-layer 
collaboration, significantly improving detection accuracy and 
speed in complex scenarios. 

3.2.1 Triplet attention module 
Triplet Attention is an attention mechanism module. 

Compared with commonly used attention mechanisms such as SE 
(Squeeze-and-Excitation) and CBAM (Convolutional Block 
Attention Module), Triplet Attention offers enhanced modeling 
capacity by capturing cross-dimensional interactions among 
channel, height, and width simultaneously. This property is 
particularly valuable in the sugarcane node detection task, where 
small features are often occluded or distorted by lighting and 
background interference. Therefore, Triplet Attention was 
selected for its superior ability to refine feature maps in complex 
natural scenes. It aims to improve feature expression. It does this by 
capturing dependencies between different dimensions of the input 
tensor. As shown in Figure 2, each branch models cross-
dimensional dependencies. These are between pairs of 
dimensions: Channel and Height (C, H), Channel and Width (C, 
W), and Height and Width (H, W). This allows for effective 
information fusion. Specifically, given an input tensor X∈ R C ×

H × W, the calculation flow of the three branches is as follows: 
Pool is responsible for reducing the C dimension of the Tensor 

to 2 dimensions, specifically by concatenating the average-pooled 
feature and the max-pooled feature along that dimension. It can be 
represented by the following equation: 

Z − pool(X) = ½MaxPool0d(X), AvgPool0d(X)] 
The first branch transforms the input tensor and then performs 

interaction between the H and C dimensions. X is rotated 90° along 
the H-axis. This results in a tensor ‘ĉ 1 ‘ with shape W × H × C. The 
Z-pool operation is then used to extract features. These features are 
then passed through a convolution and a Sigmoid activation 
function to generate the channel attention weights, A_c. The 
TABLE 1 Details of the data set. 

Dataset Training Validation Testing 
Scence set set set 

Indoor 245 53 52 

Outdoor 175 38 37 
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calculation method is as follows; 

A_ c  =  s(Conv(Z(ĉ 1))) 

The second branch is similar to the (C, H) branch. It performs 
interaction between the C and W dimensions. X is rotated 90° along 
the W-axis. This results in a tensor ‘ĉ 2 ‘ with shape H × C × W. This 
generates the spatial attention weights, A_s. The calculation method 
is as follows: 

A_ s  =  s(Conv(Z(ĉ 2))) 

The third branch directly interacts the H and W dimensions. 
Features are extracted using the Z-pool operation. These features 
are then processed by a convolution and a Sigmoid activation 
function to generate the attention weights, A_ hw. The 
calculation method is as follows: 

A_ hw = s(Conv(Z(X))) 

Finally, after restoring each rotated branch to its original 
orientation, the results from the three branches are averaged. This 
yields the final refined tensor output: 

1 
Output  = (ĉ 1 A _ c + ĉ 2A _ s  +  X A _ hw) 

3 
 

3.2.2 EdgeSugarcane network architecture 

The improved YOLOv8 architecture integrates the  Triplet
Attention module immediately after the SPPF module, which 
follows the final C3 block in the backbone, as shown in Figure 3. 
This placement allows the module to act directly on the high-level 
semantic features output by the backbone before they are passed to 
the neck for multi-scale fusion. The Triplet Attention mechanism 
applies cross-dimensional attention weighting across channel and 
spatial dimensions, effectively enhancing node edge and texture 
representation while suppressing background noise. This structure 
not only maintains a lightweight footprint but also significantly 
boosts detection accuracy for small and densely distributed targets 
Frontiers in Plant Science 05 
under occlusion or uneven lighting. The optimized feature 
representation enables more accurate node identification in 
natural environments, thereby supporting the development of 
intelligent and precise sugarcane harvesting equipment. 
3.3 Model quantization acceleration 

This study employs a quantization acceleration approach to 
optimize the performance of the sugarcane intelligent recognition 
and harvesting model. Given the relatively fixed characteristics of 
sugarcane and the lower complexity of object recognition, as shown 
in Figure 4, the model is quantized using NVIDIA’s TensorRT 
platform through weight and activation precision calibration. This 
maximizes throughput and significantly boosts inference speed 
while maintaining high accuracy. Furthermore, the combination 
of layers and tensors optimizes GPU memory and bandwidth 
utilization efficiency. The automatic kernel tuning mechanism 
allows the selection of optimal data layers and algorithms based 
on the target GPU platform, thereby achieving further performance 
improvements. Simultaneously, a dynamic tensor memory 
management strategy effectively minimizes memory footprint and 
reuses tensor memory, ensuring efficient resource utilization. 
Finally, a multi-stream execution mechanism is designed to 
support parallel processing of multiple input streams. These 
optimization measures reduce the performance requirements of 
edge devices in planting areas, reduce actual deployment costs, and 
facilitate the realization of a real-time and efficient sugarcane node 
recognition system. 

In summary, the TensorRT-based quantization and acceleration 
strategy significantly reduce the model’s inference time and memory 
footprint, enabling real-time detection on low-power edge devices 
such as NVIDIA Orin NX. These enhancements lower the 
operational costs and energy requirements in practical sugarcane 
farming environments, making intelligent node recognition more 
accessible and scalable for small- and medium-sized farms. 
FIGURE 2 

Triplet attention with a three-branch architecture. 
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FIGURE 4 

TensorRT architecture diagram. 
FIGURE 3 

Architecture of EdgeSugarcane network. The improvement is marked by the red dotted box, which is the introduced Triplet Attention Module. 
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4 Experimental results and analysis 

4.1 Experimental environment and 
parameters 

To fairly evaluate the performance of each algorithm, all 
algorithms were ensured to use the same training platform and 
hyperparameter settings in the experiment. The following are the 
details of the experimental platform used in this study: The 
processor adopts Intel Xeon Gold 62656 processor, the main 
frequency is 3.60 GHz, equipped with 48 physical cores and 24 
threads, and the memory capacity is 1024 GB. The graphics card 
uses NVIDIA RTX 4090 with 24 GB of video memory. The 
operating system is Ubuntu 18.04. CUDA 11.8.130, CUDNN 
8.6.0, NVIDIA driver 535.104, OpenCV 4.8.0, and training 
framework PyTorch 2.0.1 are installed in the system. 
Fron
1.	 Parameter Settings: This study selects the officially 
provided pre-trained models YOLOv5l and YOLOv8l as 
the basic models. The dataset image size is set to 640 × 640 
pixels to reduce the computational burden and maintain 
sufficient details, thereby improving training efficiency. The 
experiment implemented 10,000 rounds of training and 
testing until the results stabilized. The batch size is set 
according to the maximum network performance to 
maximize the use of computing resources and ensure that 
each iteration can reasonably process samples. In addition, 
the initial learning rate is set to 0.01, and the momentum is 
set to 0.90 to accelerate model convergence and suppress 
oscillations during gradient descent, ensuring the 
smoothness and efficiency of the training process. Weight 
decay is set to 0.0005, which aims to regularize and prevent 
the model from overfitting. 

2. Training Strategy: In order to optimize the training process, 
the K-Means clustering algorithm is used to accurately 
determine the optimal aspect ratio of the anchor boxes, and 
automatically identify the optimal cluster center to guide 
model training. In order to enhance the generalization 
ability and robustness of the model, the experiment 
adopts a variety of image enhancement techniques, 
including: using Mosaic technology to enhance sample 
diversity and background complexity; applying Mixup 
technology to generate new samples through linear 
combination of images and labels; introducing EMA 
technology to smooth model parameters and enhance 
stability; in terms of color space, adjusting the HSV color 
space to enhance the saturation and brightness of images to 
adapt to different lighting and color changes; in addition, 
Flip technology is used for horizontal flipping to improve 
the model’s ability to recognize symmetry. In addition, an 
EarlyStopping mechanism was adopted to monitor 
validation performance during training and automatically 
halt optimization when no improvement was observed after 
a set number of epochs, thereby effectively preventing 
overfitting and ensuring generalization. 
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4.2 Evaluation metrics 

In this study, to more effectively evaluate the performance of the 
sugarcane detection model, we selected Precision, Recall, mean 
Average Precision at 0.5 IoU threshold (mAP@0.5), F1-score, 
inference time, and model size as key metrics. The calculation 
formulas are detailed below as Equations 1 to 4. 

TPP =	 (1)
TP + FP 

TPR =	 (2)
TP + FN 

Coi=1APimAP =	 (3)
C 

2PR 
F1 =	 (4)

P + R 

Within this framework, True Positives (TP) refer to samples with 
actual positive labels and positive prediction results; False Positives 
(FP) refer to samples with actual negative labels but positive 
prediction results; and False Negatives (FN) are samples that are 
actually positive but predicted as negative, representing unidentified 
sugarcane. These three are the basis for the calculation of precision 
and recall, which in turn affect the calculation of mAP and F1-score. 
Precision, Recall, mAP, and F1-score are important metrics for 
measuring the performance of a detection model. Among them, 
mAP represents the area under the Precision-Recall curve, reflecting 
the overall effectiveness of the model. Inference time represents the 
time required to detect a single sugarcane image, assessing the 
efficiency of the model, which is particularly important in practical 
applications. Model size refers to the storage space occupied by the 
model. These metrics collectively constitute a comprehensive 
evaluation of the performance of the developed model. 
4.3 Comparison experiments with different 
advanced recognition methods 

To verify the effectiveness of the proposed EdgeSugarcane 
model, we conducted comparative experiments with several 
mainstream detection models, including YOLOv5, YOLOv8, and 
multiple improved YOLOv8 variants (YOLOv8-EfficientVit, 
YOLOv8-c2f-Cloatt, YOLOv8-faster_ema, and YOLOv8-bifpn). 
The evaluation metrics included precision, recall, mAP, inference 
time, and model size, with a particular focus on balancing detection 
accuracy and real-time performance in practical applications. 

As shown in Table 2, although YOLOv5 demonstrated a slightly 
smaller model size and faster baseline inference time than YOLOv8, 
it also exhibited lower recall and mAP. Considering the need to 
detect small and partially occluded sugarcane nodes under complex 
lighting and environmental conditions, we selected YOLOv8 as the 
base framework due to its architectural advantages—namely, a 
decoupled detection head, improved multi-scale feature fusion, 
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and better semantic representation capabilities. Additionally, 
YOLOv8 provides stronger compatibility with deployment 
frameworks such as TensorRT, making it more suitable for 
optimization on edge hardware. Building upon YOLOv8, the 
proposed EdgeSugarcane model introduces a Triplet Attention 
module and applies FP16-based quantization using TensorRT. As 
a result, EdgeSugarcane achieves a precision of 0.935, a recall of 
0.800, and an mAP of 0.870, with a single-frame inference time of 
only 9.3 ms and a model size of 87.6 MB. Compared to the original 
YOLOv8, it improves mAP by 0.6%, F1-score by 2.0%, precision by 
2.9%, and recall by 1.4%, while reducing inference latency by 44%. It 
is also 28% faster than YOLOv5, and 36.7%–48.3% faster than other 
YOLOv8 variants. These results confirm that our improvements 
deliver a highly accurate, efficient, and deployable sugarcane node 
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detection model, especially well-suited for real-time operation on 
resource-constrained agricultural edge devices. 

Figure 5 compares the detection performance of the improved 
EdgeSugarcane model and YOLOv8 in indoor sugarcane cutter and 
outdoor planter operating environments. The results show that the 
improved model has better recognition accuracy than YOLOv8, can 
more accurately identify sugarcane nodes, and significantly reduces 
false positives, false negatives, and the number of redundant 
bounding boxes. In the indoor sugarcane cutter operating scenario, 
YOLOv8 is prone to overlapping detections, incorrect judgments, and 
missed detections due to blurred edges of the nodes, resulting in a 
decrease in recognition accuracy. In contrast, EdgeSugarcane 
enhances feature discriminability through optimized algorithms 
and the Triplet Attention module, solving the problems of repeated 
yolov8 EdgeSugarcane yolov8 EdgeSugarcane 

FIGURE 5 

Comparison of detection effects in different environments. 
TABLE 2 Comparison of detection performance of different networks. 

model 

Evaluation 
Metrics P R F1 mAP Inference time Model size 

Yolov5 0.910 0.770 0.834 0.840 12.9 56.2 

Yolov8 0.906 0.786 0.842 0.864 16.6 87.6 

Yolov8-EfficientVit 0.933 0.774 0.846 0.801 15.6 8.7 

Yolov8-c2f-Cloatt 0.911 0.794 0.848 0.806 16.9 89.0 

Yolov8-faster ema 0.899 0.802 0.848 0.845 18.0 52.2 

Yolov8-bifpn 0.884 0.810 0.846 0.856 14.7 63.0 

EdgeSugarcane 0.935 0.800 0.862 0.870 9.30 87.6 
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detection, false positives, and missed detections of YOLOv8 in 
complex agricultural scenarios. In the outdoor planter operating 
scenario, YOLOv8 often has difficulty in correct recognition due to 
complex lighting conditions, while EdgeSugarcane can still maintain 
high recognition performance under these conditions. Thus, 
EdgeSugarcane demonstrates stronger adaptability and robustness, 
and can achieve accurate sugarcane node detection in diverse 
scenarios, providing high-precision, low-latency detection support 
for mechanized sugarcane operations. 
4.4 Comparative experiments of different 
quantization methods 

To reduce model size, decrease computational resource 
consumption, and improve inference speed while maintaining 
model performance, this section presents comparative experiments 
between the original EdgeSugarcane model and two quantization 
methods (TensorRT-FP16 and TensorRT-INT8). This is done to 
verify the optimization effects of quantization techniques in real-
world deployments. The experiment investigates the impact of 
different quantization strategies on the performance of models in 
practical applications. Table 3 presents the results of each model’s 
performance metrics. 

The TensorRT-FP16 deployment solution proposed in this study 
achieves a synergistic optimization of accuracy and efficiency in the 
task of sugarcane node detection. Experimental data demonstrates 
that while maintaining the original model’s lossless detection accuracy, 
the inference speed is significantly increased to 3.3 times that of the 
original model, and the model size remains virtually unchanged. 
Compared to INT8 quantization which suffers from accuracy 
degradation rendering it impractical, FP16 quantization maintains 
model robustness without requiring quantization-aware training, 
significantly reducing the complexity of heterogeneous computing 
platform adaptation. With these advantages, TensorRT-FP16 
technology can effectively improve the performance of sugarcane 
node detection systems. It has millisecond-level detection speeds, 
meeting the needs of real-time field detection, and can be adapted 
to mobile devices. In scenarios with complex overlapping of nodes, it 
maintains high localization accuracy, reducing missed detections and 
T
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false positives. Furthermore, the method is directly compatible with 
low-cost edge computing devices, facilitating the rapid deployment 
and application of node detection systems in the field. 
4.5 Field experiments 

In real-world orchard scenarios, cloud-based sugarcane 
recognition models struggle to meet real-time requirements due 
to limited computing resources on edge devices and unstable 
network conditions. To achieve end-to-end sugarcane recognition 
and localization, this study deploys the optimized EdgeSugarcane 
model to an NVIDIA Jetson Orin NX (16 GB, 1024-core Ampere 
GPU) edge computing device and systematically evaluates its 
performance in real orchard environments. The software 
environment used during deployment includes TensorRT version 
8.5.2.2, CUDA 11.4.315, cuDNN 8.6.0.166, Ultralytics YOLOv8 
version v8.1.0, and Python 3.8.10. 

Experimental results in Table 4 show that after applying 
TensorRT-FP16 optimization, the inference time on the Orin 
platform was reduced from 3.2 ms to 1.5 ms, achieving a 53.1% 
speed improvement. The total end-to-end processing time 
stabilized at 66.5 ms, with preprocessing and postprocessing times 
reduced by 62.5% and 58.1%, respectively. GPU memory usage 
decreased from 1.5 GB to 1.4 GB, reducing the overall memory 
footprint on the edge device. Across all configurations, the model 
maintained consistent performance, with a precision of 0.935, recall 
of 0.8, and mAP of 0.87, even in complex orchard conditions with 
overlapping nodes. These results confirm that FP16 quantization 
preserves the model’s representational capability while improving 
latency and resource efficiency. EdgeSugarcane demonstrates 
enhanced adaptability and robustness, supporting accurate node 
detection in varied scenarios and enabling high-precision, low-
latency performance for mechanized sugarcane operations. 
5 Discussion 

This paper proposes a lightweight sugarcane node detection 
method called EdgeSugarcane, designed to address the challenges of 
ABLE 3 Analysis of quantization method comparison experiments. 

Evaluation 
Metrics 

data 
Original model (EdgeSugarcane) TensorRT-FP16 TensorRT-INT8 

P 0.935 0.935 0.399 

R 0.8 0.8 0.167 

mAP 0.87 0.87 0.258 

Model Size (MB) 87.6 89.9 47.1 

Inference Time (ms) 6.3 1.9 1.8 

Preprocessing Time (ms) 0.3 0.9 0.7 

Postprocessing Time (ms) 2.7 4.4 4.8 
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sugarcane node identification in complex natural environments. By 
introducing an interactive attention mechanism across channel and 
spatial dimensions to improve the YOLOv8 network architecture, 
we enhanced the capability to extract node features. Furthermore, 
by combining the FP16 quantization technology of the TensorRT 
framework, we completed end-to-end deployment on the NVIDIA 
Orin NX edge device, achieving a balance between high accuracy 
and low resource consumption, and significantly improving the 
system’s real-time performance and environmental adaptability 

In the field of sugarcane node detection, existing methods, such 
as those by Tan et al. (2014), Huang et al. (2017), Chen et al. 
(2021c), and Meng et al. (2019), primarily rely on manual feature 
extraction and machine learning algorithms. While these methods 
have achieved certain recognition rates in specific scenarios, they 
generally suffer from insufficient real-time performance and weak 
environmental robustness. In recent years, methods based on deep 
learning techniques, such as those by Dai et al. (2024b), Wang et al. 
(2022), and Xie et al. (2023), have significantly improved detection 
efficiency, but the model performance is still susceptible to 
environmental factors. In contrast, our proposed EdgeSugarcane 
method not only improves detection accuracy in complex 
environments but also significantly reduces single-frame inference 
time and end-to-end processing time, enabling it to meet the needs 
of applications requiring higher real-time performance. 
Frontiers in Plant Science 10 
The core innovation of this research lies in achieving efficient 
synergy between a lightweight detection model and edge 
computing, validating the field applicability of sugarcane node 
detection on the NVIDIA Orin NX device. Compared to 
traditional cloud-based approaches, this method significantly 
reduces computational resource consumption and latency while 
maintaining detection accuracy, enabling low-cost, high-efficiency 
sugarcane node detection. Although EdgeSugarcane performs 
excellently in most scenarios, it exhibits certain limitations in 
extreme environmental conditions, as shown in Figure 6. First, 
when dense sugarcane leaves heavily cover the node regions, the 
similarity between leaf textures and node features can cause the 
model to misidentify leaf edges as node boundaries. Second, under 
strong midday sunlight, glare on the node surface can create bright 
spots, leading the model to generate multiple overlapping bounding 
boxes on the same node. Future work will focus on addressing these 
issues and further optimizing the algorithm to promote the practial 
application of intelligent sugarcane cutting and planting equipment. 
6 Conclusions 

This paper presents EdgeSugarcane, a lightweight sugarcane 
node detection method based on an improved YOLOv8, which has 
(a)Misdetection due to leaf occlusion (b) Redundant detections due to strong illumination 

FIGURE 6 

Detection failure analysis: (a) misdetection caused by leaf occlusion; (b) redundant detection under strong illumination. 
TABLE 4 Performance comparison of edgesugarcane model under different hardware platforms and optimization strategies. 

Evaluation 
metrics 

Data 

EdgeSugarcane-TensorRT-FP16 
on 4090 

EdgeSugarcane 
on ORIN 

EdgeSugarcane-TensorRT-FP16 
on ORIN 

P 0.935 0.935 0.935 

R 0.8 0.8 0.8 

mAP 0.87 0.87 0.87 

Inference Time (ms) 1.9 3.2 1.5 

Preprocessing Time (ms) 0.9 161.4 60.6 

Postprocessing Time (ms) 4.4 10.5 4.4 

Gpu memory 990mb 1.5g 1.4g 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1626725
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zheng et al.	 10.3389/fpls.2025.1626725 
been successfully deployed on the NVIDIA Orin NX edge 
computing device. 
Fron
1.	 This paper proposes the EdgeSugarcane model, which 
enhances multi-scale feature representation by embedding 
a Triplet Attention module, effectively suppressing complex 
background interference. Experimental results demonstrate 
that EdgeSugarcane achieves a precision, recall, and mAP50 
of 0.935, 0.8, and 0.87, respectively, on the test set. The 
mAP is improved by 0.6% compared to YOLOv8, the 
inference speed is increased by 44%, and the model size is 
89.9MB. Compared with other methods, EdgeSugarcane 
significantly improves the accuracy and efficiency of 
sugarcane node identification. 

2. An acceleration-optimized deployment strategy based on 
TensorRT is proposed, achieving synergistic optimization 
of accuracy and efficiency. TensorRT-FP16 significantly 
increases the inference speed to 1.9ms under lossless 
accuracy conditions, achieving 3.3 times that of the 
original model. At the same time, the model size remains 
virtually unchanged. The millisecond-level detection speed 
meets the real-time requirements of field applications, high 
accuracy ensures localization in complex scenarios, and it is 
easy to deploy on low-power agricultural hardware, 
reducing application costs. 

3. EdgeSugarcane was deployed on the NVIDIA Orin NX 
edge device, achieving end-to-end application of the 
sugarcane node detection algorithm, and robustness 
verification was performed in field environments. On the 
NVIDIA Orin NX device, the single-frame inference time, 
pre-processing time, and post-processing time were 1.5ms, 
60.6ms, and 4.4ms, respectively. The edge deployment 
scheme effectively avoids network latency issues, and 
maintains an mAP value of 87% in complex field 
scenarios such as strong light and shadows, verifying its 
robustness in complex environments. This proves the 
feasibility of the method proposed in this paper and 
provides an important technical reference for intelligent 
sugarcane cutting and planting localization. 
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