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Blumeria graminis f. sp. tritici (Bgt), the causal agent of wheat powdery mildew,

poses a significant threat to global wheat production. As an obligate biotroph, Bgt

is recalcitrant to stable genetic manipulation. Although host-induced gene

silencing has been used for gene function studies, it remains ineffective for

targeting genes active during pre-penetration stages. Consequently, the

functional roles of many Bgt genes during pre-penetration stages remain

largely unexplored. In this study, the feasibility of spray-induced gene silencing

(SIGS) to characterize gene function during pre-penetration stages was

evaluated. The results demonstrated that Bgt conidia and germ tubes

efficiently took up environmental double-stranded RNA (dsRNA), enabling the

targeted silencing of BgtActin. Exogenous application of BgtActin-dsRNA

effectively reduced target gene expression and impaired infection of Bgt.

BgtActin silencing predominantly induced abnormal appressoria and reduced

disease severity when dsRNA was applied at 6 and 10 hours post-inoculation

(hpi). In contrast, BgtActin was almost not silenced when dsRNA was applied at 2

hpi. These findings established SIGS as a promising tool for gene functional

studies during the pre-penetration stages of Bgt and highlight the potential of

RNA-based strategies for the control of wheat powdery mildew.
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Blumeria graminis f. sp. tritici, pre-penetration stage, spray-induced gene silencing,
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1 Introduction

Blumeria graminis f. sp. tritici (Bgt) is the causal agent of wheat

powdery mildew, a devastating disease that severely threatens wheat

production and global food security (Singh et al., 2016; Jevtić et al.,

2017). As an obligate biotroph, Bgt relies entirely on living host

tissue for survival and reproduction. The conidia undergo a strictly

programmed and highly synchronous asexual life cycle (Both et al.,

2005). The infection process of Bgt begins with the emergence of a

short primary germ tube approximately 30 minutes post-

inoculation, which facilitates initial surface sensing and

attachment (Yamaoka et al., 2006). Subsequently, an appressorial

germ tube develops and differentiates into a swollen, hooked

structure known as the appressorium. At 15 hours post-

inoculation (hpi), a penetration peg forms beneath the

appressorium, breaking both the host cuticle and cell wall by a

combination of mechanical pressure and enzymatic degradation

(Francis et al., 1996; Pryce-Jones et al., 1999). The peg does not

breach the plant plasmalemma, and a haustorium develops in the

periplasmatic space. These processes are completed at 24 hpi.

Previous studies showed that when B. graminis exposed to high

temperature, high humidity, or fungicide stress during pre-

penetration stages, appressoria often were induced to be

abnormal (Gilbert et al., 2009; Sugai et al., 2020; Wheeler et al.,

2003; Zhang et al., 2022). These abnormal appressoria were caused

by failure of the peg penetration into the host cells (Nonomura

et al., 2010), which ultimately results in unsuccessful infection.

However, the roles of key genes involved in pre-penetration stages

remain largely unknown.

Host-induced gene silencing (HIGS) and virus-induced gene

silencing (VIGS) have emerged as powerful tools for functional

genomics in plant-pathogen interactions (Koch and Wassenegger,

2021; Nowara et al., 2010; Su et al., 2024; Zhang et al., 2023). These

approaches leverage the host’s RNA interference (RNAi) machinery

to deliver small RNAs into interacting fungi, inducing gene

silencing in a cross-kingdom manner (Cai et al., 2018). However,

the dependence of HIGS and VIGS on host-mediated RNAi limits

their efficiencies in some cases for studying gene function. For

example, these approaches are ineffective during the asymbiotic and

presymbiotic stages of Rhizophagus irregularis, when direct

exchange with the host has not yet been established (Fan et al.,

2025). In Bgt, haustoria are essential for nutrient uptake and for the

delivery of virulence effectors that suppress host defenses (Both

et al., 2005; Bozkurt and Kamoun, 2020). However, during the pre-

penetration stages, Bgt has not yet formed haustoria, and there is

nearly material exchange between the pathogen and the wheat

(Zhang et al., 2005). As a result, host-derived small RNAs are

unlikely to be effectively delivered into Bgt cells at these stages,

thereby limiting the efficiency of HIGS and VIGS.

Recent studies have shown that certain fungal pathogens can

directly take up environmental double-stranded RNAs (dsRNAs)

and initiate gene silencing through endogenous RNAi pathways, a

strategy known as spray-induced gene silencing (SIGS, Koch et al.,

2016; McRae et al., 2023; Ouyang et al., 2024; Qiao et al., 2021;

Wang et al., 2016). The exogenous application of dsRNA or single-
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stranded RNAs onto fungal tissues has been shown to trigger the

production of small RNAs that target essential fungal genes, thereby

reducing infection and disease development (Koch et al., 2016;

McRae et al., 2023; Ouyang et al., 2024; Qiao et al., 2021). However,

whether Bgt can take up exogenous dsRNA with high efficiency to

induce gene silencing is still unknown.

Actin is a highly conserved cytoskeletal protein and involves in

nearly all fundamental eukaryotic cellular processes (Berepiki et al.,

2011). In filamentous fungi, actin plays a pivotal role in cell

morphogenesis and polarized growth (Walker and Garrill, 2006).

In this study, SIGS was applied to functionally characterize

BgtActin, aiming to explore the feasibility of SIGS during the pre-

penetration stages of Bgt. We demonstrated that exogenous

application of dsRNA via SIGS effectively silenced target gene

expression, enabling functional analysis of Bgt genes during pre-

penetration stages. Furthermore, our findings revealed that BgtActin

was required for the penetration process, providing new insights

into its role in Bgt establishment. These findings also lay the

foundation for the development of RNA-based strategies for

disease management targeting Bgt.
2 Materials and methods

2.1 Plant materials and inoculation

Seeds of the highly powdery mildew-susceptible wheat cultivar

‘Jingshuang16’ were sown in glass tubes covered with 5 layers of

gauze to prevent accidental contamination and maintained in a

climate-controlled growth chamber at 18°C ± 0.5°C, with a 16-h-

light/8-h-dark cycle. At the one-leaf seedling stage, detached leaf

segments were prepared by excising leaves into 3.5 cm segments,

which were then placed on a water agar medium supplemented with

60 mg mL-1 benzimidazole to delay senescence. Bgt conidia were

inoculated onto the leaf segments using a settling tower, followed by

incubation at 18°C.
2.2 Transcriptomic analysis

To analyze the expression profiles of BgtActin during pre-

penetration stages of Bgt, we examined published transcriptome

deep sequencing (RNA-Seq) data. Raw RNA-Seq reads were

downloaded from the NCBI Sequence Read Archive under the

BioProject number PRJNA1237996 (Zhang et al., submitted)1.

These reads were derived from Bgt isolates 13-14-7-2-2 and 13-14-

8-2-2 collected at different infection time points (0, 15, 24, and 48hpi).

The clean reads were mapped to the reference genome of Bgt isolate

96224 (GCA_900519115.1) (Müller et al., 2019) by HISAT2 (Kim

et al., 2015). Gene expression levels were normalized using fragments

per kilobase of transcript per million mapped reads (FPKM).

Differential expression gene (DEG) analysis was performed using
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the DESeq2 package (Love et al., 2014) in RStudio (v4.2.1). DEGs

were identified using the criteria the Benjamini-Hochberg adjusted P

value ≤ 0.05, |log2 Fold Change| > 1.
2.3 dsRNA design and synthesis

dsRNA was designed using the siRNA-Finder software (Lück

et al., 2019) to minimize off-target effects in the host plant. Target

region enriched with multiple high-efficiency small interfering RNA

sites was selected for BgtActin (GenBank: VDB84307.1) to

synthesize BgtActin-dsRNA (Figure 1A). The target sequence was

246 bp in length (Figure 1B). RNAi fragment targeting BgtActin was

amplified from cDNA derived from Bgt-infected wheat leaves using

gene-specific primers. Each primer included a T7 RNA polymerase

promoter sequence (5’-TAATACGACTCACTATAGGG-3’) at

both the 5’ and 3’ ends (Table 1). The dsRNAs were synthesized

in vitro using the T7 RNAi Transcription Kit (Vazyme, Nanjing,
Frontiers in Plant Science 03
China) and subsequently purified according to the manufacturer’s

instructions. To investigate whether Bgt is capable of exogenous

dsRNA uptake (Koch et al., 2016; Wang et al., 2016), a fluorescein-

labeled BgtActin-dsRNA was generated by in vitro transcription

with T7 RNAi Transcription Kit (Vazyme, Nanjing, China) in the

presence of fluorescein-12-UTP (Sigma, Saint Louis, MO, USA),

following the manufacturer’s protocols.
2.4 External application of dsRNA on the
surface of detached leaf segments

To investigate the exogenous dsRNA uptake capability and the

effect of gene silencing during pre-penetration stages, Bgt conidia were

inoculated onto the detached leaf segments, then BgtActin-dsRNA and

fluorescein-labeled BgtActin-dsRNA were sprayed onto inoculated leaf

surfaces at 2, 6 and 10 hpi, respectively (Supplementary Figure S1). A

total of 60 mg of dsRNA per treatment (at a concentration of 60ng/mL)
FIGURE 1

Design (A) and sequence (B) of dsRNA targeting BgtActin gene.
TABLE 1 Primers of RNAi fragments used in this study.

Primer name Primer sequence (5’-3’) Purpose

Actin_T7-F taatacgactcactatagggTGAGCGCGGCTATACTTTTT
For the amplifing of RNAi fragments targeting BgtActin

Actin_T7-R taatacgactcactatagggACGTGAATACCACCGCTTTC

18SrRNA F TAGTTGGTGGAGTGATTTGT

For real-time quantitative PCR
18SrRNA R CGTTGGCTCTGTCAGTGTAG

Actin-Fqpcr GGTTTCTCTCTTCCACACGC

Actin-Rqpcr CACGAACGATTTCTCGCTC
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was applied to inoculated leaves. Leaves sprayed with RNase-free

water were used as the control.
2.5 RNA isolation and real-time
quantitative PCR

To analyze gene expressions of BgtActin, samples were collected

at 24, 48 and 72 hpi and snap frozen in liquid nitrogen. Total RNA

was extracted from a frozen sample with TransZol Up Plus RNA Kit

Trizol reagent (TRANSGEN BIOTECH, Beijing, China). The first-

strand cDNA was synthesized with FastKing One-Step RT-PCR Kit

(TIANGEN, Beijing, China). Real-time quantitative PCR

amplifications were conducted with TranStart Top Green qPCR

SuperMix (TRANSGEN BIOTECH, Beijing, China) and performed

on the ABI 7500 real-time PCR system. Relative expressions were

calculated using the 2-△△CT method (Livak and Schmittgen, 2001)

with 18S rRNA as the reference gene. Three biological replicates

were performed for statistical analysis. The primers used for real-

time quantitative PCR were listed in Table 1.
2.6 Staining and histological observation

To investigate the exogenous dsRNA uptake capability, the

visualization via confocal microscopy was completed at 24 hpi.

Leaves sprayed with BgtActin-dsRNA were treated with micrococcal

nuclease (NEB, Ipswich, MA, USA) at 37°C for 30 min to remove

surface-bound dsRNAs from Bgt conidia or hyphae. Leaves sprayed

with RNase-free water were used as a control. The fluorescent signal

was examined using a Zeiss LSM880 confocal microscopy. The

excitation/emission wavelengths were 488/519 nm. Fluorescent

image processing was performed using ZEN blue software.

The histological observation was conducted on a fluorescence

microscope Olympus BX61. To assess conidia germination, over

200 conidia per leaf segment were randomly selected, and the

number of conidia producing primary germ tubes was counted.

Simultaneously, appressoria formation was evaluated by the records

of both normal and abnormal appressoria. For each treatment, 3

leaf segments were examined, and the experiment was conducted

with three biological replicates.

Leaf segments infected by Bgt isolate were stained with

Coomassie blue solution. At 24 hpi, the leaf segments were fixed

in a fixative (ethanol: acetic acid, 1: 1, v/v) for 24 hours, then

bleached in a destaining solution (lactic acid: glycerol: H2O, 1: 1: 1,

v/v) for 48 hours. Subsequently, the samples were stained for 10

minutes with 0.6% (w/v) Coomassie blue solution, followed by

thorough rinsing with distilled water.
2.7 Data analysis

Two-way analysis of variance with SAS software version 9.4

(SAS Institute Inc., Cary, NC, USA) was used to assess the difference

in conidia germination frequency, formation frequency of
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appressoria and abnormal appressoria, and disease severity

between different treatments or timing of dsRNA application.

One-way analysis of variance was used to test the effect on gene

expression levels when BgtActin-dsRNA was applied.
3 Results

3.1 Bgt was capable of environmental
dsRNA uptake

To evaluate the exogenous dsRNA uptake capability during pre-

penetration stages, conidia were treated with fluorescein-labeled

dsRNA at 2, 6 and 10 hpi. Fluorescent signals were clearly

observed in Bgt cells at 24 dpi for all sprayed time, even after

micrococcal nuclease treatment, while no fluorescein signal was

detected in water-treated controls (Figure 2). Notably, dsRNA was

evidently taken up during multiple pre-penetration stages, including

conidia germination and appressoria formation. These results

indicated that Bgt can directly take up environmental dsRNA,

independent of the host plant.
3.2 Expression level of BgtActin after
treated with BgtActin-dsRNA

Transcriptomic analysis showed that the expression levels of

BgtActin peaked at 15 hpi in both tested isolates (13-14-8-2-2-2 and

13-14-7-2-2), showing a significant up-regulation compared with 0

hpi (Figure 3). In contrast, no significant differences in the

expression levels of BgtActin were observed at 24 or 48 hpi

compared with 0 hpi (Figure 3). Moreover, the expression levels

of BgtActin at 24, 48 and 72 hpi were not significantly reduced when

BgtActin-dsRNA were applied at 2 hpi, compared with the water-

treated control (Figure 4A). However, the expression levels of

BgtActin were significantly down-regulated at 24 and 48 hpi,

while application of BgtActin-dsRNA at 6 and 10 hpi (Figure 4B,

C). By 72 hpi, expression levels were no longer significantly different

from the control, regardless of treatment timing (Figures 4A–C).

These results suggested that BgtActin can be effectively silenced by

spraying BgtActin-dsRNA during pre-penetration stages.
3.3 Effects of BgtActin silencing on pre-
penetration stages of Bgt

The frequencies of conidia germination and appressoria

formation in the Bgt isolate were significantly reduced when

BgtActin-dsRNA was applied at 2 hpi, compared with the water-

treated controls (Figures 5A, B; Supplementary Table S1). However,

there were no significant differences in the frequencies of conidia

germination and appressoria formation between BgtActin-dsRNA

application (at 6 or 10 hpi) and water treatment (Figures 5A, B;

Supplementary Table S1). Notably, the frequency of abnormal

appressoria formation was significantly increased following
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BgtActin-dsRNA application at 6 or 10 hpi, compared to water-treated

controls, suggesting interference with penetration peg formation

(Figure 5C; Supplementary Table S1). Further histological analysis

revealed that most abnormal structures exhibited multi-lobed

appressoria (Figures 5D, 6; Supplementary Table S1).
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3.4 BgtActin silencing reduced disease
severity of Bgt on wheat leaves

Application of BgtActin-dsRNA at 6 or 10 hpi significantly

reduced powdery mildew severity compared to the control, with
E 2FIGUR

The efficiency of double-stranded RNA (dsRNA) uptake by Blumeria graminis f. sp. tritici using fluorescein-labeled dsRNA sprayed at 2, 6 and 10
hours post-inoculation (hpi). H2O was the control with spraying RNase-free water; “2hpi-dsRNA”, “6hpi-dsRNA” and “10hpi-dsRNA” were sprayed
with BgtActin-dsRNA at 2, 6 and 10 hpi, respectively. The fluorescent signals of all treatments were observed via confocal microscopy at 24 hpi. C,
conidium; AP, appressorium.
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inhibition proportions ranging from 26% to 50% (Figure 7). In

contrast, no significant difference in disease severity was observed

between BgtActin-dsRNA and control treatments when the dsRNA

was applied at 2 hpi (Figure 7). These findings indicated that the

effect of the exogenous dsRNA targeting BgtActin on inhibiting

disease development depended on the timing of application.

3.4.1 Key factor influencing BgtActin silencing
Variance analysis showed that both dsRNA treatment and

application timing had significant effects on conidia germination,

appressoria formation frequency, and disease severity (Table 2).

Specifically, dsRNA treatment and application timing account for

41.4% and 24.2% of the total variance in disease severity, respectively.

In contrast, the timing of application did not significantly affect the

frequency of abnormal appressoria formation, whereas dsRNA

treatment had a significant effect, accounting for 25.3% of the total

variance in this phenotype (Table 2). Notably, the effect of interactions

between application timing and dsRNA treatment was not statistically

significant for any of the phenotypes assessed (Table 2).
4 Discussion

Bgt is an obligate biotrophic pathogen and undergoes a strictly

programmed and highly synchronous asexual life cycle (Both et al.,

2005). Its pre-penetration stages involve several critical steps, including

conidia germination, appressorium formation and maturation, and

penetration of the host epidermal cells. Each of these stages is critical

for the successful establishment of infection. Among them, penetration

of epidermal cells is particularly susceptible to environmental stresses

and host immune responses (Gilbert et al., 2009; Sugai et al., 2020;

Wheeler et al., 2003; Zhang et al., 2022). In Magnaporthe oryzae, the
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development and function of the appressorium have been extensively

studied, revealing mechanisms involved in turgor generation,

maturation, penetration, and transpressorium formation (Dagdas

et al., 2012; Qi et al., 2018; Ryder et al., 2022; Yi and Valent, 2013).

However, similar studies in B. graminis remain limited, primarily due

to the difficulty of performing stable genetic transformations in this

obligate biotroph.

In this study, we demonstrated that Bgt conidia and germ tubes

are capable of directly absorbing exogenous dsRNA during pre-

penetration stages, including conidia germination and

appressorium formation (Figure 2). The absence of haustoria at

these stages excludes the possibility of host-derived sRNA delivery,

highlighting the importance of direct uptake. Similar dsRNA uptake

capabilities have also been reported in other plant pathogenic fungi,

such as Botrytis cinerea, Fusarium graminearum, Golovinomyces

orontii and Phakopsora pachyrhizi (Koch et al., 2016; McRae et al.,

2023; Ouyang et al., 2024; Qiao et al., 2021; Wang et al., 2016).

Leveraging this capability, we successfully silenced BgtActin

using exogenous dsRNA during pre-penetration stages. Notably,

in this study, the silencing efficiency was dependent on the timing of

dsRNA application. Application at 6 or 10 hpi significantly reduced

BgtActin expression, induced abnormal appressoria, and suppressed

disease severity, whereas application at 2 hpi showed minimal

effects. Although previous studies in other fungi demonstrated

that exogenous dsRNA targeting genes such as CYP51

(cytochrome P450 51) and DCLs (Dicer-like proteins) could

effectively suppress pathogen development and virulence (Koch

et al., 2016; McRae et al., 2023; Qiao et al., 2021; Wang et al., 2016),

none have investigated the impact of application timing on

silencing efficiency and disease control. Furthermore, while gene

silencing and associated phenotypic effects were evident at 24 and

48 hpi, they diminished by 72 hpi (Figure 4), indicating a temporal
FIGURE 3

Expression levels of BgtActin in different isolates using RNA-seq data during early infection stages. Expression levels were indicated as FPKM
(fragments per kilobase per million reads), log2FC (fold change) >1 and adj-P (Benjamini-Hochberg adjusted P value) ≤ 0.05 was considered
significant.
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limitation of SIGS, at least for BgtActin. Whether such temporal

limitations are gene-specific remains to be clarified.

HIGS has been extensively used for gene functional studies in

obligate biotrophs such as Bgt and Puccinia striiformis f. sp. tritici

(Nowara et al., 2010; Qi et al., 2018). However, HIGS mainly targets
Frontiers in Plant Science 07
genes expressed during haustorium formation and is therefore

unsuitable for investigating genes acting during the pre-penetration

stages, when the host-pathogen interface has yet formed. SIGS, based

on the direct uptake of exogenous dsRNA by conidia and germ tubes

of Bgt, effectively overcomes this limitation. Similar to HIGS, the
FIGURE 4

Relative expression levels of BgtActin in Blumeria graminis f. sp. tritici at 24, 48 and 72 hours post-inoculation (hpi) following the application of
dsRNA. (A) application of dsRNA at 2 hpi; (B) application of dsRNA at 6 hpi; (C) application of dsRNA at 10 hpi. 18SrRNA was used as the reference
gene. The error bar showed standard error of three biological replicates. Data were analyzed by one-way analysis of variance with Duncan’s multiple
range test (ns P > 0.05, *0.01<P ≤ 0.05 and ***P ≤ 0.001).
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efficiency of SIGS also depends on the functional importance of the

targeted gene. Previous studies have shown that not all genes are

suitable RNAi targets, as silencing some may not result in any

observable phenotype or impact on pathogenicity (Govindarajulu
Frontiers in Plant Science 08
et al., 2015; Guo et al., 2019). In this study, we confirmed that

BgtActin is a suitable SIGS target, though further studies are needed

to evaluate the general applicability of SIGS across different gene

families and functional categories.
FIGURE 5

Effects of BgtActin silencing on germination frequencies of conidia (A), formation frequencies of appressoria (B) and abnormal appressoria (C) of
Blumeria graminis f. sp. tritici. (D) Composition of abnormal appressoria in different treatment. The error bar showed standard error of three
biological replicates. Data were analyzed by two-way analysis of variance with Duncan’s multiple range test. The different letters above the error bars
indicated significant differences (P ≤ 0.05).
FIGURE 6

Normal (A, B) and abnormal appressoria (C-F) of Blumeria graminis f. sp. tritici at 24 hours post-inoculation.
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TABLE 2 Two-factor variance analysis of application timing and dsRNA treatment targeting BgtActin in pre-penetration stages of Blumeria graminis f.
sp. tritici.

Phenotype Source of variation DF Sum Sq Mean Sq F-value P (>F)

Germination frequency of conidia

Timing of application (A) 2 0.016 0.008 4.080 0.024

dsRNA treatment (B) 1 0.015 0.015 7.520 0.009

A*B 2 0.011 0.006 2.860 0.068

Error 42 0.082 0.002

Total variation 47 0.124

Formation frequency of appressoria

Timing of application (A) 2 0.094 0.047 4.640 0.015

dsRNA treatment (B) 1 0.062 0.062 6.150 0.017

A*B 2 0.045 0.022 2.200 0.123

Error 42 0.425 0.010

Total variation 47 0.626

Formation frequency of
abnormal appressoria

Timing of application (A) 2 0.014 0.007 0.890 0.417

dsRNA treatment (B) 1 0.127 0.127 15.740 <0.001

(Continued)
F
rontiers in Plant Science
 09
FIGURE 7

Treatment of double-stranded RNA (dsRNA) targeting BgtActin reduced Blumeria graminis f. sp. tritici infection. (A) The disease severity at 8 days
post-inoculation (dpi) in different treatments. CK was the control with spraying RNase-free water; application of BgtActin-dsRNA was at 2, 6 and 10
hours post-inoculation (hpi), respectively. The error bar showed standard error of three biological replicates. Data were analyzed by two-way
analysis of variance with Duncan’s multiple range test. The different letters above the error bars indicated significant differences (P ≤ 0.05).
(B) Representative photographs of phenotypes at 8 dpi sprayed with RNase-free water and BgtActin-dsRNA at 2, 6 and 10 hpi.
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In the infection time-course analysis, BgtActin expression

peaked at 15 hpi (Figure 3), corresponding with the timing of

penetration. Previous studies have implicated actin cytoskeleton

dynamics in appressorial morphogenesis, particularly via septin-

mediated reorganization of F-actin and microtubules, and

remodeling of the fungal cell wall (Ryder et al., 2022).

Consistently, BgtActin silencing disrupted these critical

developmental processes during the pre-penetration stages. Early

application of dsRNA at 2 hpi reduced conidial germination and

appressorium formation, while later application at 6 or 10 hpi led to

the formation of abnormal appressoria, which were typically

associated with defects in penetration peg differentiation. These

observations support the conclusion that actin is indispensable for

polarized growth and cellular morphogenesis during early infection

in filamentous fungi (Walker and Garrill, 2006), and further

highlight the sensitivity of the penetration stage to environmental

or molecular interference (Gilbert et al., 2009; Zhang et al., 2022).

Finally, BgtActin silencing not only impaired early infection

structure development but also led to a significant reduction in

disease severity when dsRNA was applied at 6 or 10 hpi (Figure 7).

In contrast, no significant reduction in disease symptoms was

observed when dsRNA was applied at 2 hpi, reinforcing the

importance of precise timing in SIGS application and supporting

the view that BgtActin plays a key role during the penetration stage.

Variance analysis further confirmed that both dsRNA treatment

and application timing had significant effects on disease severity

(Table 2), emphasizing the importance of temporal precision in

SIGS-mediated gene functional studies.
5 Conclusion

In this study, the results provided direct evidence that both

conidia and appressoria of Bgt are capable of exogenous dsRNA
Frontiers in Plant Science 10
uptake. Notably, the efficiency of gene silencing was dependent on

the timing of application. Leveraging this system, the critical role of

Actin during the pre-penetration stages of Bgt was elucidated. Given

the obligate biotrophic nature of Bgt, which has long hindered

functional studies during pre-penetration stages, the SIGS approach

described here offers a valuable tool for gene function analysis at

pre-penetration stages. Nonetheless, whether SIGS can be broadly

applied for the functional characterization of a wide range of genes

during the pre-penetration stages remains an open question and

warrants further investigation.
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