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Alfalfa (Medicago sativa L.), a vital perennial legume forage, has been widely

cultivated owing to a variety of favorable characteristics, including

comprehensive ecological resilience, superior nutritive value, digestibility, and

nitrogen fixation capacity. The productivity traits of alfalfa, particularly its biomass

yield and forage quality, are profoundly influenced by a range of abiotic stress

conditions. As a common abiotic stress, drought adversely impacts growth and

photosynthetic efficiency, accompanied by increased oxidative damage and

stomatal closure as a mechanism to minimize water loss; meanwhile,

transgenic approaches have been employed to enhance drought resilience by

improving antioxidant activity and water-use efficiency. Salinity stress disturbs

ionic balance, resulting in sodium (Na+) toxicity and the generation of oxidative

damage; however, alfalfa cultivars exhibit salinity tolerance through mechanisms

such as Na+ exclusion, K+ retention, activation of antioxidant defenses, hormonal

regulation, and the upregulation of stress-responsive genes. In addition, heavy

metals pose a significant challenge to alfalfa production, as they impair plant

development and disrupt symbiotic nitrogen fixation, but recent studies have

highlighted the potential of microbial-assisted phytoremediation in mitigating

these detrimental effects. By integrating recent findings, this review highlights the

intricate physiological, biochemical, and molecular mechanisms involved in

alfalfa’s responses to key abiotic stressors specifically drought, salinity, and

heavy metal toxicity. Breakthroughs in genetic modification, notably the

development of transgenic lines exhibiting altered expression of stress-

responsive genes, offer valuable potential for improving stress resilience.

Future research should employ omics approaches, advanced gene-editing and

de novo gene synthesis to target key regulatory elements responsible for

stress adaptation.
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1 Introduction

Alfalfa (Medicago sativa L.) is a perennial legume forage that

belongs to the subfamily Papilionoideae (Turki and Hegazy, 2021;

Steier et al., 2022). Cultivated alfalfa is a cross-pollinated crop and is

tetraploid in nature (Hawkins and Yu, 2018). Southwestern Asia is

the origin of alfalfa whereas Iran is regarded as its geographic center

for this crop (Wang and Şakiroğlu, 2021). In Europe and some other

countries, this crop is also called “Lucerne” (Baxevanos et al., 2022).

Due to its nutritional value such as high protein content, minerals,

carbohydrates, vitamin A, B, C, D and E, it is well known as a staple

crop for both humans and animals (Baker et al., 2019; Mattioli et al.,

2019; Michalczyk et al., 2019), as depicted in (Figure 1). It is one of

the oldest plants that was cultivated around 3,300 years ago only for

forage purposes with livestock (Michaud et al., 2015). It also acts as

a source of essential nutrients, including proteins, vitamins,

carbohydrates, and minerals (Hao et al., 2008; Gao et al., 2021).

On a dry matter basis, it contains nearly 15 to 22 percent crude

proteins along with macro- and trace elements with all the fat- and

water-soluble vitamins (Scholtz, 2008).

Alfalfa can also be cultivated in a variety of soil types including

poor nutrient soils (Lei et al., 2017). There are many advantages of

alfalfa in crop rotation, such as the capability to improve the fertility

of soil by nitrogen fixation, as depicted in (Figure 1); interestingly, it

is found that alfalfa accumulates Nitrogen in large quantities,

ranging 300–400 kg/ha/year (Kelner et al., 1997; Angus and

Peoples, 2012). Approximately 165 kg/ha of Nitrogen accumulates

in the roots and crown, which can be used as a fertilizer for

subsequent crops in the same field (Rasse et al., 1999). Generally,

this crop is grown for making hay and silage, but because of its high

yield and quality of nutrition, it is also used for grazing purposes

(Michael and Chandan, 2023), illustrated in (Figure 1). In some
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Chinese and Hindu societies, doctors recommend young leaves of

alfalfa for the cure of some disorders such as water retention,

arthritis, and digestive tract (Vaibhavi and Devang, 2024). Proper

management of alfalfa fields at both local and landscape levels is

crucial to maintain the services of the ecosystem, including those

dependent on functional biodiversity, and conservation of

threatened species (Julier et al., 2017), as shown in (Figure 1).

Alfalfa can also be used in various recipes including: cooked salad,

pudding, souffle’, puree saute’, soup, tea, tortilla, and croquettes

(Martıńez et al., 2016; Apostol et al., 2017). Some farmers in China

regard it as a type of vegetable (Zong et al., 2023) (Djordjević et al.,

2024), concluded that alfalfa was used to enhance the mineral,

protein, vitamin, and dietary fiber content in wheat flour.

Alfalfa cultivation is profoundly influenced by a range of

environmental factors, encompassing both biotic and abiotic

stressors, which are responsible for reduction in crop productivity

(Wang et al., 2023). Considering the importance of alfalfa,

agricultural scientists are paying attention to its cultivation under

stressful conditions (Stritzler et al., 2018; Annicchiarico et al., 2022).

Drought tolerance in alfalfa is relatively high as compared to that of

other forage crops, as alfalfa has a deep root system which ranges

from 1.5 to 4m (Huang et al., 2018; Han et al., 2020). Due to the

robust rooting system of alfalfa, it regrows successfully (Ali et al.,

2021). Alfalfa has been noted to be more drought resistant than

other grain legumes (Huang et al., 2018; Han et al., 2020). Drought

stress remains a major constraint on alfalfa cultivation, as global

temperature rise, evapotranspiration is expected to increase,

ultimately worsening drought conditions in arid and semi-arid

regions worldwide (Huang et al., 2018). Irmak et al. (2007),

concluded that rate of evapotranspiration generally ranges from

0.10 to 0.35 inches per day in alfalfa crops, this level of

evapotranspiration supports deep root distribution and high yield
FIGURE 1

Economic importance of alfalfa. (A) Various uses of alfalfa in agriculture, industry, and animal feed. (B) Pathways of alfalfa utilization from production
to end use.
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(Zhu et al., 2016). Various studies explained drought conditions and

their responses through morphologically, physiologically, and

biochemically as shown in (Table 1).

Several researchers have developed a range of transgenic alfalfa

cultivars with enhanced drought tolerance, achieved through the

introduction of one or more genes from a single species into

another using genetic engineering techniques, including

Agrobacterium-mediated transformation or direct gene transfer

methods (Gao et al., 2024). Ma et al. (2020a) found that alfalfa

resistance to drought stress was improved by the overexpression of

the g-tocopherol methyltransferase gene by alleviated oxidative

damage, maintained high water-use efficiency or by lowered the

stomatal conductance. Silencing of SPL13 and overexpression of

miR156 allowed the alfalfa to become tolerant against drought stress

(Arshad et al., 2017), while (Feyissa et al., 2019) successfully used

moderate expression of miR156, which improved the ability of

alfalfa to withstand drought through WD40–1 overexpression.

Excessive salt accumulation in the soil is also a major limiting

factor for crop productivity (Yadav et al., 2019; Hao et al., 2021). As

saline soil contains an excess of soluble salts including calcium,

sodium, magnesium, chloride, potassium, and sulfate in their root

zones, as a result plants fail to absorb nutrients and water from the

soil and causes plant injury (MaChado and Serralheiro, 2017;

Behdad et al., 2021). Interestingly, alfalfa is also considered a

moderately salt-tolerant legume crop (Bertrand et al., 2015).

Usingconventional breeding techniques, different cultivars of

alfalfa have been developed with salt tolerance (Sandhu et al.,

2017); however, attaining salt tolerance in this crop through

genetic engineering is very difficult, moreover the response is

genetically and physiologically complex against the salt stress

because multiple genes are used in controlling salt tolerance

including both physiological and biological mechanisms

(Smethurst et al., 2008; Hrbáčková et al., 2020). Comprehending

salt resistance pathways and detecting genetic traits suitable for

evaluating improved salinity tolerance, play a vital role in alfalfa

breeding programs (Kaundal et al., 2021). It is essential to identify

the genes responsible for salt tolerance in alfalfa crops for the

development of molecular markers, precise screening and

advancements in plant breeding and genetics (Bhattarai et al.,

2021). Recent technologies used in alfalfa salt stress research

include RNA-Seq analysis, salt-resistant breeding, and cutting-

edge Synchrotron beamlines (Peng et al., 2025).

Heavy metals stress is also a significant concern to discuss after

drought and salt stress (Anwar et al., 2021). Human industrialization

and agricultural activities lead to environmental contamination and

ultimately affecting plant quality and biomass, so it is very important

to study the contaminants that are harmful to plants growth (Raza

Altaf et al., 2021; Adil et al., 2024a; Ahamad et al., 2024; Razzaq et al.,

2024b, 2024a). All harmful substances released into the biosphere have

an impact on different types of living organisms, including plants

(Migda et al., 2024). These toxic substances (heavy metals) create

problems not only for plant health but also for soil integrity. The use of

contaminated crops for food and feed, poses threats to human health

globally (Bandyopadhyay et al., 2015; Agnello et al., 2016; Gan et al.,

2020). As a leguminous plant, alfalfa forms a symbiotic relationship
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with Gram-negative soil bacteria of the genus Rhizobium, both

experience detrimental effects due to the presence of heavy metals

(HMs) because HMs reduce the symbiotic capacity and ultimately the

capacity of alfalfa to fix nitrogen (Li et al., 2014). Recent work done on

protection of plants and environment, focused on mitigating the

detrimental impact of pollution on plants and soil; however, it has

led to the emergence of a relatively recent approach known as stress

mitigation, which involves applying external phytochemicals and

microbial agents to enhance plant homeostasis or make the plant

tolerant against different stresses caused by environment (Jócsák et al.,

2022). Overall, this review provides an in-depth understanding of how

alfalfa responds at physiological, biochemical, and molecular levels to

major abiotic stress factors, specifically drought, salinity, and heavy

metal exposure, aiming to support the development of stress-resilient

cultivars and guide improved cultivation strategies under such

stressful conditions.
2 Drought stress

2.1 Effect of drought stress on alfalfa
growth

A decline in water supply restricts the plant’s nutrient uptake,

leading to slower growth and reductions in various growth

parameters such as plant height, biomass accumulation (fresh and

dry weight), branching intensity, leaf production per plant, leaf area,

cell wall thickness in leaves, stomatal density, cutinization of leaf

surface, formation of defective vascular tissue—as well as premature

leaf senescence (Singh et al., 2021; Zia et al., 2021; Adil et al., 2022b,

2022c, 2024b, 2024c). Partial closing of stomata has been noted an

early response to water scarcity to reduce water loss through

transpiration, however, it also limits photosynthesis and carbon

assimilation (Devi and Reddy, 2020). The reduction in transpiration

rate due to stomatal closure can improve the water-use efficiency

but it negatively affects the transport and uptake of nutrients

(Ranawana et al., 2021). Many studies on drought stress have

demonstrated that stomatal closure can significantly lessen the

negative effects of drought stress in alfalfa crops (Arshad et al.,

2017; Luo et al., 2022). In response to water scarcity conditions,

non-stomatal mechanisms may include decreased carboxylation

enzyme activity, a decline in ATP (adenosine triphosphate)

production, and structural damage to the photosynthetic system

(Zhang et al., 2019).

The results indicated that drought stress negatively affected

alfalfa plants by reducing morphological growth (by 12 to 54%), gas

exchange efficiency (by 37 to 88%), and chlorophyll content (Chl a

and Chl b declined by 29% and 40%, respectively), along with

reducing mineral content; furthermore, it increased lipid

peroxidation by 69% and increased the accumulation of reactive

oxygen species (ROS) (Roy et al., 2021). The findings also revealed

that plants experiencing drought stress exhibit decreased plasma

membrane permeability and stomatal conductance while limiting

malondialdehyde accumulation, and increasing proline levels and

related hormones, which ultimately strengthens their drought
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resistance (Yasmin et al., 2021, 2022). The experiment

demonstrated that increasing drought stress in alfalfa plants

resulted in a significant rise in H2O2, O2
-, and malondialdehyde

levels by 323%, 247%, and 235% respectively, while the enzymatic

activities of superoxide dismutase (SOD), catalase (CAT), and

Ascorbate Peroxidase (APX) also increased by 18.01%, 15.56%,

and 587% under 15% PEG (polyethylene glycol-6000) treatment
Frontiers in Plant Science
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(Chen et al., 2021). Further research concluded that drought stress

in alfalfa plants led to variations in hormone levels such as

(Gibberellin (GA3), Zeatin (ZA), Abscisic acid (ABA), indole-3-

acetic acid (IAA) levels, where GA3, ZA, and the GA3/ABA ratio

reached their highest levels under moderate stress, whereas IAA and

IAA/ABA dropped significantly under severe stress, accompanied

by an increase in ABA (Wang et al., 2024).
TABLE 1 Morphological, physiological, and molecular characterization of drought stress tolerance in transgenic and conventional alfalfa.

Targeted gene Gene functionality Drought
treatment

Putative mechanisms Experimental
conditions

Source

overerpression of
g-tocopherol

methyltransferase
(MsTMT) gene

In the tocopherol biosynthetic
pathway, g-TMT is responsible for

catalyzing the production of
a-tocopherol

07 days of water
restriction using
20% polyethylene
glycol (PEG) 6000

1. Decreased oxidative damage
2. Higher water use efficiency
and lower stomatal conductance

Controlled
conditions

(Ma et al., 2020a)

MsCYP71
MsCYP71 plays key roles in plant

growth, development, stress responses
3 weeks of

water restriction

Biosynthesis of isoflavonoids
and other secondary
metabolites that play key roles
in defense

Controlled
conditions

(Liu et al., 2023a)

ZxABCG11
ZxABCG11 facilitates the transport of
cuticular wax components to the

aerial surfaces of the plant

withholding of
water for 20 days

1. Improved biomass yield
2. Enhanced water retention
and photosynthesis capacity

Controlled
conditions

(Liu et al., 2023b)

SPL4-RNAi
Regulation of Trichome development
and regulates the expression of genes

responsive to drought

withholding of
water for 14 days

Increased root length, water
content, chlorophyll content,
stomatal conductance, and
water potential in leaves

Controlled
conditions

(Dan-Dobre, 2022)

Overexpression
of MsWRKY11

MsWRKY11 regulates lignin
biosynthesis and stomatal density.

3 days of
water restriction

1. Enhanced water use
efficiency.
2. Decreased Stomatal Density
in Leaves.

Controlled
conditions

(Wen et al., 2021)

Overexpression of
miR156 for WD40–
1 overexpression

miR156 modulates key plant
developmental processes by post-

transcriptional silencing of SPL genes

02 weeks of
water restriction

1. Enhancement of root
architecture and photosynthesis
efficiency.
2. Accumulation of primary
and secondary metabolites
associated with stress response.

Controlled
conditions

(Feyissa et al., 2019)

Arabidopsis type I
H+

pyrophosphatasegene
AVP1 overexpression

It is necessary for intracellular ions,
pH homeostasis, vacuolar cation
compartmentation, and overall

plant growth.

withholding of
water for 35 days

1. Taller plants with better
growth
2. Increase in yield biomass
3. Enhanced the dry root
weight as well as root to
shoot ratio

Controlled
conditions

(Su et al., 2019)

MsSPL8 down- or
up regulation

SPL8 modulates initiation of axillary
bud development, GA signaling, and

branching of shoot architecture

2 weeks of water
Withholding

1. Down-regulation enhanced
the crop yield
2. Suppression of SPL8
expression prolonged the
wilting process.
3. Down-regulated plants
became healthy

Controlled
conditions

(Gou et al., 2018)

HaHB11 expression
Increased yield biomass with better
growth as well as flooding tolerance

by a quiescent method

Water shortage of
10 days

1. Closing of stomata faster
2. Efficient use of water with
Lower water loss

Controlled
conditions

(Cabello et al., 2017)

Overexpression of
mi156 (miR156OE)
and suppression

of SPL13

Control multiple traits including
plant biomass yield, development of
seed, fruit, root development and

tolerance to abiotic stress

Withholding of
water for 15 days

1. Reduction of water loss with
high survival, more and denser
adventitious roots.
2. Enhanced levels of
antioxidants, abscisic acid,
photosynthetic assimilation and
chlorophyll contents

Controlled
conditions

(Arshad et al., 2017)
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2.2 The molecular mechanisms of drought
tolerance in alfalfa

Efforts to increase alfalfa stress tolerance under varying growing

conditions has recently focused on physiological responses,

metabolic activities, morphological adaptions, and genetic

modification (Song et al., 2019). Alfalfa demonstrates superior

drought resistance over many forages as a result of its deep-

penetrating roots (1.5–4.0 m) (Huang et al., 2018; Han et al.,

2020). Although chlorophyll content and the rate photosynthesis

decline under water scarcity conditions although maintaining

chlorophyll under such conditions is associated with better

drought resilience (Rokebul Anower et al., 2017). It has been

proposed that enhanced stomatal conductance and restricted

water loss during drought contribute to the maintenance of

higher chlorophyll content, thereby reinforcing drought tolerance

in plants (Zheng et al., 2017; Iqbal and Yaning, 2024). Studies

suggest that the enhanced drought resilience of alfalfa is closely

associated with the accumulation of both organic and inorganic

osmolytes (Shanker et al., 2014). Among these, Proline is one of the

most well-studied osmolytes in plants like alfalfa, owing to its

essential function in preserving leaf relative water content under

low water potential, thereby boosting drought resilience (Ni et al.,

2012). Legume plants experience a decline in both nodule formation

and biological nitrogen fixation under drought conditions (Dollete

et al., 2024). Therefore, sustained nitrogen fixation under water-

deficit conditions has been linked to increased drought resilience in

plants (Xu et al., 2012). Plant breeding approaches, including both

traditional methods and genetic engineering, have exhibited

considerable potential in strengthening plant tolerance against

abiotic challenges (Villalobos-López et al., 2022).

A Numerous genes have the potential to encode transcriptional

regulators, including zinc finger proteins (Tang et al., 2013) and

NAC transcription factors (Min et al., 2020) associated with stress

responses (Figure 2). Certain compounds such as proline,

glycinebetaine, LEA proteins, abscisic acid and other anti-

oxidants are synthesized and over expressed to maintain osmotic

balance and protect the structural integrity of the cell under drought

stress (Banerjee and Roychoudhury, 2016). Moreover, certain

families like MAPK, CDPK, and antioxidants can be a direct or

indirect target to enhance drought tolerance (Puri, 2019),

(Figure 2). Overexpression of PEPcase, pyruvate orthophosphate

dikinase (PPDK), NADP-malic enzyme (NADP-ME), and NADP-

malate dehydrogenase (NADP-MDH) from Medicago sativa L.

enhanced alfalfa tolerance by increasing photosynthetic efficiency

and promoting nodule formation (Luo et al., 2024). To enhance

drought stress tolerance more effectively, numerous transgenic

alfalfa plants with enhanced resilience have been developed by

various scientists, as shown in (Table 1). Overexpression of the g-
tocopherol methyltransferase gene showed greater alfalfa drought

resistance by mitigating oxidative stress, inducing the accumulation

of osmoregulatory compounds, modulating stomatal conductance,

and optimizing water use efficiency in comparison to untreated
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plants (Ma et al., 2020a). Studies found that overexpressing miR156

and suppressing SPL13 can effectively enhance drought stress

tolerance in alfalfa (Arshad et al., 2017). Research also concluded

that a moderate expression ofmiR156 contributed to alfalfa drought

resistance through the upregulating of WD40–1 (Feyissa et al.,

2019). The study demonstrated that overexpression of MsNTF2L

(M. sativa NUCLEAR TRANSPORT FACTOR 2-LIKE) is a key

regulator of drought tolerance in alfalfa; furthermore, scientists

determined that it enhanced drought resistance by promoting ROS

scavenging, decreasing stomatal density, improving stomatal

closure in response to ABA, and increasing the accumulation of

epicuticular wax crystals (Luo et al., 2022). OverexpressingMsTHI1

(Medicago sativa Thiamine Thiazole Synthase 1) improved drought

resistance through enhanced levels of vitamin B1, chlorophyll a

(Chl a), chlorophyll b (Chl b), enhanced antioxidant activity,

photosynthetic efficiency, signal transduction, and the activation

of stress-related genes (Yin et al., 2022). Additionally, it is found

that the bacterial strain DGL1 enhanced alfalfa’s drought resistance

through the production of extracellular polysaccharides, deaminase,

and solubilizing phosphorus (Yang et al., 2024).
3 Toxicological effects of heavy
metals on alfalfa’s growth patterns

3.1 Influence of essential heavy metals on
alfalfa growth

Zinc (Zn): High concentration of Zn results in leaf chlorosis,

inhibition of growth and reduction in photosynthetic rate due to Zn

toxicity (Reddy and Kumari, 2022) (Bandyopadhyay et al., 2015),

concluded that an excess level of Zn (750 mg/kg soil) accumulatesin

the root zones, approximately 300–400 mg kg-1 DW. Research

conducted by (Ibekwe et al., 1996), stated that treatment with 4–7.3

mM Zn after 10 days of exposure resulted in chlorotic symptoms

with poor root development and necrotic spots. Yahaghi et al.

(2019), showed that Zn treatment with 1.5–24 mM Zn affected the

rate of germination.

Manganese (Mn): (Li et al., 2019), investigated the symptoms of

Mn toxicity as interveinal chlorosis found in mature leaves, roots

browning, nutrient uptake disruption, necrotic spots found in

mature leaves. (Sale et al., 1992) summarized the effect of Mn

toxicity on alfalfa with approximately (60 mg L-1) resulted 20% less

dry weight as compared to plants in control (Gherardi and Rengel,

2003), summarized the Mn symptoms with 500 mg g-1 and noticed

a reduction in roots as well as shoots of alfalfa plants.

Nickel (Ni): Nickel is considered an essential heavy metal because

of its presence in glyoxalase enzymes, the porphyrin compound F430,

peptide deformylases, and because it acts as a central metal atom of

some hydrogenases and superoxide dismutases (Dixon et al., 1975).

Alfalfa is capable of absorbing nickel, after sixty days of exposure with

Ni (0, 50, 150, 250, and 500 mg kg-1) resulted an increase inMDA levels

and the activities of glutathione-S-transferase (GST) and peroxidase
frontiersin.org
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(POX); whereas GST, phytochelatin synthase (PCs) and Prx1C were

also upregulated in roots and shoots of alfalfa (Helaoui et al.,

2020) (Table 2).

Copper (Cu): Diazotrophic bacteria are restricted to grow and

reproduce due to the presence of copper, which is responsible for the

fixation of nitrogen in alfalfa plants (Sharaff and Archana, 2016). when

copper is present in high amounts, it accumulates in the stem

apoplasts of plant, then it influences the properties of cell wall and

ultimately affects the alfalfa quality; furthermore, it leads to a reduction

in ion concentration in alfalfa stems and reduces the concentration of

ferritins—ubiquitous proteins that regulate the amounts of Fe in the

redox state of cells (Strozycki et al., 2010).
Frontiers in Plant Science 06
3.2 Adverse impacts of non-essential heavy
metals on alfalfa

Lead (Pb): Alfalfa plants exposed to pb, showed symptoms of

chlorosis, reduced growth and reduction in photosynthetic rate

(Yan et al., 2010) (Lopez et al., 2007), performed an experiment in

alfalfa plants which were exposed with 40 mg/L of lead and

concluded that activity of CAT decreases, but total amylase

activity (TAA) increases in alfalfa leaves. (Hattab et al., 2016)

conducted research to measure the amount of stress in alfalfa by

applying Pb with 0, 10, and 100 mM for 2 and 7 days; furthermore,

he observed a reduction in levels of homoglutathione (hGSH) as
FIGURE 2

Plant mechanisms to overcome drought conditions. SERF, serum response factor; DST, drought and salt tolerant; SKIP, Ski-interacting protein; ZFP,
zinc finger transcription factor; SNAC, stress responsive NAC transcription factor; LEA, late embryogenesis abundant proteins; ROS, reactive oxygen
species; SROs, similar to RCD-ONE; CDPKs, calcium dependent protein kinases; CIPKs, CBL interacting protein kinases; PPs, protein phosphatases;
MAPKs, mitogen activated protein kinases; ABA, abscisic acid; NADP-ME, NADP malic enzyme; PEPcase, phosphoenol pyruvate carboxylase; PPDKs,
pyruvate phosphate dikinases; FBPase, fructose 1,6-bisphosphatase. Preproduced from Zargar et al. (2017) Copyright 2017 Elsevier.
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well as root glutathione (GSH). Research concluded that root

growth and development were hindered by lead toxicity,

disrupted the early stages of the legume-Rhizobium symbiotic

relationship and affected the biochemical signaling involved

(Besharati and Memar, 2017). The accumulation of heat shock

proteins such as HSP70 and HSP17.7 was found to be higher in

plant shoots, reflecting that lead toxicity triggered protective cellular

responses against lead stress (Hattab et al., 2016).

Cadmium (Cd): In some crops the toxicity of Cd affects the

uptake of water and nutrients (Andresen and Küpper, 2013). In

alfalfa, Ca, Fe, Mg, and K contents were decreased by Cd

concentrations at 3 and 5 mg/kg soil; furthermore, reduction was

also reported in dry matter, root and shoot length (Dražić et al.,
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2006). It not only affects the process of germination, but also affects

the growth of seedling after germination (Yahaghi et al., 2019).

When Cd is exposed to alfalfa plant, it also affected the

physiological, morphological functions as well as metabolism

(Dražić et al., 2006; Haider et al., 2021). Cd also exhibits negative

effects on photosynthesis, oxidative stress, root metabolism

inhibition, and genotoxicity (Andresen and Küpper, 2013).

Chromium (Cr): Hexavalent chromium [Cr (VI)] exhibits

solubility within the pH range of natural water, and can be found in

irrigation water, it is considered a toxic metal for aquatic and

terrestrial (Salmani Abyaneh and Fazaelipoor, 2016). Study

concluded that hexavalent chromium [Cr (VI)] exposed at 5 and 10

mg L-1 K2Cr2O7, reduced the size of leaf, number of photosynthetic
TABLE 2 Heavy metal exposure in alfalfa: affected parts, concentration levels, and duration of stress.

Plant
Part

Heavy
Metal

Exposure
Altered Physiological Processes

Metal uptake
by Plant

Treatment
Duration

Source

Whole
plant

Mn: 60 mg L-1 20% reduction in dry weight N. A 35 days (Li et al., 2019)

Seeds
Zn applied with
1.5–24 mM

Reduction in rate of germination
Zn: root: 490 mg kg-1

Zn: shoot: 180 mg kg-1
24 h (Yahaghi et al., 2019)

Seeds
Pb applied with
1.5–24 mM

Reduction in rate of germination
Pb: root: 1330 mg kg-1

Pb: shoot: 300 mg kg-1
24 h (Yahaghi et al., 2019)

Roots Cd: 1 mM

Decline in soluble proteins, enzymatic
activity,

enhanced electrolyte leakage, up-regulated
three Fe-

related genes: MsIRT1, MsNramp1, MsFRO1

root: 10 mg kg−1 DW 7 days (Kabir et al., 2016)

Roots Cd: 0–40 μM

Tolerant genotypes: enhanced cadmium
accumulation, dry biomass, germination

efficiency, reduced lipid
peroxidation and improved plasma

membrane stability

600–1450 mg kg-1

DW in non-resistant cultivars
whereas 600–1700 mg kg-1

DW in stress
resistant cultivars

48h, 72h, 96h (Garcıá de la Torre et al., 2021)

Roots
Ni applied with 0,
50, 150, 250, 500

mg kg-1

Increasing POX, MDA level and
GST activities

0.61; 1.96; 9.97; 11.68; 23.65
mg kg-1 DW respectively

60 days (Helaoui et al., 2020)

Roots
(Pb) applied with

0, 10, 100

Reduced the levels of hGSH and GSH,
enhancement in lipid peroxidation, APX,

HSPs and GR levels
766.66 mg Kg-1 DW 2 days (Hattab et al., 2016)

Shoots
Ni: 50; 150; 250;
500 mg kg−1

Enhanced POX, GST, MDA levels, and up-
regulation of Prx1C, GST and PCs genes

DW: 1.58; 8.92; 22.64; 32.84;
75.2 mg kg−1

60 days (Helaoui et al., 2020)

Shoots Cd: 1 mM

Decreased soluble proteins, enzymatic
activity, enhanced electrolyte leakage, up-

regulated three Fe-
related genes: MsIRT1, MsNramp1, MsFRO1

DW: 1.4 mg kg−1 7 days (Kabir et al., 2016)

Shoots Cd: 0–40 μM

Tolerant genotypes: enhanced cadmium
accumulation, dry biomass, germination

efficiency, reduced lipid
peroxidation and improved plasma

membrane stability

DW: 25–31 mg kg−1 in
resistant and non-
resistant cultivars

48; 72; 96 h (Garcıá de la Torre et al., 2021)

Root
Cotyledon
Leaves

Pb
Stunted growth, chlorosis, and low

photosynthetic rate

DW: Cotyledon: 300 mg L−1,

Root: 25,500 mg L−1, Leaves:
29 mg L−1

50 days (Yan et al., 2010)

Leaves
Cr: 0.05; 0.5; 1; 5;

10 mg L−1

Reduction in biomass, leaf size,
photosynthesis, increase of lipid peroxidation,

and ROS

DW: 2.5; 2.8; 5; 8;
16 mg kg−1

59 days (Christou et al., 2020)
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pigments, reduction of biomass, but increasing SOD, NO, H2O2, and

CAT activities, which were partially maintained through the

transcriptional regulation of Cu/ZnSOD, FeSOD, MnSOD and CAT

genes (Christou et al., 2020) (Table 2).

Mercury (Hg): Mercury toxicity hinders the growth and

development of alfalfa while also disrupting iron and sulfur

balance and promoting oxidative stress (El-Shehawi et al., 2022).

By applying Hg with a quantity of 4, 5, 10, 20, and 40 M along with

an exposure of O2
- and H2O2 generation in leaves of alfalfa plant

and recorded increase in lipoxygenase (LOX), POD, NADH-

oxidase, APX, and CAT activities (Zhou et al., 2008, 2009).

Findings showed that mercury exposure in alfalfa plants resulted

in increased lipid peroxidation, reduced chlorophyll levels, and

impaired glutathione reductase (GR) activity in roots, as well as the

production of a new root peroxidase isoform, reflecting redox

imbalance (Sobrino-Plata et al., 2009).
3.3 Heavy metals tolerance

The cellular redox balance under heavy metal stress is

maintained through the prompt quenching of reactive oxygen

species by a coordinated action of enzymatic (SOD: superoxide

dismutase, CAT: catalase, APX: ascorbate peroxidase, GR:

glutathione reductase, MDHAR: monodehydroascorbate

reductase, DHAR: dehydroascorbate reductase, GPX: glutathione

peroxidase, and glutathione-S transferase) as well as non-enzymatic

(ascorbate, glutathione, proline, and a-tocopherol) antioxidant

defense systems (Singh et al., 2016), (Figure 3). Glutathione

(GSH), as a low-molecular-weight, water-soluble tripeptide (g-
Glu-Cys-Gly), functions as a critical component of the cellular

defense system is crucial in mitigating the toxic effects of heavy

metal exposure (Flores-Cáceres et al., 2015). Glutathione reductase

(GR) efficiently catalyzes the conversion of oxidized glutathione

(GSSG) back to its reduced form (GSH), and possesses a conserved

disulfide linkage that is susceptible to disruption under metal-

induced stress (Hajiboland et al., 2015), and contributes

significantly to cellular defense by facilitating the reduction of

GSSG, thereby sustaining a high GSH to GSSG ratio essential for

redox homeostasis (Figure 3). Surprisingly, the role of arbuscular

mycorrhizal (AM) fungi to tolerate and accumulate heavy metals

including nickel, lead, cadmium, mercury, chromium, and arsenic

has been widely recognized in scientific studies (Helaoui et al., 2020;

Boorboori and Zhang, 2022). The study revealed that lead (Pb)

stress hindered plant growth and disrupted photosynthesis, but the

presence of AM fungi (Glomus intraradices) helped mitigate these

harmful effects (Kahromi and Najafi, 2020). Results indicated that

inoculating seedlings with the bacterial species (Sinorhizobium

meliloti) alleviated growth suppression caused by copper stress

and enhanced nitrogen uptake in seedlings, leading to an overall

increase in plant nitrogen concentration (Chen et al., 2018; Duan

et al., 2022). The application of silicon to plants under Cd stress

significantly improved their morpho-physiological characteristics,

increased total protein levels, and maintained membrane integrity,

highlighting silicon’s crucial role in alleviating Cd-induced stress
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(Kabir et al., 2016). The NT27 isolate as a strain of Pseudomonas sp.

significantly boosted Medicago sativa growth, increasing shoot dry

weight (97.6%) and root dry weight (95.4%) under chromium stress;

furthermore, it also enhanced chlorophyll content, reduced stress

markers, and promoted Phytostabilization in plants (Tirry et al.,

2021). Research revealed that plants inoculated with a Rhizobium

tibeticum strain at a 0.005 mM Ni concentration led to a notable

increase in nodule formation, root length, shoot length, and shoot

dry mass compared to non-inoculated alfalfa plants under Nickel

stress (Pesǐć et al., 2025).
4 Salt stress

4.1 Impact of salt stress on the growth and
development of alfalfa

Excessive accumulation of soluble salts, including chloride,

sulfate, and carbonate compounds of key cations like sodium,

calcium, magnesium, and potassium, significantly disrupts the

efficiency of water and nutrient acquisition by plants (Bhattarai

et al., 2020; Liu and Wang, 2021). In severe conditions of salt stress,

the nature of soil solution becomes hyper-osmotic, which is

responsible for leading to water loss, as a result, plants experience

wilting and premature senescence (An et al., 2016; Long et al.,

2019). In early stages of osmotic stress due to the shortage of water

in plant tissues, alfalfa plant reduces the growth of leaves and then

decreases the development of shoot and reproductive growth

(Farooq et al., 2015, 2017). Salt stress in alfalfa causes a decrease

in rate of photosynthesis, as osmotic stress induces partial closure of

stomata (Farooq et al., 2017). Absorption of sodium ions in the

roots of alfalfa can be dangerous for its growth if present in cytosol

at high concentrations (Assaha et al., 2017). High concentrations of

sodium and chloride ions in the cytoplasm can disturb the cellular

processes, also causes dehydration in cells as well as disturbs the

process of photosynthesis (Munns and Tester, 2008; Ashraf and

Harris, 2013). Increasing the ratio of cellular potassium to sodium

as well as limiting the concentration of sodium in cytosol promotes

salt tolerance in alfalfa cultivars (Sandhu et al., 2017). It is found

that NaCl stress in alfalfa caused a significant increase in the activity

levels of SOD, POD, CAT, and APX by 132.14%, 315.60%, 102.78%,

and 27.61%, and a marked upregulation of two genes associated

with salt stress (Chen et al., 2021).

Research has shown that stomatal opening can improve

photosynthesis and biomass yield, but high concentrations of Na+

may cause stomatal closure, disrupting photosynthesis and causing

an overproduction of reactive oxygen species (Kamran et al., 2020;

Kimura et al., 2020; Adil et al., 2022a, 2023; Niu et al., 2022). In

conditions of high salinity, Na+ in the apoplast surrounding the

guard cells leading to stomatal closure (Kerstiens et al., 2002). A key

mechanism to limit Na+ accumulation in the shoot is the reduction

of transpiration rate by stomatal regulation (Yu and Assmann,

2016). The effect of Na2SO4 solution on alfalfa plants was studied

from emergence to maturity, and reduction was recorded in relative

emergence (%) at 12.7 dS m-1, with no survival of plants at 30 dSm-1
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(Cornacchione and Suarez, 2015). The root growth of alfalfa is

adversely less affected by salt stress as compared to that of shoot

growth (Bertrand et al., 2020). Research was conducted on 15

populations of alfalfa under salt stress conditions, treated with a

mixture of NaCl, Na2SO4, CaCl2 and MgSO4, and KCl, concluded

that mass of root per plant at 18.4 dSm-1 and 24.5 ds m-1 electrical

conductivity was decreased by 18% and 49% respectively whereas

the recorded shoot mass reduction was nearly 50% and 73%

(Cornacchione and Suarez, 2017). Alfalfa experienced a decline in

biomass by 43%–86% and a 58%–91% decrease in nitrogen content;

moreover, it negatively impacted nitrogen fixation and atmospheric

nitrogen uptake by hindering nodule formation and decreased

nitrogen fixation efficiency when salt levels surpassed 100 mmol

Na2SO4 L-¹ (Wan et al., 2023). Salt (NaCl) applied at 9 dSm-1

reduced the size of leaf by 34%, mass of stem by 35% as well as

height of plant by 32% respectively (Valizadeh et al., 2013).
4.2 Salt tolerance mechanisms

Salinity resistance in plant involves diverse mechanisms, such as

production of osmolytes, stimulation of antioxidant defenses,

acidification of the apoplast, ionic stability, and hormonal

response regulation (Al-Farsi et al., 2020; Iqbal et al., 2023)

(Table 3). Soil salinity interferes with ionic equilibrium in alfalfa,
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resulting in excessive buildup of Na+ and Cl– in both roots and

shoots (Rogers et al., 2003; Li et al., 2010). Thus, maintaining ionic

balance under salt stress is crucial for enhancing salinity tolerance

in alfalfa, which is crucial for regulating cell volume, sustaining

membrane potential, and supporting enzymatic activities (Amin

et al., 2021). Salt stress disrupts hormone levels, impacting osmotic

regulation and photosynthesis, which ultimately hinders legume

growth (Farooq et al., 2017). Primary plant hormones, namely

auxins, gibberellins, ethylene, cytokinins, and abscisic acid (ABA),

act as crucial regulators engaging various developmental signaling

pathways in plants (Agudelo-Morales et al., 2021). Modifications in

ABA and ethylene signaling have been observed in response to

salinity stress (Farooq et al., 2017). and they are vital for salt

tolerance (Sah et al., 2016; Nykiel et al., 2023). Higher ABA levels

under salt stress stimulate stress protein production and induce

osmotic regulation, hereby enhancing salt tolerance (Chen et al.,

2022). The exogenous use of osmolytes and phytohormonal agents

may reduce salinity-related losses in alfalfa (Deinlein et al., 2014).

The accumulation of compatible solutes under stress conditions

contributes to osmotic tolerance by both regulating intercellular

osmotic pressure and protecting membranes from ROS damage

(Deinlein et al., 2014; Farooq et al., 2015).

The identification of salt-tolerant alfalfa lines has been

extensively achieved by screening their resistance to salinity in

various studies (Yu et al., 2021). Initiation of plant adaptation to
FIGURE 3

Mechanisms of oxidative stress, tolerance, and detoxification in plant cells under the exposure of heavy metals. ROS, reactive oxygen species; O−
2,

superoxide radicals; O2, oxygen molecule; H2O2, hydrogen peroxide; CAT, catalase; SOD, superoxide dismutase; AsA, ascorbic acid; GSH,
glutathione (reduced); MDHA, monodehydroascorbate; GSSG, oxidized glutathione; GR, glutathione reductase; Glu, glutamine; Cys, cysteine; GS,
glutathione synthetase; Gly, glycine; Pb; Mn; Hg; Ni; Cd; Cu; Cr, Zn: Heavy metals. Reproduced from Singh et al. (2016) Copyright 2016 Frontiers
Media SA.
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saline conditions involves the early sensing of stress stimuli via

molecular detectors like cyclic nucleotide-gated channels (CNGCs),

autoinhibited calcium ATPases ACAs), as well as key regulators

within the salt overly sensitive (SOS) network (Li et al., 2022),

(Figure 4). Whereas the stress perception initiates signal

transduction cascades, including salicylic acid and abscisic acid

pathways, leading to the induction of multiple downstream genes

and regulatory transcription factors (Bose and Howlader, 2020),

(Figure 4). Latest findings demonstrated that several differentially

expressed genes (DEGs) encode regulatory transcription factors

such as DREB, NAC, WRKY, and MYB, that are believed to play a

crucial role in transcriptional response to salinity stress in alfalfa

(He et al., 2022), (Figure 4). Transcriptomic analysis revealed

significant enrichment of heat shock proteins (HSPs), likely

functioning within the MAPK signaling cascade, in salt-tolerant

alfalfa, while marked upregulation of LEA family genes suggests

their role in osmotic adjustment under salt (Hang et al., 2024),

(Figure 4). Advances in molecular biology have made transgenic

technology a popular and effective method for single trait

improvement in plants, as compared to that of traditional

breeding practices (Sun et al., 2024). For the development of salt-

resistant alfalfa, the introduction of exogenous genes like the

receptor kinase gene GsSRK (Sun et al., 2018), ZxNHX and

ZxVP1-1 (Kang et al., 2016), thiamine thiazole synthase (THI1)

gene MsTHI1 (Yin et al., 2022), Na+/H+ reverse transporter genes
Frontiers in Plant Science 10
AtNHX1 (Stritzler et al., 2018), calcineurin B-like (CBL) gene

MsCBL4 (An et al., 2020), and a rare cold-inducible 2/plasma

membrane protein 3 (RCI2/PMP3) gene MsRCIs (Li et al., 2021)

reported an improvement in salt tolerance in genetically modified

alfalfa plants, aided by advancements in high-throughput

sequencing and bioinformatics, coupled with transcriptomics,

proteomics, and metabolomics has emphasized the vital role of

transcription factors (TFs) (Ma et al., 2023; Zhang et al., 2023),

metabolite biosynthesis and other abiotic genes related to stress

resistance (Bhattarai et al., 2021; Kaundal et al., 2021), and miRNAs

(Long et al., 2015; Ma et al., 2020b), are crucial for salt tolerance

(Huang et al., 2020; Zhao et al., 2020). Compared to other crops, the

mechanisms at the genetic, molecular, and physiological levels that

confer salt resistance in alfalfa are still inadequately understood (He

et al., 2022). Recent studies have shown that miR156 plays a key role

in alfalfa’s response to salt stress by regulating the expression of

target genes, including those coding for SPL protein family (Wang

et al., 2021; Zhang et al., 2022a, 2022b, 2022c).
5 Conclusion and future perspectives

Environmental fluctuations and abiotic stress factors

significantly disrupt agricultural productivity and reduce crop

quality worldwide. As a vital forage legume valued for its
TABLE 3 Principal genes underlying alfalfa’s mechanism of salt stress tolerance.

Gene
abbreviation

Full name of gene Gene Functionality

NHX1 Na+/H+ exchanger 1 Regulation of Na+ accumulation in vacuole

SGF29 Transcriptional activator SaGa associated factor 29 Cellular signaling pathways

GmDREB1
Soybean DREB (dehydration-responsive-element binding

protein) orthologue 1
Affects the osmolyte balance by regulating proline and sugar content

P5CS1 Delta1-pyrroline-5-carboxylate synthase 1 Improvement of antioxidants as well as accumulation of organic solutes

GsZFP1 Glycine soja putative Cys2–His2 type zinc finger protein Reduces sodium influx and governs the synthesis and accumulation of proline

HKT1 High-affinity K+ transporter 1 Regulate mechanisms governing the retrieval of Na+ from xylem pathway

rstB Putative sensor histidine kinase gene vda_000600 Restriction of Na+ uptake and regulation of calcium accumulation

SOS1 Salt Overly Sensitive 1 Prevention of Na+ ion entry into root tissues

HSP81.2 Heat-shock protein gene 81.2 Cellular signaling pathways

AtNDPK2 Arabidopsis nucleoside diphosphate kinase 2
Modulation of hydrogen peroxide-induced MAP (mitogen-activated protein)
kinase signaling during osmotic stress responses

OTSI Overlay tolerant to salt 1 Cellular signaling pathways

BADH Betaine aldehyde dehydrogenase Regulates osmolyte buildup and contributes to the maintenance of osmotic balance

TPS-TPP
Trehalose-6-phosphate synthase–trehalose-6-phosphate

phosphatase
fusion protein

Coordinates the metabolic pathways involved in trehalose accumulation

WRKY20 Probable WRKY transcription factor 20 Homeostasis of K+ and regulates accumulation of proline

ERF1 Ethylene response factor 1
Regulate ethylene and jasmonate signaling, to improve antioxidants and
accumulation of organic solute

MtNHX1 Medicago truncatula Na+/H+ exchanger 1 Regulating ionic balance inside the vacuole
(Al-Farsi et al., 2020).
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substantial biomass production and rich nutritional profile, alfalfa

remains susceptible to yield declines under abiotic challenges such

as salinity, drought, and metal toxicity. Under these stress

conditions, alfalfa engages complex regulatory systems at both the

physiological and molecular levels, leading to changes in cellular

structure, biochemical pathways, and transcriptional regulation.

Despite advancements in model plant systems, significant gaps

persist in our understanding of alfalfa’s molecular adaptations to

stress, primarily due to its complex genome and outcrossing

reproductive behavior, which make it a challenging experimental

subject. In this review, we consolidate existing insights into the

physiological adjustments and molecular adaptations of alfalfa

under salinity, drought, and heavy metal stress conditions. These

abiotic challenges activate intricate signaling cascades initiated at

the cell wall or plasma membrane level through the perception of

phytohormones, ions, and gaseous signaling molecules, leading to

the regulation of subsequent stress-response pathways.

Deciphering the mechanisms by which alfalfa responds to stress

is vital for enhancing breeding strategies focused on generating

cultivars with improved tolerance to multiple environmental

constraints. In this regard, numerous studies have identified

diverse mechanisms of stress tolerance under controlled

conditions, although findings from open-field experiments are

sti l l insufficient. Hence, to close this knowledge gap,

implementing phenotyping at the cellular and tissue scale could

offer new insights into how plants adapt to stress conditions, which

can further boost our proficiency in designing stress-resistant
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cultivars of alfalfa. Furthermore, existing studies highlight those

advancements in genetic transformation methods have led to the

identification of several genes and signaling pathways related to

stress resilience and adaptation. Nonetheless, considerable gaps

persist regarding the identification of key genes, number of genes

to target and understanding their specific involvement in regulating

plant responses to stress. There is still an ongoing debate over

whether all key genes are linked to particular stress conditions or if

targeting a selective set of genes is a more effective strategy. This

highlights the need for more comprehensive studies and cutting-

edge approaches, such as single-cell omics, to pinpoint precise

genetic elements crucial for enhancing stress tolerance in alfalfa.

No single strategy will suffice as plants often face multiple stresses

simultaneously in natural environments. Thus, future studies should

aim to examine the interactive impacts of multiple tolerance strategies

and identify key genetic and biochemical pathways that can be targeted

for breeding. Moving beyond conventional studies, we anticipate that a

comprehensive approach combining genomics, bioinformatics, and

functional genomics, focusing on the study of protein-nucleic acid

interactions and gene regulation, is also crucial for exploring alfalfa’s

genetic framework. These investigations will reveal new genes that can

be linked to targeted traits, providing valuable insights to support the

genetic enhancement of alfalfa. In addition, the application of modern

molecular tools will play a vital role in advancing genetic manipulation

methods including gene overexpression, precise gene editing, and de

novo synthesis of genes for specific traits to strengthen stress

adaptability and productivity.
FIGURE 4

A Graphical Depiction of Plant Adaptations to Salinity Stress. CNGC: Cyclic nucleotide-gated channels, ACA, autoinhibited calcium ATPase; SOS, salt
overly sensitive; Transcription factors (DREB; WRKY; NAC; MYB), Proteins (LEA, Late Embryogenesis Abundant proteins; HSPs, Heat Shock Proteins).
Reproduced from Kashyap et al. (2021) Copyright 2021 Springer Nature.
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Dražić, G., Mihailović, N., and Lojić, M. (2006). Cadmium accumulation inMedicago
sativa seedlings treated with salicylic acid. Biol. Plantarum 50, 239–244. doi: 10.1007/
s10535-006-0013-5
Frontiers in Plant Science 13
Duan, C., Mei, Y., Wang, Q., Wang, Y., Li, Q., Hong, M., et al. (2022). Rhizobium
inoculation enhances the resistance of alfalfa and microbial characteristics in copper-
contaminated soil. Front. Microbiol. 12. doi: 10.3389/fmicb.2021.781831

El-Shehawi, A. M., Rahman, M. A., Elseehy, M. M., and Kabir, A. H. (2022). Mercury
toxicity causes iron and sulfur deficiencies along with oxidative injuries in alfalfa
(Medicago sativa). Plant Biosyst. 156, 284–291. doi: 10.1080/11263504.2021.1985005

Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., et al.
(2017). Effects, tolerance mechanisms and management of salt stress in grain legumes.
Plant Physiol. Biochem. 118, 199–217. doi: 10.1016/j.plaphy.2017.06.020

Farooq, M., Hussain, M., Wakeel, A., and Siddique, K. H. M. (2015). Salt stress in
maize: effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev.
35, 461–481. doi: 10.1007/s13593-015-0287-0

Feyissa, B. A., Arshad, M., Gruber, M. Y., Kohalmi, S. E., and Hannoufa, A. (2019).
The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in
alfalfa. BMC Plant Biol. 19. doi: 10.1186/s12870-019-2059-5
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