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Forest canopy closure estimation
in mountainous southwest China
using multi-source remote
sensing data
Wenwu Zhou1,2, Qingtai Shu2*, Cuifen Xia2, Li Xu2, Qin Xiang2,
Lianjin Fu3, Zhengdao Yang2 and Shuwei Wang2

1Guangyuan Forestry Workstation, Guangyuan, China, 2College of Forestry, Southwest Forestry
University, Kunming, China, 3Faculty of College of Soil and Water Conservation, Southwest Forestry
University, Kunming, China
Forest canopy closure (FCC) is an important biological parameter to evaluate

forest resources and biodiversity, and the use of multi-source remote sensing

synergy to achieve high-accuracy estimate regional FCC at low cost is a current

research hotspot. In this study, Shangri-La City, a mountainous area in southwest

China, was considered as the research area. The satellite-borne LiDAR ICESat-2/

ATLAS data were used as the main information source. Combined with 54

measured plot data, the improved machine learning model of the Bayesian

optimization (BO) algorithm was used to obtain the FCC in the footprint-scale

ATLAS footprint. Then, the multi-source remote sensing image Sentinel-1/2 and

terrain factors were combined to perform regional-scale FCC remote sensing

estimation based on the geographically weighted regression (GWR) model. The

research results showed that (1) among the 50 extracted ATLAS LiDAR feature

indices, the best footprint-scale modeling factors are Landsat_perc,

h_dif_canopy, asr, h_min_canopy, toc_roughness, and n_touc_photons after

random forest (RF) feature variable optimization; (2) among the BO-RFR, BO-

KNN, and BO-GBRT models developed at the footprint scale, the FCC results

estimated by the BO-GBRT model were the best (R2 = 0.65, RMSE = 0.10, RS =

0.079, and P = 79.2%), which was used as the FCC estimation model for 74,808

footprints in the study area; (3) taking the FCC value of ATLAS footprint scale in

forest land as the training sample data of the regional-scale GWR model, the

model accuracy was R2 = 0.70, RMSE = 0.06, and P = 88.27%; and (4) the R²

between the FCC estimates from regional-scale remote sensing and the

measured values is 0.70, with a correlation coefficient of 0.784, indicating

strong agreement. Additionally, the average FCC is 0.50, predominantly

distributed between 0.3 and 0.6, comprising 68.43%. These findings highlight

the advantages of mountain FCC estimation using ICESat-2/ATLAS high-density,
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high-precision footprints and the fact that small-sample estimation results at the

footprint scale can serve as training data for the regional-scale GWR model,

offering a reference for low-cost, high-precision FCC estimation from footprint

scale to regional scale.
KEYWORDS

ICESat-2/ATLAS, Bayesian optimization algorithm, machine learning method,
geographically weighted regression, multi-source remote sensing data, forest
canopy closure
1 Introduction

Forest canopy closure (FCC) refers to the ratio of crown

projection area to forest area in the stand (Meng, 2006) and is a

basic parameter of stand structure and stand environment, as well

as an evaluation index of forest tending and cutting (Meng, 2006;

Chen et al., 2019; Li and Mao, 2020; Hua and Zhao, 2021; Pu et al.,

2021); timely and non-destructive high-precision estimation of FCC

is of great significance for understanding and monitoring the

impact of human activities and climate change on forest

ecosystems (Wang et al., 2015). The traditional direct

measurement methods of FCC mainly include canopy closure

measuring instrument, crown projection, measuring line, and

artificial visual (Meng, 2006; Wang et al., 2015), which rely on

manual and small-scale accurate measurement, but these are time-

consuming, labor-intensive, and ineffective (Chen et al., 2019);

furthermore, they cannot meet the research standards of the

spatial distribution and variation of FCC at large spatial scales

(Wang et al., 2015). The development and application of remote

sensing technology combined with small sample standard measured

data for regional-scale FCC inversion is a common method due to

the low-cost, high-efficiency, and global coverage of remote sensing

data resources (Lee and Lucas, 2007; Yang et al., 2022).

At present, there are many studies on estimating FCC using

optical remote sensing data or airborne light detection and ranging

(LiDAR) data combined with different methods (Lee and Lucas,

2007; Hua and Zhao, 2021; Xu et al., 2022; Yang et al., 2022; Duan

et al., 2023). However, optical remote sensing data are susceptible to

spectral saturation, and airborne LiDAR data are expensive and

difficult to obtain. Using synthetic aperture radar (SAR) data

(Neumann et al., 2009; Varghese and Joshi, 2015) and spaceborne

LiDAR [ice, cloud, and land elevation satellite/geoscience laser

altimeter system (ICESat/GLAS)] data to estimate FCC is

relatively inadequate (Wang et al., 2015; Cui et al., 2021), but the

GLAS footprint is larger (footprint diameter is 70 m and footprint

interval is 170 m), and it is susceptible to terrain, especially in

complex alpine regions, which will lead to an improvement in FCC

estimation accuracy. Compared with ICESat-2/ATLAS (ice, cloud,

and land elevation satellite/advanced topographic laser altimeter

system), ATLAS has a smaller footprint size (footprint diameter is
02
only 17 m and footprint interval is 0.7 m), which greatly reduces the

influence of terrain on spot echo (Moudrý et al., 2022). In the

studies conducted by Hua and Zhao (2021); Li and Mao (2020), and

Yang et al. (2022), data from over 70 measured samples combined

with remote sensing data were used to quantitatively invert the

FCC. However, this study investigated only 54 samples, which not

only meets the principle of a large sample size (50) and the accuracy

requirements of field investigations (Song et al., 2022a), but also

reduces experimental costs. Currently, numerous studies focus on

the inversion of forest vertical structure (e.g., forest canopy height

and forest height), forest biomass, and understory topography using

the latest generation of photon-counting spaceborne LiDAR and

ICESat-2/ATLAS (Narine et al., 2019; Lin et al., 2020; Zhu et al.,

2020; Song et al., 2022a, b). However, there are few studies focusing

on the estimation of forest horizontal structure parameters (e.g., leaf

area index and FCC) (Xi et al., 2023). Because the ATLAS footprint

data show a spatial discontinuous distribution in the form of strips,

it cannot meet the requirements for full coverage in the study area

(Narine et al., 2019; Zhu et al., 2020). Therefore, the parameter

indicators need to be predicted by choosing the spatial interpolation

method or spatial regression method in geostatistics in order to

obtain the faceted attribute data covering the continuity of the

whole study area and then realize the remote sensing mapping of

the FCC (Wang et al., 2015; Zhu et al., 2020; Zhou et al., 2023; Yu

et al., 2024; Zhou et al., 2024). For example, it combines ground

target information from continuous points with continuous surface

remote sensing data (e.g., Sentinel-1/2) to achieve multi-source

integration and assimilation of multi-sensor and auxiliary data. This

approach aims to improve the accuracy of FCC estimation (Zhao

et al., 2016; Zhou et al., 2023, 2024) and enable FCC remote sensing

mapping at the regional scale.

ICESat-2/ATLAS and Sentinel-1 are active remote sensing

technologies. ATLAS employs advanced photon-counting LiDAR

technology, featuring more sensitive single-photon detectors and a

higher pulse repetition frequency (Neumann et al., 2019), enabling the

acquisition of photon point cloud data with smaller footprints and

higher sampling density (Lin et al., 2020). The C-band of SAR possesses

penetrability and dielectric properties, making it resilient to factors

such as region, time, and climate during imaging, thus capturing the

structural characteristics of forests (Zhang et al., 2022). However, it
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lacks rich spectral information. The multi-spectral sensor of Sentinel-2

can capture electromagnetic radiation information outside the canopy,

providing rich canopy data. Its red-edge band enhances FCC

estimation accuracy (Hua and Zhao, 2021), but it is limited in

acquiring information about tree trunks and branches. Characteristic

variables significantly impact the estimation accuracy and inversion

results of the model (Zhang et al., 2022). Therefore, in order to reveal

the explanatory and contribution of multiple variable factors to FCC,

reduce the influence of spectral saturation on vegetation (Zhao et al.,

2016), and improve the prediction accuracy of the model, the

independent variable factors at the spot scale in this study were

determined by 50 parameter values extracted by ICESat-2/ATLAS

after feature variable optimization. At the regional scale, the commonly

used remote sensing factors such as SAR factor, texture feature,

vegetation index and single band reflectivity (Chen et al., 2019;

Zhang et al., 2022), and the necessary auxiliary data terrain factor

were selected to construct the FCC extrapolation model.

Based on the measured sample size and remote sensing dataset,

an appropriate model is selected to achieve the best estimation

results (Shu et al., 2022). Machine learning methods offer greater

advantages in model fitting accuracy and inversion results

compared to traditional statistical methods (Shu et al., 2022). In

the canopy closure studies by Hua and Zhao (2021); Wang et al.

(2015), and Xu et al. (2022), nonparametric models demonstrated

the highest accuracy, and the estimation results were verified.

However, the lack of optimization algorithms suggests that model

accuracy and estimation results can be further improved. In this

study, machine learning methods such as K-NN, RFR, and GBRT

are selected as the basic models at the footprint scale. The Bayesian

optimization (BO) algorithm is then employed to enhance the

performance of these basic models, aiming to construct the

optimal FCC estimation model. The BO algorithm leverages prior

knowledge to approximate the posterior distribution of the

unknown objective function and then selects the next best

hyperparameter combination based on this distribution, thereby

quickly reducing the computational load while optimizing model

performance and improving estimation accuracy (Cui and Yang,

2018; Zhang et al., 2021b). As a sequential optimization method, BO

effectively explores and balances the known parameter space and

the unknown parameter space through surrogate models and

acquisition functions; it is capable of obtaining a globally

approximate optimal solution with minimal evaluation costs,

thereby avoiding the pitfalls of local optima (Cui and Yang, 2018;

Zhang et al., 2021b). In the same nonparametric optimization

model, the BO algorithm can reduce simulations for model

optimization and improve the model operation rate, increase

model estimation accuracy, and provide forecast uncertainty more

than particle swarm optimization (PSO), genetic algorithm (GA),

and differential evolution (DE) (Zhang et al., 2021b). It is one of the

commonly used algorithms to optimize the performance of

nonparametric models. This study employed the geographically

weighted regression (GWR) model to construct an FCC estimation

model for the study area at a regional scale. The GWR model is a

local spatial regression technique that predicts unknown spatial

variables using known data (Guo et al., 2012; Nazeer and Bilal, 2018;
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Zhang et al., 2019b; Song et al., 2022c). Although widely used in

urban geography, forestry, and other disciplines (Guo et al., 2012;

Zhang et al., 2019b), its application to medium-scale and large-scale

FCC estimation remains uncommon.

At present, there are few studies on the use of ICESat-2/ATLAS

data for estimating FCC, particularly in combination with

spaceborne LiDAR and multi-source remote sensing data for

cost-effective, regional-scale canopy closure inversion. In this

study, ICESat-2/ATLAS data were employed to extract the

modeling parameters. Using the BO-RFR, BO-KNN, and BO-

GBRT models, the optimal FCC estimation model for footprints

was constructed from 54 measured plot datasets. Sentinel-1/2

imagery and digital elevation model (DEM) data were used as

sources to extract remote sensing factors. After conducting an OLS

(ordinary least squares) test and normal transformation, an FCC

extrapolation model was constructed using the GWR model to

obtain continuous spatial distribution of FCC information across

the study area. The aims of this study are to construct a portable

footprint canopy closure estimation model and to explore and verify

the feasibility and reliability of the regional FCC estimation method

based on the GWRmodel and multi-source remote sensing data. At

the same time, the optimization ability of the BO algorithm to the

machine learning model is explored, and a low-cost and high-

precision method of estimating FCC is proposed.
2 Research materials

2.1 Study area

Shangri-La City is located in the northwest of Yunnan Province,

China (latitude 26°52′11.44″–28°50′59.57″ N, longitude 99°23′6.08″–
100°18′29.15″ E), which belongs to a typical alpine terrain of the

Yunnan, Sichuan, and Tibet triangle region (Shu et al., 2022; Song et al.,

2022b), as shown in Figure 1. The general trend of terrain in the area is

high in the northwest and low in the southeast, with a relative elevation

difference of 4,042 m; moreover, the average altitude is 3,459 m, the

average temperature is 4.7°C–16.5°C, and the average annual rainfall is

649.4 mm; in summary, it belongs to the mountain cold temperate

monsoon climate. The total land area of Shangri-La city is 1,141,739

ha2, of which forestry land area is 950,911.7 ha2, which accounts for

83.3% of the total area; the forest coverage rate reaches 76%, which is an

important protection forest area in Yunnan Province of China.

Typically, there are 10 vegetation types distributed in the city and

the main vegetation type is cold temperate coniferous forests including

Picea asperata, Abies fabri, Pinus densata, Quercus semecarpifolia, and

Larix gmelinii (Shu et al., 2022; Song et al., 2022b; Xi et al., 2023).
2.2 Sample plot design and data
preprocessing

The 54 sample plot data used in the study were sampled in

November 2021 in Shangri-La City. The experimental design selects

54 sample circles with a radius of 8.5 m and an area of
frontiersin.org
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approximately 0.023 ha2, which are consistent with the footprint

size emitted by the ATLAS sensor mounted on ICESat-2; it covers

the main forest vegetation types at different slopes and altitudes in

the study area and records the coordinate information of the

samples, tree species, diameter at breast height, tree height, and

the measurement of the FCC. Among them, the latitude and

longitude coordinates of the center point of the sample circle are

consistent with the coordinates of the footprint center of ICESat-2/

ATLAS, and using the southern mapping T66 Real-Time Kinematic

(RTK) in the fixed solution state, the mean value of five consecutive

point lofting was taken by the differential positioning instrument of

Thousand Seeker SR3 (Pro version), the error between the center

point coordinates of all sample sites and those of the footprints was

less than 0.02 m, and, finally, the latitude and longitude coordinates

of the center point of the sample circle are determined. In this

paper, the measuring line method (Meng, 2006) is used to calculate

the FCC of 54 sample circles (Table 1). The definition of the

measuring line method is as follows: to select a representative

section in the sample circle, set up a certain length of the
Frontiers in Plant Science 04
measuring line, along the line to observe the projection of the

crown of each tree, and measure the projection length, the crown of

the projected length of the sum of the length of the measuring line,

and the length of the measuring line for the value of the degree of

canopy closure (Meng, 2006).
2.3 ICEsat-2/ATLAS data products
acquisition and preprocessing

2.3.1 ICEsat2/ATLAS data acquisition
The ICESat-2 satellite was the first to be equipped with a photon-

counting LiDAR payload on a spaceborne platform. In September

2018, it was successfully launched by NASA (National Aeronautics

and Space Administration) at the Vandenberg Space Force Base in

the United States. The ATLAS system laser on board launched a total

of six laser beams at a time. The photon point cloud data with a

footprint diameter of 17 m and a sampling interval of 0.7 m were

obtained (Neumann et al., 2019; Moudrý et al., 2022); its 22 standard
TABLE 1 Descriptive analysis of FCC statistics.

Statistical Maximum Minimum Mean SD Variance Median

54 0.83 0.20 0.50 0.176 0.031 0.5
FIGURE 1

Location of the study area. Shangri-La City in the northwest of Yunnan Province in southwestern China. [(a) the study area is located in
Southwestern China, (b) Shangri-La City is part of Yunnan Province, and (c) green is the forest distribution area, red is the 54 sample plots.].
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data products are divided into four levels and stored in the US Ice and

Snow Data Center (https://nsidc.org/data/icesat-2/data-sets) in

HDF5 format (Neumann et al., 2019; Lin et al., 2020; Zhu et al.,

2020). The ATL03 global positioning photon data contain six laser

beam bands, which are evenly segmented at a distance of 20 m along

the track, labeled as gt11–gt3r, and record the time, latitude and

longitude of all photon events. Geospatial location information, as

well as information such as the number of photons, belongs to the

secondary product data. Based on this, the source data can generate

more advanced products (Zhu et al., 2020). The ATL08 product is a

geophysical data product containing ground elevation information

and vegetation height information generated in 100-m segments

along the orbital direction based on ATL03 data after further noise

removal and signal photon classification (Zhu et al., 2020; Moudrý

et al., 2022). This study utilized free ICEsat2/ATLAS data obtained

from the earthdata website (https://search.earthdata.nasa.gov/). All

ATL03 and ATL08 data products from January 2020 to June 2021 in

Shangri-La were selected, and each dataset comprises a total of 118

data points, 354 tracks, and 708 photon trajectory beams.

2.3.2 Photon point cloud denoising and
classification algorithm

Because ATLAS is a more sensitive single-photon detector

compared to GLAS and has a higher pulse repetition frequency

and a weak signal emission, it also captures a significant amount of

noise photons when receiving reflected photons from specific ground

targets (Neumann et al., 2019; Zhu et al., 2020). Therefore, to use

these data for quantitative remote sensing inversion, noise photons

must be removed to improve the accuracy of model estimation. In

this paper, we employ a combination of the different densities-based

spatial clustering of applications with noise (DDBSCAN) and k-

nearest neighbors-based (KNNB) algorithms (Zhang et al., 2021a) for

denoising. It is demonstrated that this combined approach

outperforms the use of either the DDBSCAN or KNNB algorithm

alone (Nie et al., 2018; Zhang et al., 2021a). Additionally, the final

measurement parameter is replaced by the maximum density

difference in DDBSCAN to address the impact of photon density

inconsistency on algorithm performance.

The signal photons after denoising need to be accurately

classified, which are mainly divided into ground photons and

canopy top photons. The classification results will affect the

inversion and mapping accuracy of forest parameters (Zhu et al.,

2020). The progressive triangular irregular network (TIN)

densification (PTD) method was used to distinguish the photon

point cloud data into ground photons and canopy photons (Nie

et al., 2017, 2018; Zhang et al., 2021a). This method has high ground

photon recognition accuracy in complex terrain areas such as large

altitude drop. In order to further improve the classification

accuracy, the ground point is set to the lowest elevation point

under the farthest point from TIN.

2.3.3 Footprint-scale parameter extraction and
forest footprint distribution map

After further photon point cloud denoising and classification,

the number of effective photons of ATL03 reaches tens of millions.
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According to the ATL08 product, 94,039 effective footprints in the

study area were obtained by thinning sampling in a 100-m section.

The latest sub-compartment attribute data of forest resources

survey in Shangri-La City (2016) were used for overlay analysis.

In the study area, 74,808 effective forest footprints (Figure 2) and

19,231 non-forest footprints were obtained, a total of 50 parameters

(including 54 standard footprints data) in the effective forest

footprints were extracted, and the parameter introduction is

detailed in the literature (Nie et al., 2018; Zhang et al., 2021a).
2.4 Preprocessing and feature variable
extraction of regional-scale remote
sensing data

2.4.1 Preprocessing of regional-scale remote
sensing data

The study utilized Sentinel-1/2 images captured in October

2021, which were freely downloaded from the European Space

Agency (ESA) (https://scihub.copernicus.eu/dhus/#/home) in

November 2021. The SAR data include C-band dual-polarization

(VV and VH) single-look complex data from the Sentinel-1A

satellite, acquired in ground range detected (GRD) Level 1

product interferometric wide (IW) mode. The sensor operates at

a center frequency of 5.405 GHz, with a swath width of 250 km and

a spatial resolution of 15 m × 15 m after resampling. To extract the

backscattering coefficient from dual-polarization backscatter

images, SNAP (sentinel application platform) software was

employed for data preprocessing steps including precise orbit

determination, thermal noise removal, radiometric calibration,

multi-looking, speckle filtering, geocoding, and dB conversion

(Figures 3a, b). The Sentinel-2 L2A-level multispectral data used

is a product of L1C-level images after Sen2cor atmospheric

correction. Using SNAP software, each band is resampled to 15

m by three convolutions, and then 5-m SPOT-5 high-precision

images are used for geometric correction, and the SCS + C model is

used for topographic correction (Figure 3c).

2.4.2 Regional-scale feature variables extraction
A total of 91 feature variables were extracted, including remote

sensing factors such as texture features, vegetation indices, single-

band reflectivity, SAR factors, and three terrain factors (Table 2). All

feature variables were extracted using ENVI 5.6 software. VV/VH

represents the ratio of VV to VH, while VV−VH denotes the

difference between VV and VH. Texture features were generated

using the gray-level co-occurrence matrix (GLCM) method within

the second-order texture algorithm. The window size was set to 5 ×

5, the step size was set to 1, and the gray level was set to 64, resulting

in the extraction of eight texture features.
2.5 Digital elevation model data

In this study, DEM data with a spatial resolution of 12.5 m were

used to extract three topographic factors: slope, aspect, and
frontiersin.org
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FIGURE 2

(a) Forest land distribution map. (b) Effective forest spot footprint distribution map.
FIGURE 3

Backscatter images generated by Sentinel-1. (a) VH, (b) VV. (c) Standard false color image consisting of Band 8 (red), Band 4 (green), and Band 3
(blue) of Sentinel-2, with vegetation areas highlighted in red.
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elevation. The data were obtained from the polarimetric synthetic

aperture radar (PolSAR) sensor aboard the ALOS satellite and were

freely downloaded from the official earthdata website (https://

www.earthdata.nasa.gov, accessed in November 2021).
3 Research methods

The methodology consists of four main steps (Figure 4): (1)

dataset collection, preprocessing, and index extraction; (2) selection

and modeling of footprint-scale characteristic variables and canopy

closure estimation; (3) selection and modeling of regional-scale

characteristic variables and FCC estimation for the study area; and

(4) spatial mapping and analysis of FCC in the study area.
3.1 Bayesian optimization algorithm

The BO algorithm can obtain a global approximate optimal

solution with little evaluation cost; in addition, the famous

“Bayesian theorem” is used in the optimization process (Cui and

Yang, 2018). The core is to use the probability model to represent

the costly complex objective function of the original evaluation

(Zhang et al., 2021b); the active selection strategy is constructed by

using the posterior information of the surrogate model, that is, the

acquisition function (Cui and Yang, 2018); this results in

the probability model more accurately satisfying the behavior of

the black box function and effectively reducing unnecessary

sampling, thus theoretically ensuring the final convergence to the

global optimal solution (Cui and Yang, 2018). In short, to reduce

the model calculation amount and optimize the target model
Frontiers in Plant Science 07
parameters, the model estimation accuracy should be improved.

The Bayesian formula is as follows:

p(f D1 : t) =
p(D1 : t jf )p(f )

p(D1 : t )

���
where f represents the unknown objective function (parameters

in the optimization model), D1 : t = (x1, y1), (x2, y2),…, (xt , yt)f g
represents the observed set, xt   represents the decision vector, y1 =

f (xt) + et represents the observed value, et represents the

observation error; p(D1 : t f )j represents the likelihood distribution

of y, due to the error of the observed value, p(f ) represents the prior

probability distribution of f, that is, the assumption of the unknown

objective function state, p(D1 : t) denotes the marginal likelihood

distribution of the marginalized f, which is mainly used in BO for

hyperparameters, p(f D1 : t)j represents the posterior probability

distribution of f, and the confidence of the unknown objective

function after the prior is corrected by the observed dataset.

The BO process is an iterative process (Cui and Yang, 2018),

and the optimization framework is shown in Table 3. There are

three core steps: (1) Select the next evaluation points with the

highest “potential”   xt according to the maximum acquisition

function. (2) Calculate the objective function value yt = f (xt) + et  
according to the selected evaluation point   xt . (3) The newly

obtained input–observation pair xt , ytf g is added to the historical

observation set D1 : t−1, and the probabilistic surrogate model is

continuously updated to prepare for the next model iteration. The

research mainly optimized the important parameters of random

forest regression (RFR), gradient boosting regression tree (GBRT),

and K-nearest neighbor (K-NN) models for 1,000 times to find the

best parameters for modeling. The algorithm flow is shown

in Figure 5.
3.2 Footprint-scale estimation model

In this study, RFR, GBRT, and K-NN models were selected as

the basic models for footprint-scale FCC estimation. The

introduction of each model is shown in various studies (Franco-

Lopez et al., 2001; Coulston et al., 2016; Tian et al., 2021). The BO

algorithm was used to optimize the three basic models to find the

best kernel parameters for modeling and accurately estimate the

footprint-scale FCC. The optimization parameters are shown

in Table 4.
3.3 Regional-scale estimation model of
geographically weighted regression model

In GWR , the locally weighted least squares method is used to

solve for local parameters (Guo et al., 2012; Zhang et al., 2019b),

with weights calculated based on the spatial distance between the

location to be estimated and the locations of other observation

points (Nazeer and Bilal, 2018). As an extension of the linear
TABLE 2 Factor extraction of regional-scale feature variables.

Data
sources

Variable type
Variable
name

Number of
variable

Sentinel-1
Backscattering
coefficient

VV, VH, VV/VH,
VV-VH

4

Sentinel-2

Single-band factor

Band 2, Band 3,
Band 4, Band 5,
Band 6, Band 7,
Band 8, Band 8A

8

Vegetation index

NDVI, DVI,
SAVI, OSAVI,
EVI, EVI2, RVI,
MASVI, GNDVI,

GRVI,
RDVI, IDVI

12

Texture feature

SE_ME, SE_VA,
SE_HO, SE_CO,
SE_DI, SE_EN,
SE_SM, SE_CR

64

DEM Topographic factors
Slope,

aspect, elevation
3

SE_XXX represents the texture feature generated by the single band of Sentinel-2, SE
represents the single band of B2-B8A, and XXX represents the texture feature.
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regression model, GWR has strong spatial variability and

correlation in spatial position, which can effectively explain the

influence of different independent variables on target variables in

different spatial positions. The mathematical model of GWR is as

follows (Song et al., 2022c):

  yi = a0(ui, vi) +okak(ui, vi)xik + e i

where yi is the target variable of point i, xik is the value of the k

independent variable in i, k is the independent variable count, and i

is the sample point count, ei is the residual error, (ui, vi) is the

spatial coordinates of the i sample point, ak(ui, vi) is the local

regression coefficient at point i, that is, the spatial location function.

Because the research data are continuous, the Gaussian kernel

function model is selected to construct the spatial weight matrix,

and the calculation formula is as follows (Nazeer and Bilal, 2018):

wij = exp −
d2i,j
q2

� �
where i, j denotes the spatial location of the regression point, wij 

is the weight value of the observation at the position j representing

the coefficient at point i, di,j is the Euclidean distance between i and

j, q is the fixed bandwidth size defined by the distance metric.
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As GWR is weak in the diagnosis of independent variable

factors; OLS is needed for the collinearity diagnosis and

significance test of independent variable factors to judge the

feasibility of constructing GWR, to select the independent

variable factors that fit the GWR model, and finally to improve

the accuracy of the GWR model and to construct a more realistic

regression model.
3.4 Evaluation of model accuracy

In this study, the coefficient of determination (R2), root mean

square error (RMSE), mean absolute residual (MAR), and

prediction accuracy (P) of the leave-one-out cross validation

(LOOCV) method were used to verify the prediction accuracy of

the estimation model (Shu et al., 2022; Song et al., 2022b). This

method is applied to small sample data for sequential training and

verification, addressing local optimization issues and enhancing

model robustness (Shu et al., 2022). Additionally, compared to K-

fold and holdout cross-validation, LOOCV is not influenced by

random factors (Song et al., 2022b), thereby reducing the

uncertainty of model estimation results. The calculation formula

is as follows:

R2 = oN
i
(ŷ i−�y)

2

oN
i
(yi−�y)

2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i (yi − ŷ i)
2

N

s

P = (1 − RMSE
�y )� 100%

MAR = 1
non

i=1 (yi − ŷ i)j j
where ŷ i is the model prediction value; y   is the average model

prediction value; yi     is the canopy closure measured value; and N is

the total number of verification samples.
FIGURE 4

Technical route.
TABLE 3 Framework of the bayesian optimization algorithm.

Algorithm: Bayesian optimization algorithm

Input: proxy model f, acquisition function a

Output: hyperparameter result X*

1: Initialize the hyperparameter x

2: for t = 1, 2…., T do

3: Maximize the acquisition function to get the next evaluation
point: xt = argmaxx∈Xa(x D1 : t−1)j

4: Evaluate the objective function value   y1 = f (xt ) + et

5: Integrate data: Dt = Dt−1 ∪ xt , ytf g, and update the proxy model

6: end for
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4 Results and analysis

4.1 Optimization results of characteristic
variables

4.1.1 Optimization results of footprint-scale
characteristic variables

In this study, the extracted 50 parameters values were used to

evaluate the importance of features using RF (Glenn et al., 2016;

Chen et al., 2022). All parameters have a certain contribution rate.

The 5% of the importance of features was set as a threshold, and six

feature variables were selected as the best independent variables for

modeling (Table 5). Among them, Landsat_perc has the highest

feature contribution of 12.68%, and asr has the lowest feature

importance of 5.03%.
4.1.2 Optimization results of regional-scale
characteristic variables

The remaining 13 independent variables after the preferential

selection of the 91 regional-scale characteristic variables extracted

using Pearson correlation analysis (Duncanson et al., 2020) had

correlations greater than 0.2 and significant at the 0.01 level

(Table 6). Among them, the average correlation of the GLCM

generated by the green edge band and the red edge band was strong,

which may be related to the fact that the texture feature factors can

describe more detailed forest structure information (Shu et al.,

2022). This result is consistent with the results of Zhang et al.

(2016) in the Daxing’anling area of Inner Mongolia. The maximum

correlation coefficients of B3_DI and B3_HO were 0.338 and 0.338,
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respectively, and the minimum correlation coefficient of GNDVI

was 0.22. The VV−VH correlation coefficient based on the

difference between the backscattering coefficient VV and VH in

the SAR factor is −0.287. Among the terrain factors, only the slope

meets the preferred standard, and the correlation coefficient

was 0.336.
4.2 ICESat-2/ATLAS footprint-scale
indefinite FCC modeling results

Six independent variables selected by ATLAS parameters were

used to participate in the modeling to construct the best FCC

estimation model of footprint scale. According to the model accuracy

(Figures 6a, c, e), the overlap of multiple values in the same interval is

caused by the fact that there aremultiplemeasured values that are equal

in different places in 54 sample plots. In the modeling results, there is a

significant change in model accuracy for the nonparametric model

before and after optimization using the BO algorithm. Before

optimization (Table 7), the K-NN, RFR, and GBRT models had R2

between 0.23 and 0.30, an RMSE range of 0.14–0.16, and a P range

from 67.26% to 72.73%. After optimization (Table 7), the BO-KNN,

BO-RF, and BO-GBRT models had R2 between 0.41 and 0.65, with an

average increase of 48.95% compared with before, an RMSE range of

0.10 to 0.14, with an average error reduction of 20.36% over the

previous ones, and a P of 73.12% to 79.22% with an improved accuracy

of 5.93% compared to the previous average. Among them, the BO-RFR

and BO-GBRT models had the best fitting degree. The BO-GBRT

model had the highest R2 (0.65), a minimum RMSE (0.10), and the

highest P (79.22%); hence, the comprehensive evaluation of the model
FIGURE 5

BO-RFR, BO-GBRT, and BO-KNN algorithm flowchart.
TABLE 4 Description of RF, GBRT, and K-NN model parameters.

Model type Parameters Description Type

RF, GBRT

max_depth The maximum depth of the tree int

n_estimators The number of trees in the forest int

min_samples_split
The minimum number of samples required to split an

internal node
int or float

min_samples_leaf
The minimum number of samples required to be at a

leaf node
int or float

K-NN
n_neighbors

The number of neighbors to use by default for k-
neighbors queries

int

weights The weight function used in prediction Str or callable
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was better. The optimized model residual diagram reflected the

deviation between the measured value and the predicted value, and

the fluctuation range of residual (Figures 6b, d, f) was between −0.3

and 0.4. Figure 6b fluctuated greatly, and the mean absolute residual

reached 0.116. The change trend of Figures 6d, f was similar, and the

minimum MAR of Figure 6f was 0.079; moreover, the error between

the measured value and the predicted value was smaller. In summary,

the BO-GBRT model had the best comprehensive fitting accuracy,

which is selected as the best estimation model for footprint-scale FCC.
4.3 The spatial distribution of FCC in
footprint scale

The spatial distribution of FCC values within the ATLAS footprints

in the study area was estimated using the BO-GBRT model (Figure 7).

FCC was mainly concentrated in the range 0.3–0.6, a few were

distributed in the range 0.6–0.9, and a very small part was between 0

and 0.3. The overall spatial distribution of the depression FCC value in

the footprint varied greatly, and the distribution in local areas was

relatively uniform. The high-value footprints of depression FCC in the

study area were distributed from southeast to north, and the northern
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area was the main distribution area of FCC high value with relatively

uniform distribution while the southern and south-central areas had

more distribution of FCC low-value footprint. As the terrain of the

study area is high in the northwest and low in the southeast,

the climatic conditions in the southeast are more suitable than those

in the northwest and north, where human settlements are found, with a

lower FCC value (Song et al., 2022b; Yu et al., 2024). This illustrated the

feasibility of using ICESat-2/ATLAS data for estimating FCC.
4.4 The spatial distribution of FCC in the
study area

4.4.1 Diagnosis of independent variable factors
based on OLS and normal test results

In order to eliminate the influence of multicollinearity among

multivariate factors on the GWR model, the 13 preferred multi-

source remote sensing factors were analyzed for covariance

diagnosis using OLS. The independent variables with variance

inflation factor (VIF) greater than 10 were deleted, and the

remaining six independent variable factors (Table 8) were

significant at the 0.01 level. Among them, when the VIF value of

vegetation index was within the range of 6–7, the VIF values of

slope factor, SAR factor, and texture feature factor were close to 1.

The premise of using the GWR model to construct a

mathematical model is that the experimental data must conform

to normal distribution (Guo et al., 2012; Zhang et al., 2019b). The

frequency distribution histogram of the FCC and the six

independent variable factors were tested by the data, showing a

bell-shaped curve (Figure 8), which conformed to the

normal distribution.
4.4.2 Prediction results and verification of the
GWR model

NDVI, GNDVI, B8_SM, B8A_CR, VV-VH, and Slope were

used as dependent variables; meanwhile, the GWR model tool

provided by ArcGIS Pro was used to predict FCC at the regional

scale. The bandwidth type is the number of neighbors, and the

neighborhood method selects the golden search to find the

minimum corrected Akaike information criterion (AICc) to

determine the optimal bandwidth. Further AICc represents a

measure of the model, and a smaller value indicates that the fitted

mathematical model is better (Guo et al., 2012), and the local weight
TABLE 6 Multi-source remote sensing factor preference results statistics.

Variable
name

Correlation
coefficient

Variable
name

Correlation
coefficient

Variable
name

Correlation
coefficient

Slope 0.336** B3_HO −0.338** B7 0.251**

VV-VH −0.287** B8_SM −0.327** NDVI 0.286**

B3_SM −0.329** B8_EN 0.293** GNDVI 0.220**

B3_EN 0.307** B6_ME 0.287**

B3_DI 0.338** B8A_CR 0.271**
** is expressed significant at the 0.01 level.
TABLE 5 Statistics of the results of ICEsat-2/ATLAS feature
variable preferences.

Variable
name

Description Value (%)

landsat_perc
Average percentage value of the valid
Landsat Tree Cover Continuous Fields

product for each 100-m segment
12.68%

toc_roughness
Standard deviation of the relative heights of
all photons classified as top of canopy within

the segment
6.47%

h_min_canopy

The minimum of relative individual canopy
heights within segment. Relative canopy

heights have been computed by differencing
the canopy photon height from the estimated

terrain surface

6.06%

h_dif_canopy
Difference between h_canopy

and h_median_canopy
5.38%

n_toc_photons
The number of photons classified as top of

canopy within the segment
5.37%

asr Apparent surface reflectance 5.03%
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is double squared. According to Figure 9a, the FCC value of ATLAS

footprints estimated by the GBRT model was used as the dependent

variable of the GWRmodel, with a GWRmodel validation accuracy

of R2 = 0.53, RMSE = 0.09, and AICc = 106,917.29. While using the

ATLAS footprints, the FCC value is estimated by the BO-GBRT

model as the dependent variable of the GWR model (Figure 9b),

and the GWR model validation accuracy is R2 = 0.70, which is

32.08% better than before optimization. RMSE = 0.06 is reduced by

33.33% compared to that of the comparison before optimization,

and the AICc = 99,265.12, which is 7.16% lower than that before
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optimization. The optimized model residuals were mainly

distributed in the range of −0.25 to 0.25 (Figure 9c), the MAR

was 0.047, and the local R2 was mainly distributed in the range of

0.3–0.6 with an average of 0.50, and the estimation model has high

accuracy. At the same time, while handling the large number of

modeling samples, it is feasible to use the GWR mathematical

model fitted with six explanatory variables to predict the FCC value

of the unknown spatial region (Figure 9d).

According to Figure 9d, the average value of FCC was 0.50, and

the values were mainly distributed between 0.3 and 0.6, accounting
FIGURE 6

FCC shows the accuracy and residual footprint scale of the estimate model with the BO-KNN (a, b), BO-RFR (c, d), and BO-GBRT (e, f) models.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1629146
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2025.1629146
for 68.43%, followed by 0.6–1, accounting for 22.48%, and by 0–0.3,

accounting for 9.09%. The areas with low estimates of depression

FCC in the study area were mainly distributed at the margins,

mostly in the river or perennial snow-covered areas, and in the

southeastern urban areas where humans gathered (Song et al.,

2022a). The area with high depression FCC runs through from

northwest to southeast, and the northern area was the main

distribution area with high depression FCC, mainly due to the

increase in plantation forest area in the central and northern

regions, while the northeast region was the distribution area of

the Pudatso National Forest Park (Shi et al., 2015; Su et al., 2020),

which confirmed the reliability of the results of forest depression in

the study area estimated by the GWR model. Moreover, Shangri-La

is an alpine mountain area in the study area, which belongs to the

national ecologically fragile area, and the logging of natural forests

has been prohibited since 1998, and there has been no relevant

management and logging activities in the past 20 years; hence, the

results had certain credibility.

The prediction results of the GWR model were verified using

data from 40 sample plots (20 × 20 m) from the field survey in the

study area in November 2016 (Figure 10). It is verified that the R2

between the FCC predicted value and the measured value is 0.62,

and the Pearson correlation coefficient is 0.784 (significant at the

0.01 level), which has high consistency. It indicated that the method

of estimating FCC in the study area by using the ATLAS footprint

FCC value as the training sample data of the GWR model and

cooperating with multi-source remote sensing factors was feasible,

and the estimation results were reliable.
5 Discussion

5.1 Model error propagation and Bayesian
optimization algorithm

Fu et al. (2014) and Qin et al. (2017) showed the uncertainty of

aboveground biomass and carbon storage in forests, respectively.

The uncertainty of the remote sensing model was the main error

source that causes the uncertainty of biomass and carbon storage

estimation, and the accuracy of the model plays an important role in

the estimation results. In this study, the FCC value estimated by the
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footprint scale is used as the training sample of the regional-scale

GWR model. In the scale-up process, there is model error

transmission. In order to weaken the influence of this error on

the regional-scale FCC estimation results, the BOA is used to

further optimize the three initial machine learning models, so as

to optimize the optimal FCC estimation model of footprint scale

and improve the estimation accuracy of the model. This study

shows that after using BO to optimize the initial machine learning

model, the accuracy of the model has been significantly improved

compared with that before optimization. However, the FCC value of

ATLAS footprints estimated by the BO-GBRT model was used as

the dependent variable of the GWR model. Compared with before
TABLE 7 Modeling results of the footprint-scale depression
estimation model.

Model
type

R2 RMSE P (%)

KNN 0.23 0.16 67.26

Un-
optimized

RFR 0.28 0.15 70.31

GBRT 0.30 0.14 72.73

BO-KNN 0.41 0.14 73.12

Optimized BO-RFR 0.55 0.12 75.81

BO-GBRT 0.65 0.10 79.22
FIGURE 7

Spatial distribution of footprint FCC in the study area.
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TABLE 8 OLS covariance diagnosis table for the independent variable factors.

Variable name NDVI GNDVI B8_SM B8A_CR VV-VH Slope

VIF 6.70 6.88 1.01 1.09 1.05 1.09
F
rontiers in Plant Scien
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FIGURE 8

Frequency distribution histogram of each variable factor. Canopy closure, NDVI, GNDVI, B8_SM, Slope, B8A_CR, and VV-VH.
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optimization, R2 increased by 32.08%, RMSE decreased by 33.33%,

AICc decreased by 7.16%, and P increased by 14.07%. Therefore,

BOA can effectively improve the accuracy of the estimation model

and weaken the influence of model error transfer on the FCC

estimation results. In this study, the model fitting accuracy is BO-

GBRT > BO-RFR > BO-KNN. The reason is that the K-NN model

was suitable for large samples because of non-assumptions on the

data and non-sensitivity to abnormal samples (Shu et al., 2022), and

the GBRT model was based on the iterative improvement of the

original model, so that the next new model had a smaller error than

the previous model, and a new combined model was established in

the gradient direction of the residual reduction, which often has
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higher fitting accuracy than RF (Zhang et al., 2019a; Yu et al., 2021).

However, the BOA was only used to optimize the main parameters

of the original model for 1,000 times. In order to further improve

the estimation accuracy of the model, the comprehensive search

algorithm can be introduced to optimize all the parameters of the

model (Pedregosa et al., 2011), or introduce algorithms such as deep

forest so that small sample data can also be fitted by neural network

learning (Xia et al., 2022).

In the extrapolation model of FCC in the study area, the AICc

value of the GWR model is too large before and after optimization

as the sample size was too large, and the growth of the maximum

likelihood estimation of the variance of the random error term may
FIGURE 9

Accuracy of GWR model fit and estimation results. (a) Before optimization. (b) After optimization. (c) Residual distribution. (d) Spatial distribution of
FCC in the study area.
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slow down (Zhang et al., 2019b). The spatial distribution of the

weight of the independent variable with the FCC will change due to

the geographical location, showing the local spatial dependence and

heterogeneity of the independent variable index; therefore, the

GWR model can well combine the spatiality between the

independent variable indicators to predict the canopy closure of

the unknown space (Guo et al., 2012), specifically the canopy

closure P that reached 88.27%, and the RMSE was 0.06.
5.2 Characteristic variable setting and
selection

The optimization and combination of characteristic variable

factors determine the accuracy of the prediction model and

inversion results to a certain extent (Zhang et al., 2022). In the

study, the more advanced photon-counting LiDAR data were used

in the feature variable setting of the footprint scale (Lin et al., 2020;

Zhu et al., 2020), and the spectral saturation point is higher. RF was

used to select six characteristic variables with the largest

contribution to construct the footprint-scale FCC estimation

model. In the selection of regional-scale feature variables, optical

remote sensing data are affected by the “light saturation”

characteristics of forest vegetation to varying degrees. Among

them, the single-band reflectance had the greatest impact,

followed by the vegetation index, while the texture feature can

represent ground object structure information in remote sensing

images, reflecting the important information of spatial changes of

land cover type in remote sensing images (Shu et al., 2022) and the

forest structure information, which is least affected by “light

saturation” (Zhao et al., 2016). In this paper, the integration of
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multi-sensor and auxiliary data is realized by adding SAR factors

and terrain factors to solve the problem of data saturation (Zhao

et al., 2016). At the same time, considering the collinearity problem

among the independent variables of the GWR model (Guo et al.,

2012; Nazeer and Bilal, 2018; Zhang et al., 2019b; Song et al., 2022a),

the same type of factors should not be too much, so the study only

selected the sliding window of 5×5 texture feature factors. Finally,

after correlation analysis, OLS test, and normal transformation, six

explanatory variables were selected to construct the GWR

mathematical model, which reduced the saturation problem of

remote sensing data to a certain extent and improved the model

estimation accuracy.
5.3 Transplantability of FCC estimation
models in different study areas or forest
types

In this paper, a process-oriented programming processing

module was established for ATLAS data processing and

parameter batch extraction, feature variable preference,

optimization of the main parameters of the model, and

optimization of multiple nonparametric models to fit the best

model. Xie et al. (2022) used multispectral satellite images in

Google Earth Engine to improve the estimation of FCC. The

results showed that the calibration of model parameters needed to

determine the range of values manually. The advantage of this study

is that researchers only need to input ATLAS data and measured

sample data for modeling, and select the best model according to

their own needs to estimate all the FCC prediction values in the

regional footprints. Based on the characteristics of ICESat-2/ATLAS
FIGURE 10

Linear model fitting diagram of measured value and predicted value.
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data (Neuenschwander and Pitts, 2019), full domain coverage of

global regions can be basically achieved to meet the needs for

flexible selection of different study areas and model portability

testing. Zhu et al. (2020) analyzed the forest height based on

different modes of spaceborne LiDAR data, and the results

showed that the forest height consistency model established in

different forest types or experimental area data was universal, and

the model accuracy was consistent with the original model

accuracy. The dataset used in the study was affected by complex

terrain and high-altitude factors. However, the vegetation

community in the study area was not distinguished and only

relative sampling was carried out, and the sample size was 54,

which had met the principle of large samples in field investigation

(Shu et al., 2022). In future studies, the sample size of different

slopes and different community compositions can be increased to

explore their effects on the estimation results separately. At the same

time, the same experimental design of different communities can be

set up in low-altitude and relatively flat areas such as plains and hills

to verify the portability of the model and obtain more accurate FCC

estimation results. This provided not only a reliable reference for

the study of energy transfer and microclimate changes in global

forest ecosystems and forest tending evaluation but also a way of

thinking for characterizing FCC maps on a global scale.
5.4 The influence of mountain terrain on
FCC estimation results

The complex terrain area had a certain impact on the FCC

estimation results: the larger the terrain slope, the greater the

influence of the vegetation canopy on the laser echo. Compared with

ICESat-1/GLAS data (Wang et al., 2015; Cui et al., 2021), the new-

generation ICE-Sat-2/ATLAS data were used in this study; the

footprint diameter is only 17 m and the footprint interval is 0.7 m,

which greatly reduced the influence of terrain on footprint echo

(Moudrý et al., 2022) and improved the accuracy of model

estimation. The data of 54 measured plots used in this study showed

that the proportion of plots with a slope of 0°–10°, 10°–20°, and greater

than 20° was 42.59%, 29.63%, and 27.78%, respectively, and the slope

distribution was relatively uniform. Based on this, a forest ATLAS

footprint FCC estimation model was constructed, in which the model

had high verification accuracy (R2 = 0.65, RMSE = 0.10, P = 79.2%,

MAR = 0.079) and can be used as a mountain FCC estimation model.

This provides the possibility for footprint-scale low-cost ground plot

survey to achieve accurate regional-scale FCC estimation.
6 Conclusions

In order to evaluate the ability of spaceborne photon-counting

radar to estimate FCC, ICESat-2/ATLAS was used to obtain photon

point cloud data. After denoising and classification of the photon

point cloud, the parameter values (including 54 measured sample

data) were extracted; meanwhile, six feature variables were selected
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by RF, and the best footprint-scale FCC estimation model was

constructed based on BO-RFR, BO-KNN, and BO-GBRT to obtain

the FCC value of ATLAS footprints. Additionally, the training

sample data of the GWR model and the continuous planar FCC

products in the whole study area are predicted. The main

conclusions are as follows:
1. After the pretreatment of ICESat-2/ATLAS data, the extracted

parameters had an ideal way of estimating FCC. Among them,

the BO-GBRT model had the best verification accuracy as the

best footprint scale FCC estimationmodel (R2 = 0.65, RMSE =

0.10, P = 79.22%, MAR = 0.079). It showed that the BO

algorithm can improve themodel fitting accuracy, and the best

estimation model compared with a variety of nonparametric

models can reduce the influence of model error transfer on the

FCC estimation results. The parameter with the largest

contribution rate to the model was landsat_perc at 12.68%.

2. The ATLAS footprint FCC was used as the training sample

of the regional-scale GWRmodel, and the FCC results were

better in the study area with Sentinel 1/2 images and

topographic factors. A total of 91 feature variables were

extracted from DEM and multi-source remote sensing

images for feature optimization, and 13 independent

variables were retained. After OLS test and normal

transformation, a total of six explanatory variables were

involved in the mathematical model construction of GWR,

and the final model verification accuracy was R2 = 0.70,

RMSE = 0.06, and P = 88.27%. The VV–VH factor was

calculated based on the difference between VV and VH,

which had good adaptability to the model, and the

correlation was −0.287. The texture feature factors B3_DI

and B3_HO had the strongest correlation with FCC.

3. The results of the study area estimated by the GWR model

were used for spatial mapping, and the FCC distribution in

the study area was consistent with the distribution of

footprint-scale FCC. The R2 between measured value and

predicted value of the sample was 0.65, and the correlation

coefficient was 0.784, which had high consistency. The

average value of FCC was 0.50, and the values were

mainly distributed between 0.3 and 0.6, accounting for

68.43%, followed by 0.6 to 1, accounting for 22.48%, and

by 0 to 0.3, accounting for 9.09%. The high value area of

FCC was distributed from northwest to southeast. The

northern and southeastern regions were the main

distribution areas of high and low FCC values,

respectively, which is highly consistent with the forest

distribution in the study area. The research showed that

it is feasible to use ICESat-2/ATLAS data to predict the

FCC value of ATLAS footprints based on the optimized

machine learning method and to use such data as the

training sample data of the GWR model, combined with

multi-source remote sensing factors to estimate regional

FCC. In summary, this provides a new scientific method for

obtaining large-scale FCC with low cost and high precision.
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