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Plant ecosystems face primary threats from biological invasions in combination

withmicrobial pathogens whosemain threats derive from fungal pathogens. Fungi

are essential in maintaining ecological balance by decomposing wood and

eliminating weakened trees, but pathogenic fungi can cause devastating effects.

This review summarizes the effects of forest pathogenic fungal effectors by

evaluating their types, functions, and unique characteristics, along with their

impact on host immune response mechanisms. Pathogens attack plants through

specific infection strategies that involve effectors to suppress host defense

responses and metabolic activities. Plants falling victim to fungal effectors

through their interaction with pathogens lose control of key cellular processes

that allow the infection to develop. Effectors are categorized into apoplastic and

cytoplasmic types, which influence plant immunity through alterations in immune

responses. The infection entry process involves microorganisms that release

protein effectors as structural and functional modifiers for target cells. The

diversity of effectors jointly with their evolutionary processes depends on

multiple factors encompassing amino acid content and foundational genomic

zones together with interaction period with hosts. Effectors further manipulate

phytohormone pathways such as jasmonic acid, ethylene, and salicylic acid to

suppress immunity, promote pathogen survival, and establish parasitic

compatibility. However, fungal effectors are central to pathogenesis, as they

critically redefine plant-pathogen interactions by targeting host defense

mechanism, enabling colonization, and driving diseases development. The

review evaluates fungal effectors as dual agents which disrupt plant immunity

while serving as research tools to study host biology. Exploring effector-mediated

mechanisms helps researchers better understand fungal pathogenicity

characteristics alongside plant host defense mechanisms. Future inquiries should

examine pathway plasticity in effectors across taxonomic domains to better

understand fungal pathogenesis in forest ecosystems worldwide.
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1 Introduction

Since the emergence of plant-pathogen interactions, a relentless

co-evolutionary arms race has unfolded between pathogens and

their plant hosts (Zhang et al., 2022). Plant pathogens represent a

diverse collection of organisms that possess the capability to infect

their hosts. Pathogens, ranging from fungi, bacteria, and nematodes

to parasitic plants, exploit host resources for survival and

reproduction. Pathogens that can infect seemingly healthy plants

are known as primary pathogens. Secondary pathogens

opportunistically colonize tissues weakened by prior infection or

stress (Termorshuizen, 2017). Pathogenic microorganisms extract

nutrients from host cells for survival and reproduction, whereas

host plants utilize numerous defense mechanisms to restrict

pathogen proliferation (Ngou et al., 2022). Among these

adversaries, fungal pathogens constitute the predominant category

of plant pathogens, whereas other significant plant pathogens

encompass bacteria, protists, chromists, nematodes, and some

plants (Termorshuizen, 2017). Currently, about 10,000 fungal

species are recognized as pathogens of plants (Agrios, 2005;

Koeck et al., 2011). Fungi have endophytic, parasitic, saprotrophic

or mutualistic relationships with plants (Jayawardena et al., 2018;

Zeilinger et al., 2016). Fungal plant pathogens potentially incite

devastating ecological and economic damage to agriculture and

forestry, and can also cause severe damage to natural ecosystems

(Fisher et al., 2012; Hyde et al., 2018; Jayawardena et al., 2021). The

development of plant disease is a result of the tripartite interaction

of host, pathogen and environment (Jayawardena et al., 2021).

Fungal plant pathogens establish compatibility with the host

through various ways (Marcato et al., 2017). Fungi can (i) evade

detection by the plant monitoring system (Pel and Pieterse, 2013),

(ii) release effector molecules capable of suppressing or

manipulating the host defense mechanisms (Doehlemann and

Hemetsberger, 2013; Dou and Zhou, 2012), (iii) counteract the

antifungal chemicals generated by their host plants (Osbourn,

1999). All these processes may be employed concurrently or

sequentially throughout the plant-fungus interaction, together

facilitating a successful infection (Marcato et al., 2017). The

outcome of these interactions hinges a delicate balance influenced

by the host, pathogen, and environmental conditions, setting the

stage for a complex molecular arms race.

To counter pathogen attacks, plants are capable of identifying

microbes through pattern recognition receptors (PRRs) in the host

cells. Upon recognizing the adversary, these receptors initiate effective

immune responses in the invaded tissue (Pel and Pieterse, 2013).

Microbial recognition is facilitated by conserved structures known as

microbe-associated molecular patterns (MAMPs) (Pel and Pieterse,

2013). Furthermore, host-derived signals produced during pathogen

infection or mechanical injury, known as damage-associated

molecular patterns (DAMPs), represent an additional mechanism

by which the host detects pathogen invasion (D'Ovidio et al., 2004;

Dou and Zhou, 2012; Huffaker et al., 2006). Receptors that detect

pathogen associated molecular patterns (PAMPs) and damage-

associated molecular patterns (DAMPs) are commonly referred to
Frontiers in Plant Science 02
as pattern recognition receptors (PRRs). In contrast to animal pattern

recognition receptors (PRRs), which include both plasmamembrane-

localized Toll-like receptors (TLRs) and cytoplasmic NOD-like

receptors (NLRs), plant PRRs are only composed of plasma

membrane-localized receptor-like kinases or receptor-like proteins

(Monaghan and Zipfel, 2012). Plants possess a substantial quantity of

NLR proteins; yet, they seemingly do not identify PAMPs or DAMPs

(Dou and Zhou, 2012). In contrast, NLRs solely identify intracellular

pathogen effector proteins and initiate immune responses with high

specificity. However, pathogens continually adapt, secreting effector

proteins that manipulate host cells to take their advantage (Tsuda and

Katagiri, 2010). These effectors can disrupt host metabolism, suppress

immune responses, or alter gene expression, depending on whether

they act in apoplast (extracellular) or cytoplasm (intracellular).

Effector proteins are secreted by pathogens to manipulate the

host to their advantage (Sperschneider et al., 2015). Effectors are

molecules that modify the structure and function of host cells,

thereby facilitating infection (virulence factors or toxins) and/or

initiating defense responses (avirulence factors: Avr). These

proteins can be divided into two types according to their target

sites in the host plant (Selin et al., 2016). Apoplastic effectors are

secreted into the plant apoplast, where extracellular effectors engage

with extracellular targets including surface receptors, while

cytoplasmic effectors are translocated into the plant cell (Selin

et al., 2016). Efficient transport of effectors to the plant is essential

for the infection process, irrespective of the effector type.

Pathogenic fungi have evolved unique lifestyles and consequently

created various effector delivery systems during infection (Selin

et al., 2016). The effector proteins are able to alter protein

transcription or modify the metabolic pathways of the host cell

thereby enhancing pathogenicity (Salehzadeh and Dehghanpour

Farashah, 2019). A key unresolved question in plant pathology is

how eukaryotic pathogens, particularly (fungi), manipulate host

processes to promote infection, highlighting the need for deeper

mechanistic insights into these interactions (Whisson et al., 2007).
1.2 Plant immune defense mechanisms:
MTI and ETI in pathogen resistance

Plants operate with two operational components in their

intrinsic defense system through MAMP-triggered immunity

(MTI) and effector-triggered immunity (ETI) to combat

pathogens (Dodds and Rathjen, 2010; Jones and Dangl, 2006).

Each microbe renders MAMPs that function as activating agents

through their universally shared molecular signatures that stem

from bacterial flagella and fungal chitin alike. MAMPs function as

detectable markers that trigger transmembrane pattern recognition

receptors (PRRs) present in plant apoplast tissue (Hemetsberger

et al., 2015; Irieda et al., 2019). The investigation of plant–pathogen

interactions led to substantial advancements in our comprehension

of effectors. Harold Flor established the concept of “avirulence

factors” in the 1940s because these proteins act as “Avr” factors

that activate defense mechanisms by connecting with “R” proteins
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within plant cells according to his later definitions (Todd et al.,

2022b). Resistance proteins primarily group within nucleotide

binding (NB) along with leucine rich repeat (LRR) domain (NB-

LRR) protein family (Eitas and Dangl, 2010). Disease-limiting

processes develop from the biological interaction between Avr

proteins and “R” resistance proteins generating conditions hostile

to pathogens. The ‘gene-for-gene hypothesis’ demonstrates its

origins through how Avr proteins identify and interact with “R”

resistance genes. During his research of the flax pathogen

Melampsora lini and its host plant Linum usitatissimum Flor

employed this theory. Scientists applied the term “effectors” to

label these molecules while recognizing their virulence or avirulence

properties based on the resistive genes located in the host plants.

Different behavioral functions of effectors determine the

effectiveness of pathogens and their ability to cause disease in

plant hosts (Win et al., 2012).

The effector-triggered immunity (ETI) activation by viral

resistance genes (VRS) creates defense-mediated necrotic lesions

which are known as hypersensitive responses. The recognition of

pathogen-containing Avr proteins (avirulence proteins) through

the plant resistance system allows it to trigger its protective

defensive system (ETI). Each Avr protein maintains its primary

activity related to virulence because pathogen effectors normally

bring advantages to their host although these activities stop working

after plant resistance proteins detect them (Bent and Mackey, 2007).

The defense system of the host becomes activated through signals

produced by MAMPs and effectors. Microbe-associated molecular

pattern-triggered immunity (MTI) functions independently from

effector-triggered immunity (ETI) as complete defense stages under

the plant immunity model named zig-zag (Jones and Dangl, 2006).

Plant receptors detecting MAMPs initiate signaling pathways that

result in both callose deposition and mitogen-activated protein

kinase (MAPK) signaling as well as pathogenicity-related protein

expression ultimately producing an oxidative burst with reactive

oxygen species (ROS) in plant cells (Chisholm et al., 2006). The

response works as a barrier to reduce pathogen spread so plants

survive through this MTI defense mechanism. The activity of

pathogen-secreted effectors causes MTI disruption which results

in what scientists call effector-triggered susceptibility (ETS). ETI

manifests with an oxidative burst that causes defense proteins to

increase until it leads to programmed cell death (HR) producing

phytoalexins which block pathogen dissemination in the infected

tissue. Resistant proteins present in plants detect Avr molecules

which activates the immune response named effector-triggered

immunity (ETI) (Yuan et al., 2021).
2 The roles of fungal effectors in host-
pathogen interactions

Many researchers have examined the ways in which host-

pathogen relationships are impacted by the evolutionary conflict

between plants and diseases (Langin et al., 2020). Effectors are

necessary for plant disease development because they are key

players in the induction of susceptibility. Plants build
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immunological receptors by natural selection with pathogens to

detect particular effectors that activate defense responses. The

outcome between diseases depends on the continuous interaction

between effectors and the host immune system (Lovelace et al.,

2023). Understanding the molecular basis of this interaction

provides essential knowledge to determine viral disease principles

which will guide resistance development. The characterization of

particular pathogen-driven effectors has been the major target of

scientific research during multiple years (Lovelace et al., 2023). The

use of genetic methods has discovered pathogenicity or virulence

factors through which scientists gained better insights into the

functioning of host–pathogen relationships. Plants have evolved

resistance (R) gene-encoding proteins that combat pathogen

effectors to initiate immune defense known as effector-triggered

immunity ETI (Figure 1) (Wang et al., 2015). The primary defense

mechanism of plants involves pattern recognition receptors (PRRs)

that detect pathogen-associated molecular patterns (PAMPs) to

initiate pattern-triggered immunity (PTI) responses, thereby

preventing pathogen proliferation (Zhang et al., 2022).
2.1 Fungal pathogen ingress and feeding

Pathogenic fungi infiltrate plants by natural apertures (e.g.,

stomata) or injuries, or they directly penetrate utilizing a

penetration peg generated by an appressorium (Figure 2). The

principal characteristic of biotrophic pathogens is the haustorium,

a specialized organ for nutrient acquisition (De Wit et al., 2016).

Haustoria form through the local invasion of the cell wall and the

invagination of the plasma membrane, encased by an

extrahaustorial matrix that facilitates nutrient absorption and

communication with the host (Voegele et al., 2001). In powdery

mildews, haustoria develop directly from the appressoria within

epidermal cells. The rusts and smuts penetrate via stomata and

subsequently generate an intercellular mycelium that envelops

mesophyll cells, from which a haustorium mother cell and

eventually a haustorium are formed. A variety of pathogenic

tactics are employed by hemibiotrophic pathogens. Some,

including Magnaporthe oryzae and Colletotrichum spp., create

intracellular feeding structures called biotrophic interfacial

complexes (Oliveira-Garcia and Valent, 2015), whereas some, like

Zymoseptoria tritici and Cladosporium fulvum, spend their entire

life cycle extracellularly within the apoplast. Vascular wilt

pathogens occur in close proximity to parenchyma cells and

colonize xylem vessels (Stotz et al., 2014).
2.2 Recognition of fungal virulence
effectors

Fungal pathogens employ effector molecules to exploit host

activities for their advantage. The predominant category of

identified effectors is likely effector proteins; however, small RNAs

and metabolites are also released during host infection, and these

molecules have demonstrated the ability to function as virulence
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factors as well (Saur and Huckelhoven, 2021). The majority of

effectors are either proteins or metabolites, with fungal effectors

occasionally referred to as toxins. The molecular functions of

various fungal effectors within the host apoplast have been

thoroughly delineated (He et al., 2020), and the molecular

principles governing plant-microbe interactions indicate that

certain effectors specifically target the microbial recognition

machinery of the host, acting downstream of D/M/PAMP

recognition, hence disrupting PTI (Dodds and Rathjen, 2010).

The localized host cell death, referred to as the hypersentive

response (HR), occur during infection by obligate biotrophic

pathogens or upon the infiltration of biotrophic elicitors into host

tissues, typically resulting from effector recognition by host immune

receptors encoded by Resistance (R) genes (Cui et al., 2015; Dodds

and Rathjen, 2010). The HR is likely significantly involved in

thwarting the invasion of biotrophs, as these pathogens

necessitate living host cells for proliferation (Saur and

Huckelhoven, 2021). The eradication of fungal infection through

R protein function is termed as race-specific resistance, also known
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as effector-triggered immunity (ETI) in Figure 3. The genetic

concept under lying ETI was initially articulated by Harold Flor,

who explored the genetic basis of flax (Linum usitatissimum)

resistance to the flax rust fungus Melampsora lini (Betzen, 2020).

Flor’s research culminated in the formulation of the gene-for-gene

theory, which posits that resistance to a particular pathogen strain is

governed by a R gene in the plant and a corresponding Avirulence

(Avr) gene in the pathogen (Saur and Huckelhoven, 2021). It is

evident that Avr genes typically produce effector proteins, which are

secreted (Figure 3) by pathogens to facilitate pathogen growth in

susceptible hosts, such as to circumvent basic host immune

responses (i.e. PTI) (Saur and Huckelhoven, 2021).
3 Major types of fungal effectors

Plant pathogens receive their classifications through analysis of

their nutritional behaviors (Abera Gebrie, 2016). Plant fungal

infections pose severe dangers to both the worldwide food supply
FIGURE 1

Plant immune system. Pattern recognition receptors (PRRs) in plant cells identify pathogen-associated molecular patterns (PAMPs) and initiate the
primary layer of plant immune response, known as pattern-triggered immunity (PTI), which elicits responses including calcium influx and a burst of
reactive oxygen species. Pathogens generate effectors to suppress pattern-triggered immunity (PTI), but plant resistance (R) proteins, including NB-
LRR proteins, are activated by these effectors to initiate a secondary immune response known as effector-triggered immunity (ETI), which
counteracts effectors and induces cell death (Zhang et al., 2022).
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system and environment stability. Plant pathogenic fungi are

classed as biotrophs, hemi-biotrophs, or necrotrophs according to

their lifestyle (Wang et al., 2014). Growth patterns of biotrophic

pathogens involve obtaining nutrients from living host cells and

tissues through low-level excretion of cell wall-degrading enzymes

and effectors to suppress host immune responses (Dean et al., 2012).

Necrotrophic pathogens pursue growth on the dead host tissues by

degrading them before or during colonization period; to provoke

cell necrosis, they frequently excrete phytotoxic secondary

metabolites (SMs) and peptides, and generate reactive oxygen

species (ROS) (Horbach et al., 2011). Hemi-biotrophic pathogens

exhibit a biotrophic phase initially during infection, transitioning to

a necrotrophic phase thereafter; these pathogens generate toxins

exclusively at the final stages to eliminate host cells and complete

their life cycle on necrotic tissues (Horbach et al., 2011; Wang

et al., 2014).
3.1 Biotrophic fungal effectors

Plant pathogenic biotrophic fungi can proliferate within living

plant tissue by secreting effector proteins that modify the plant cells’
Frontiers in Plant Science 05
responses to pathogens and extract nutrition from necrotic or dying

plant cells (Gan et al., 2010). Biotrophic fungi have adapted to

inhabit live plant tissues and derive nutrients from viable host cells

without activating host defenses. The relative impact of the

biotrophic lifestyle on the pathogen lifecycle varies among

different species. Obligate biotrophs, including rusts and powdery

mildews, only develop on living host tissue. Facultative biotrophs,

exemplified as Ustilago maydis, typically proliferate within living

host tissue but are also capable of in vitro cultivation (Gan et al.,

2010). Biotrophic fungal pathogens of plants rank among the ten

most significant pathogens globally in the field of plant pathology

(Dean et al., 2012; Mapuranga et al., 2022). In biotrophic infections,

the fungus generally proliferates within plant cells, as defined by the

cell wall, yet remains isolated from the host cytoplasm by the plant

plasma membrane. Intracellular growth may manifest as invasive

hyphae or as specialized feeding structures termed haustoria,

exemplified by rust fungus and powdery mildews (Gan et al.,

2010). Biotrophic fungi release effector proteins that alter host

cellular processes, inhibit immunological responses, and disrupt

hormone signaling pathways. For example, the effectors primarily

target components of salicylic acid (SA) pathway (Bauters et al.,

2021; Leiva-Mora et al., 2024) and jasmonic acid (JA) pathway
FIGURE 2

Typical reproductive, feeding, and penetration patterns linked to three different fungal infections. (a, b) Barley powdery mildew, Blumeria graminis
f.sp. hordei. (a) Finger-like haustoria in the epidermal cell and epiphytic hyphae piercing the epidermis. (b) Conidiophores that produce a lot of
conidia. (c, d) Zymoseptoria tritici with wheat Septoria nodorum blotch. (c) Epiphytic hyphae that enter through stomata or hyphopodia (arrows).
(d) A strain that expresses a green fluorescent protein under epifluorescence. The arrow depicts a pycnidium with a large number of conidia.
(e–g) Tomato leaf mold, Cladosporium fulvum. (e) Penetration of a stoma by adventitious (runner) hyphae. (f) Growth of hyphae around tomato
mesophyll cells. (g) Conidiophores bearing abundant conidia on the underside of an otherwise healthy tomato leaflet (De Wit et al., 2016).
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(Leiva-Mora et al., 2024; Tariqjaveed et al., 2021). The redox

environment of plants gets modified by Biotrophic fungi through

its control of antioxidant enzymes which leads to decreased defense

responses and better conditions for colonization (Leiva-Mora et al.,

2024; Park and Son, 2024). Biotrophic pathogens must manipulate

host physiological processes to extract nutrients from living host

cells and tissues for survival and life cycle completion; thus, they

secrete effectors to inhibit host immunity while minimizing host cell

damage to facilitate colonization of living cells (Laluk and Mengiste,

2010; Lo Presti et al., 2015; Zhang et al., 2022).
3.2 Hemibiotrophical fungal effectors

Hemibiotrophic organisms start by using living tissue before

continuing their development as necrotrophic colonizers of dead

tissues (Giraldo and Valent, 2013). Organisms that only possess a

limited host variety begin their process by living off the plant cells

before their life cycle ends with necrotrophic plant tissue

destruction for nutrient extraction. Throughout their biotrophic

developmental stage several species produce haustoria along with

appressoria but subsequently produce hydrolytic enzymes and

toxins during the necrotrophic stage (De Silva, 2016).
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Hemibiotrophic fungal pathogens need specific effectors because

they require these effectors throughout biotrophic and necrotrophic

phases to progress infections. Hemibiotrophs employ two distinct

types of effectors to promote cell death during later infection stages

and regulate the biotrophy-necrotrophy switch (BNS) (Shao et al.,

2021). Hemibiotrophic pathogens start with biotrophic infection

before turning necrotrophic after which the biotrophic phase lasts

between single cells to multiple cells within various pathosystems

(O'Connell et al., 2012).
3.3 Necrotrophic fungal effectors

The definition of necrotrophs describes microorganisms which

obtain their nutrients from migrated host cells using mechanisms

that lead to cell death. Necrotrophic fungi use effectors to activate

host programmed cell death (PCD). Multiple documented studies

investigate how necrotrophic fungal effectors lead to host cell death.

Research on fungal proteins that provide tolerance to specific

conditions requires an analysis of plant death processes because

phytochemicals produced during death may harm fungi. Detailed

information in the detoxifying mechanisms can be found in a recent

review concerning necrotrophic fungus (Westrick et al., 2021).
FIGURE 3

Primary factors influencing plant resistance or vulnerability to parasitic fungus. Plants employ many ways to counteract fungal invaders. Surface-
localised pattern recognition receptors (PRRs) recognise conserved microbe-/pathogen-associated molecular patterns (M/PAMPs) emitted from the
fungal parasite. This identification triggers defence processes that include cell wall fortification and the synthesis of antifungal defence chemicals.
Modified fungi disrupt PRR signalling by secreting virulence effectors into the plant apoplast or cellular interior, hence fulfilling parasitic needs
without necessitating defensive suppression. Consequently, immune complexes comprising resistance proteins (R proteins, specifically cell surface R
proteins or NLRs) enable resistant plants to selectively identify effectors in the apoplast or intracellularly, where R proteins enhance defence
signalling, frequently linked to a hypersensitive response (HR), a specialised variant of programmed cell death. Fungal effectors may activate variables
and pathways that serve the pathogen’s needs rather than regulate host immunity. This activation may encompass host susceptibility variables (Saur
and Huckelhoven, 2021).
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The hypersensitive response (HR) is a localized cell death

mechanism initiated by the detection of effectors by plant resistance

(R) proteins, providing resistance against biotrophs and

hemibiotrophs, and is commonly known as Effector Triggered

Immunity(ETI) (Shao et al., 2021). This genetic program can be

exploited by necrotrophs for their own advantage, given their trophic

lifestyle. This condition is referred to as effector-triggered susceptibility

(ETS), characterized by the activation of plant defense mechanisms,

frequently resulting in cell death and increased vulnerability to

necrotrophic pathogens (Williams and Dickman, 2008).
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These necrotrophic effectors were originally designated as “host

selective toxins” (HST) and are often effective within a limited

spectrum of plant hosts [45]. Necrotrophic effectors have certain

similarities with the avirulence (Avr) effectors of biotrophic fungal

pathogens (Table 1). In contrast to the standard gene-for-gene concept,

which posits that the interaction of avirulence effectors with host

resistance (R)-gene complexes results in resistance, necrotrophic

effectors operate in an ‘inverse’ manner. An interaction between a

necrotrophic effector and the product of a dominant sensitivity gene in

the host results in disease (Tan et al., 2010) (Figure 4).
TABLE 1 Properties of proteinaceous avirulence and necrotrophic effectors.

Characteristic Avirulence effector Necrotrophic effector

Relative small size A Yes Yes

Secreted Yes (Some may be anchor to or be located at the hyphal
cell wall)

Yes (Some may be anchor to or be located at the hyphal
cell wall)

Location of recognition Intra- or extracellular Unknown

Cysteine-rich B Predominantly Some

Compatible host response No disease Disease

Fungal lifestyle Biotrophic or hemibiotrophic Necrotrophic

Function during host recognition Hypersensitive reaction that results in the containment of the
infection, Either by indirect Avr recognition (guard proteins)
or direct Avr recognition (cognate resistance proteins).

Necrosis of the tissue caused by host cell death. Effector
recognition by the host’s dominant sensitivity proteins.

Role in virulence Some Avr proteins, though largely unknown, function as
protease inhibitors and bind chitin, providing protection
against plant chitinases.

While mostly unrecognized, certain effectors influence the
host’s photosystem and plasma H+ ATPase activities.
A = Under 30 kDa. B = Greater than four cysteines per mature polypeptide (Tan et al., 2010).
FIGURE 4

Outcomes of fungal effector–host interactions. (a) to (c) illustrate the host reaction to a fungal Avr protein. The host will develop an effective
defensive response against the virus if Avr recognition takes place (a). Infection will ensue if the pathogen is unrecognised due to a deficient or
modified R (resistance) receptor (b) or Avr effector (c). Necrotrophic effectors work in an inverse manner (d–f). An effective infection will transpire
just during effector recognition (d). In the absence of recognition, no disease will occur due to a missing or modified host sensitivity receptor (e) or
fungal effector (f). Receptors are depicted on the cell membrane for clarity. We acknowledge that some host receptors are situated intracellularly
(Tan et al., 2010).
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4 The subtle distinction between
necrotrophs and heminiotrophs

The main differentiating factor between hemibiotrophs and

necrotrophs rests on their ability to form haustoria or haustoria-

like structures from intracellular hyphae which makes hemibiotrophs

similar to biotrophic pathogens (Table 2). During the pathogenic

process hemibiotrophs produce a bulged intracellular hypha first

which is enclosed by the host plasmamembrane then transforms into

a flatter intracellular hypha resulting in necrosis [66]. Necrotrophic

fungi show extracellular hyphal growth that does not include

intracellular multiplication while they gain access through stomatal

apertures or hydathodes. Both hemibiotrophic and necrotrophic

lifestyles encompass an early biotrophic phase succeeded by

necrosis. The duration of the biotrophic phase exhibits variability

among hemibiotrophs and may exhibit even greater variability in

necrotrophs. This duration can be influenced by numerous external

environmental factors. These necrotrophic pathogens can create

either appressoria or appressoria-like structures (ALS) while some

also produce bulbous hyphae that resemble structures observed in

hemibiotrophic pathogens [67].

Apoplastic: E. Münch initially employed the term “apoplast” in

his 1930 German scientific publication (Farvardin et al., 2020). The

two fundamental elements of apoplast include intercellular spaces

that comprise gas and water between cell membranes and the fibrils
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and micelles containing substances within cell walls and xylem

structures. Plants possess the rhizoplane and cuticle areas and these

regions together form an extension of the apoplast system (Figure 5)

(Farvardin et al., 2020). Filamentous microorganisms establish

relationships with plants that vary from mutualistic (fungi) to

pathogenic (fungi and oomycetes).The result of these interactions,

whether compatibility or incompatibility, is frequently established

in the apoplast, where the initial contact between microbial and

plant cells occurs (Doehlemann and Hemetsberger, 2013; Rocafort

et al., 2020). The apoplast constitutes a hostile environment,

characterized by the constitutive production of proteases, protease

inhibitors, secondary metabolites, and hydrolytic enzymes by plants

to limit fungal and oomycete growth (Rocafort et al., 2020).Cell

surface-localized immune receptors monitor the apoplast and

recognize invasion patterns, activating the plant immune system

(Cook et al., 2015; van der Burgh and Joosten, 2019). This activation

inhibits or ceases fungal and oomycete proliferation by generating

supplementary defensive chemicals and reactive oxygen species

(ROS), with callose and lignin deposition, and, in certain

instances, the hypersensitive response (HR). The apoplast is not a

sterile environment; it contains various bacteria that struggle for

space and nutrition (Rovenich et al., 2014; Snelders et al., 2018).

These microorganisms utilize hydrolytic enzymes, antibiotics,

toxins, and volatile compounds that can further inhibit the

growth of fungi and oomycetes (Carrión et al., 2019).
TABLE 2 Main features of necrotrophic and biotrophic/hemibiotrophic fungi and dominant plant defense pathways.

Plant and
pathogen features

Necrotroph Biotroph/Hemibiotroph References

Dominant immune
signaling pathway

Generalist necrotrophs: PTI Host-specific
necrotrophs: HST detoxification or

insensitive target
ETI, PTI (Jones and Dangl, 2006)

Major defense hormone Jasmonate and ethylene Salicylate
(Pieterse et al., 2012; Durrant

and Dong, 2004)

Major immune elicitors
Chitin, cutin, OGs, endogenous plant

peptides (phytocytokines)
Chitin, some fungal-derived short peptides(e.g.

hemibiotrophic effectors)

(Boller and Felix, 2009; Galletti
et al., 2008; Pieterse

et al., 2014)

Effector- NLR interaction Effector-triggered susceptibility ETI, hypersensitive response
(Dodds and Rathjen, 2010;
Oliver and Ipcho, 2004)

Main effectors and
disease agents

Toxins, CDIPs, secondary metabolites, CWDEs Avr effectors, largely proteins
(Hogenhout et al., 2009;

Möbius and Hertweck, 2009)

Major immune responses or
resistance factors

Complex, cell death inhibition, some PR
proteins, secondary metabolites, toxin

detoxifying enzymes
HR, ROS, PR proteins

(Torres et al., 2006; van der
Does and Rep, 2017)

Pathogen infection strategy
CWDEs, toxins, and digest plant cell wall and

colonize tissues

Develop infection structures and use different
techniques for nutrition intake and host

tissue penetration.

(Mendgen and Hahn, 2002;
Oliver and Ipcho, 2004)

Cell death (early
during infection)

Susceptibility Resistance
(Greenberg and Yao, 2004; van

Kan, 2006)

Fungal infection structures
Generally, less differentiated and

simple structures
Some exhibit simple structures, while others have

highly complex and differentiated features.
(Mendgen and Hahn, 2002;
Oliver and Ipcho, 2004)

Major disease symptoms Decay, maceration, rots, molds
Mild cell damage, Plant cells remain alive

throughout the infection
(Glazebrook, 2005; van

Kan, 2006)
ETI, Effector-triggered immunity; PTI, PAMP-triggered immunity; HST, Host-specific toxin; OG, Oligogalacturonide; NLR, Nucleotide-binding domain leucine-rich repeat; CDIP, Cell death-
inducing protein; CWDE, Cell wall degrading enzyme; HR, Hypersensitive response; ROS, Reactive oxygen species (Liao et al., 2022).
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Apoplastic effectors are released into the interfacial area

between pathogen and plant cells, where “chemical warfare”

transpires (Doehlemann and Hemetsberger, 2013; Harris et al.,

2023). These effectors comprise protease inhibitors (Rooney et al.,

2005) detoxification of secondary metabolites (Okmen et al., 2013;

Singh et al., 2023), chitinase- binding effectors (van den Burg et al.,

2006), and peroxidase inhibitors (Hemetsberger et al., 2012).These

effectors concentrate on mitigating the pathogen’s surroundings

and evading detection (Harris et al., 2023).

Cytoplasmic effector: Effectors are classified as cytoplasmic

when they are translocated into the host cell to target host

cellular processes (Dulal and Wilson, 2024). Cytoplasmic effectors

are secreted proteins that facilitate fungal disease by targeting plant

organelles and altering host defenses (Li et al., 2024; Sperschneider

and Dodds, 2022; Zeilinger et al., 2016). They function within the

host’s intracellular space, affecting numerous cellular processes and

generally have a greater ratio of positively charged amino acids (Li

et al., 2024; Sperschneider and Dodds, 2022; Zeilinger et al., 2016).

Fungal pathogens that utilize these effectors can severely impact

forests by causing tree mortality, diminishing plant species

diversity, and facilitating infection (Bi et al., 2021). Cytoplasmic

effectors typically facilitate fungal disease by targeting plant

organelles to alter various cellular processes within the host (Bi

et al., 2021; Li et al., 2024; Sperschneider and Dodds, 2022).

Cytoplasmic effectors are essential in fungal pathogenesis as they

inhibit plant defense mechanisms and modify host cell structure
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and function. They enable pathogen colonization and alter host

defenses to enhance infection (Figure 6). For example, The BcCrh1

protein from Botrytis cinerea serves as a cytoplasmic effector and a

trigger of plant defense mechanisms. Numerous effector-encoding

genes are organized in clusters and are variably activated when

various plant tissues are colonized (Bi et al., 2021; Li et al., 2024;

Sperschneider and Dodds, 2022).
5 Characteristics of effectors

Effectors represent small molecules released by microbes that

transform cell structures of their hosts to make pathogen-host

communication possible (Fabro, 2022; Langin et al., 2020). The

molecules produce physical along with physiological alterations

within the target species while also influencing the producing

microorganisms in select cases (Cai et al., 2023; Figueroa et al.,

2021; He et al., 2020). Most effectors are proteins (Carreon-

Anguiano et al., 2020; Sperschneider and Dodds, 2022), though

some are secondary metabolites (Rangel and Bolton, 2022), or small

RNAs (Yamankurt et al., 2020). The absence of conservation across

different organisms among known effectors led to the creation of in

silico predictive identification methods which use broader structural

criteria. At least four screening criteria exist for potential

phytopathogen effectors where (a) amino acid count remains

lower than 400 amino acids, (b) signal peptides facilitate the
FIGURE 5

Spaces and structures that form the apoplast in plants (Farvardin et al., 2020).
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protein’s escape from cellular secretion by phytopathogen cells

(Carreon-Anguiano et al., 2020; Sperschneider et al., 2018), c) the

amount of cysteine amino acid reflects effector enrichment and; and

(d) transmembrane domains must be absent in candidates

(Carreon-Anguiano et al., 2020). The identification process for

such effectors becomes more streamlined because their specific

expression patterns become evident when the phytopathogen

interacts with its host (Tao et al., 2020; Toruno et al., 2016). The

amino acid sequences of protein effectors in oomycetes often show

recurring small sequence patterns named motifs which include

RxLR, CHXC or LFLAK (Fabro, 2022). Some microbial effectors

have their genetic locations on dispensable chromosomes which

may be missing from certain microbial strains together with regions

of the chromosome that contain repetitions and lack high gene

density (Peng et al., 2019). A study analyzed the location of

virulence-related genes in fungus Pseudocercospora fijiensis which

revealed most genes existed in “dispensable” genomic regions while

transcriptome analysis showed these genes become active when P.

fijiensis infects banana (Musa acuminata) (Noar and Daub, 2016),

the P. fijiensis effectors were predicted through EffHunter software

application using effector characteristics (Carreon-Anguiano et al.,

2020), The analysis discovered 136 effectors which reside within

dispensable genomic regions as well as genomic areas common to

all strains designated the “core” genome (Todd et al., 2023). The

evolution of effector protein genes encounters high selection

pressure because of which their mutation rates surpass other gene

families (Todd et al., 2023). Shared effectors between strains of the

same species commonly develop polymorphisms because of host

adaptation together with virulence expression (Kanja and

Hammond-Kosack, 2020). Research shows that effectors exist in

both closely related microbial populations as well as only in

distantly related microbial groups (Todd et al., 2023).

Orthologous proteins show minimal sequence similarity because

they share functional identities with other proteins throughout

different animal groups although their sequences have numerous
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variations which originated from their common ancestral origins

(Todd et al., 2023). Avr4 from P.fijiensis shares only 50.5% sequence

similarity with its corresponding ortholog in Cladosporium fulvum

while these species both belong to the Dothidiomycetes fungal class

(Todd et al., 2023). Latest omics studies detect effector protein

domains and motifs even though most effectors display minimal

sequence identity between family members (Todd et al., 2023).

Different recognized domains exist with LysM and ceratoplatanin

and RNAase while necrosis-inducing protein domains (NPP1 or

NEP) and CFEM also belong to this classification (Carreon-

Anguiano et al., 2022; Outram et al., 2021; Zhou and Zhang,

2020). Modern research demonstrates how microorganisms carry

hundreds of effectors (Carreon-Anguiano et al., 2020; Noar and

Daub, 2016; Sperschneider et al., 2018), which work at different

times (Noar and Daub, 2016; Toruno et al., 2016). Plant effectors

function to interrupt essential signalling procedures and

phytoregulator production as well as plant defensive systems

(Fabro, 2022; Han and Kahmann, 2019; Plett et al., 2020).
6 Function of effectors

All plant-microbe interactions depend on effectors since these

molecules help phytopathogens cause damage while promoting

beneficial relationships with helpful microorganisms including

mycorrhizae (Plett et al., 2020; Todd et al., 2023), and new

studies investigate their function during microbe-microbe

interactions (Snelders et al., 2021, 2020). The infection approach

of phytopathogens determines the functioning of their effectors

because biotrophic pathogens need living hosts to succeed but

necrotrophic pathogens obtain nutrients by utilizing dead tissue.

The infection pattern of hemibiotrophic phytopathogens spans two

nutrient acquisition phases starting with survival in live tissue then

continuing in deceased tissue cells (Todd et al., 2023). Biotrophic

organism effectors block the host immune response while
FIGURE 6

A plant cell illustrating the conserved host colonisation methods of fungi. A fungal hypha is illustrated colonising the apoplastic space of a plant cell,
showcasing examples of apoplastic and cytoplasmic secreted effectors together with their respective host targets. Apoplastic effectors may serve to
(1) circumvent chitin-induced plant immune recognition, (2) breakdown the plant cell wall, or (3) interact with host proteins to modify the
microenvironment, alter host defences, and facilitate colonisation. Cytoplasmic effectors can localise to subcellular compartments to (4) disrupt
defence signalling pathways via mitochondria or chloroplasts, (5) reprogram transcription, or (6) target or imitate host proteasome machinery to
modulate plant immune responses (Li et al., 2024).
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necrotrophic effectors generate excessive non-localized defenses

that eventually destroy their host cells (Todd et al., 2023). The

effectors of hemibiotrophic phytopathogens work to delay cellular

demise at first but they launch effectors in the necrotrophic stage

that advance host mortality (Castillo-Sanmiguel et al., 2022; Jones

and Dangl, 2006; Thordal-Christensen, 2020; Todd et al., 2022b).

For example, the effector BcNEP1 exhibits high levels of expression

during the initial stages of Botrytis cinerea infection but the effectors

BcSSP2 and BcNEP2 become active only after the early phase (Zhu

et al., 2022). In the case of Colletotrichum spp. hemibiotrophic fungi

effectors have specific functions during the biotrophic stage but

induce death of host cells to move into necrotrophic development

(Ono et al., 2020; Tsushima et al., 2021). Until the last decade

researchers understood all effectors to be extracellular which led to

their inclusion in the definition of effectors but the most extensively

studied ones are apoplastic (extracellular) (Carreon-Anguiano et al.,

2020). The field of effectoromics now recognizes intracellular

effectors which function either inside the cytoplasm or the

organelles as prominent new discoveries (Sperschneider and

Dodds, 2022; Tariqjaveed et al., 2021; Todd et al., 2022a).

Apoplastic effectors include small protein molecules that work

through enzymatic degradation of cell walls combined with

exploits that loosen these structures and additional activities such

as protease inhibitory functions and inability for plant recognition

of pathogenic organisms (Fabro, 2022; He et al., 2020; Langin et al.,

2020). The biological functions together with the cellular locations

of intracellular effectors within host cells demonstrate variability

because most targets are essential defense proteins in plant

immunity (Thordal-Christensen, 2020). Several targets encompass

proteases and components from the ubiquitin and proteasome

systems with addition to transcription-related proteins and

receptors and biosynthetic machineries and phytoregulator-

regulated signaling pathways that control defense responses in

plants (Fabro, 2022; Han and Kahmann, 2019).

Microorganisms use their effector proteins to manipulate

jasmonate (JA) and salicylate (SA) and ethylene (ET)

phytoregulator production processes for their own benefit

(Alhoraibi et al., 2019; Chini et al., 2018; Langin et al., 2020). For

example, the fungal effector Cmu from Erysiphe quercicola

functions as a chorismate mutase to deteriorate host salicylic acid

synthesis (He et al., 2021). The VdIsc1 effector produced by

Verticillium dahliae displays isochorismatase activity to block

salicylic acid synthesis just like the fungus (Zhu et al., 2017).

Through its function as RipAB Ralstonia solanacearum blocks the

signaling mechanisms controlled by salicylic acid (Qi et al., 2022).

Effectors produced by microorganisms serve two functions by

maximizing phytoregulator synthesis or synthesizing close

analogues of phytoregulators (Todd et al., 2023). For example,

Lasiodiplodia mediterranea produces lasiojasmonate A (LasA)

which acts as an analogue of jasmonic acid during necrotrophic

infection of host plants. The pathogen uses LasA to produce the

strong jasmonic acid regulator jasmonyl-isoleucine (JA-Ile) which

boosts signaling mechanisms leading to cell death during

necrotrophic development (Chini et al., 2018).
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7 Tools for studying fungal effectors
I. Identification: The identification of effectors and the

prediction of their localisation are advancing due to the

continuous enhancement of machine learning models

trained on experimentally validated apoplastic and

cytoplasmic effectors (Sperschneider and Dodds, 2022).

Functional prediction can be further applied to sequences

that are unrelated but structurally identical effectors based

on common protein structural folds (Jumper et al., 2021;

Seong and Krasileva, 2023). Identifying new effectors by

their fast evolution via host and pathogen interaction

networks is another effective strategy (Sugihara

et al., 2023).

II. Functional importance: Comprehending the biological

role of an effector necessitates experimental varification.

Reverse genetics methods, such as RNA silencing and

CRISPR knockout, are frequently used to evaluate the

direct involvement of an effector in a specific interaction

(Li et al., 2024). Simultaneously, heterologous expression

systems that transiently express effectors in non-native

hosts have also been established as adaptable tools,

particularly when genetic engineering strategies are

impractical or when a swift and systematic screening of

interactions between effector proteins and host is required

(Lee et al., 2012). The induction or suppression of specific

plant immune responses suggests the potential role of the

candidate effector in the host–fungi interaction, while the

presence or absence of the signal peptide can intentionally

guide the effectors into either apoplastic or cytoplasmic

space, respectively (Tintor et al., 2020).

III. Interactive partners: Numerous effectors modify host

processes through interactions with host proteins, and

there is a growing array of techniques to discover effector

targets. Protein constructs such as GFP, RFP, and

tdTomato, are utilized to verify the subcellular

localisation of cytoplasmic effectors (Park et al., 2017).

Yeast two hybridization and co-immunoprecipitation

succeeded by liquid chromatography-mass spectrometry

are established methodologies for identifying effector–

partner complexes (Petre et al., 2021). The turbo biotin

ligase tag (TurboID) facilitates in vivo proximity labelling

and co-immunoprecipitation (Shi et al., 2023).
8 Conclusion

Forest ecosystems rely on fungal pathogens because these

organisms facilitate natural decomposition yet pose an important

threat as they cause plant ecosystem damage and biodiversity

decline through invasions. Multiple effector systems of pathogens

operate to alter plant defensive mechanisms during infection so

they can spread infection more effectively while supplementing
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nutrient requirements. The microbial effectors launch attacks on

plant protective defenses to initiate an extended evolutionary

conflict between pathogen agents and plant organisms.

Fungal groups establish different life paths that assign them to

biotrophic, necrotrophic and hemibiotrophic pathways in their

interactions with host organisms. The living conditions of

biotrophic fungi enable them to occupy plant cells yet

necrotrophic fungi survive through cellular death of their hosts.

Pathogens employ multiple strategies for activating plant defense

mechanisms which proves that plant-pathogen systems function as

well-adapted complex systems.

The virulence of pathogens increases because effectors both

alter plant metabolic operations and signaling pathways and

immune response functions and directly regulate phytohormones

to block defense mechanisms. Host-specific behavior together with

pathogen survival develops through effectors that adapt because of

high mutation rates and evolutionary pressures. Studies of genetics

show that effector genes find shelter within mobile genomic zones

because these mobile areas produce specialized and varied features.

Sustainable plant disease control methods need extensive

identification of molecular plant-pathogen interactions to protect

forest ecosystems. Research efforts need advancement regarding

fungal effectors and plant immune responses and cytoplast and

apoplast microbial communities because this information supports

sustainable forest management and plant pathology research.
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