
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Rosario Paolo Mauro,
University of Catania, Italy

REVIEWED BY

Kalina Sikorska-Zimny,
Research Institute of Horticulture, Poland
Imen Tlili,
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Introduction: Nutrient supply in hydroponic leafy green production is often not

aligned with crop-specific requirements. Kale (Brassica oleracea ‘Red Russian’)

has been shown to exhibit higher nitrogen (N) demand than other leafy greens.

Conventional nutrient management relies on a two-part water-soluble fertilizer

system—Part A with macronutrients and micronutrients and Part B with calcium

nitrate (Ca(NO3)2)—to maintain electrical conductivity (EC), but this approach

may not optimize N supplementation or crop quality.

Methods:We evaluated amodified protocol in which only Ca(NO3)2 was supplied

during the final production week, replacing the standard two-part adjustment.

Plant biomass, nutrient composition, phytochemicals, and physiological traits of

hydroponically grown kale were assessed.

Results: The Ca(NO3)2-only treatment significantly increased shoot biomass,

shoot-to-root ratio, and uptake of N, calcium, and magnesium by 28.5%, 22.1%,

46.0%, 27.5%, and 14.4%, respectively, compared with conventional

management, suggesting N and calcium were key limiting factors for shoot

growth. Nitrate accumulation in shoots also increased but remained within safe

consumption limits. Phytochemical analysis revealed reductions in anthocyanins

and vitamin C, alongside a slight increase in glucosinolates. No significant

changes were observed in photosynthetic traits, root growth, or water and

acid use.

Discussion: Targeted N supplementation with Ca(NO3)2 enhanced growth and

nutrient uptake in kale but introduced tradeoffs in phytochemical composition.

These results underscore the potential of crop-specific nutrient strategies to

improve both yield and nutritional quality of hydroponic leafy greens in

controlled environment systems.
KEYWORDS

calcium nitrate, hydroponics, nitrate accumulation, nitrogen supplementation, nutrient
imbalance, nutrient management
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1 Introduction

Kale (Brassica oleracea var. acephala) is a non-heading, leafy

green vegetable that has been cultivated for over 6,000 years, with its

origins tracing back to the eastern Mediterranean region (Maggioni

et al., 2018). As a member of the Brassica oleracea species, which

includes broccoli (var. italica), cabbage (var. capitata), cauliflower

(var. botrytis), collard greens (var. viridis), Brussels sprout (var.

gemmifera), savoy (var. sabauda), and kohlrabi (Gongylodes

Group), kale exhibits extensive genetic diversity, resulting in

variations in morphology, color, and nutrient composition (Miao

et al., 2020). Due to its adaptability and high cold tolerance, kale can

be cultivated across diverse climates, thriving in both traditional

open-field systems and controlled environment agriculture (CEA)

settings (Kim and Chung, 2018; Low, 2019). Kale is widely

recognized for its dense nutritional profile and associated health

benefits. It is rich in bioactive compounds such as carotenoids,

flavonoids, and glucosinolates (Ferioli et al., 2013; Schmidt et al.,

2010), which contribute to its strong antioxidant properties and

potential protective effects against cardiovascular diseases and

various cancers (Šamec et al., 2019). Additionally, kale serves as

an excellent source of essential vitamins and minerals, including

vitamin K, calcium, magnesium, and iron, with studies indicating

that calcium absorption from kale surpasses that of milk (Heaney

and Weaver, 1990). It is also one of the highest dietary sources of

lutein and b-carotene, both of which are linked to a reduced risk of

age-related eye diseases and other chronic conditions (Kopsell et al.,

2004; Lefsrud et al, 2006).

Despite its growing popularity, research on kale remains limited

compared to other Brassica vegetables such as broccoli and cabbage

(Kim et al., 2017). Its nutritional quality is influenced by a range of

factors, including cultivar type, environmental conditions (e.g.,

temperature, nutrition, and light exposure), and developmental

stage (de Azevedo and Rodriguez-Amaya, 2005; Ku et al., 2016;

Walsh et al., 2015). For instance, Yang et al. (2024) reported that

several important health-beneficial compounds (particularly vitamin

C, anthocyanin, and phenolic compounds) in kale leaves declined as

electrical conductivity (EC) levels increased. However, important

gaps remain in understanding the variability of phytonutrient

content among kale cultivars and the effects of environmental

conditions in both traditional and controlled production systems.

Ahn et al. (2021) compared three nutrient dosing strategies in

hydroponically grown Brassica species, concluding that EC-based

nutrient management yielded more consistent and reproducible

nutrient variations in the root zone. Expanding on this, Bosman

et al. (2024) employed real-time pH and EC control through dynamic

ammonium-to-nitrate ratio adjustments in an ebb-and-flow

hydroponic system for Brassica oleracea var. acephala. While the

approach proved effective, its complexity may limit practical

scalability. Mao et al. (2022) identified optimal nitrogen and

magnesium concentrations for Chinese kale (Brassica albograbra

Bailey) at 105 ppm and 16.8 ppm, respectively, though the wide

experimental ranges (35–315 ppm N and 6–50.4 ppmMg) limit their

utility for precise grower recommendations. Likewise, Martıńez-
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Castillo et al. (2022) investigated the effects of electrical

conductivity (0.5–2.0 dS·m-¹) on kale (Brassica oleracea cv. Dwarf

Blue Curled Scotch) in a perlite-based hydroponic system; however,

the applicability of their findings to liquid-based hydroponics

remains uncertain due to differing root-zone dynamics and

nutrient transport mechanisms.

Previous studies (Yang et al., 2024) demonstrated that although

collard and kale belong to the same botanical family, they

exhibited distinct responses to electrical conductivity (EC) in

hydroponic systems. Collard achieved optimal growth

performance, with a higher biomass accumulation, nutritional

content and phytochemical levels under EC 1.8. In contrast, kale

showed a positive correlation between increased EC levels and

improved growth performance. Notably, even when EC was

maintained at 2.1 mS·cm−1, total nitrogen depletion occurred in

hydroponic systems toward the end of the production cycle,

highlighting the necessity for optimized nutrient supplementation.

This study examined the impact of enhanced nitrogen

supplementation with calcium nitrate (Ca(NO3)2) while reducing

the remaining macro and micronutrients during the final week of

production, on biomass yield, nutrient uptake, and phytochemical

composition of hydroponically grown kale.
2 Materials and methods

2.1 Plant material and growing conditions

The experiments were conducted from March 28, 2022 to April

25, 2022 using a nutrient film technique (NFT) system (CropKing,

Lodi, OH, USA) established in a double polyethylene-plastic

covered greenhouse at the Ohio State University, Wooster

Campus, Ohio (40.78° N, 81.93° W). Nutrient solutions were

stored in eight ultra-violet stabilized plastic tanks. Each tank was

randomly connected to four of 16 growing channels that were each

4 m long (Figure 1). Two border channels were closed. Each

growing channel was 0.2 m apart with the capacity to grow 18

plants. Each plant grown within a channel was 0.2 m apart from

each other. A galvanized steel frame was used for supporting the

growing channels. Each reservoir tank was equipped with one high-

efficiency circulation pump (Model 3WY90; Dayton Electric Mfg.,

Niles, IL, USA) to deliver nutrient solutions to the growing channel

and drain the nutrient back to the reservoir tank.

The air temperature and air humidity of the greenhouse were

measured every 10 s with a humidity and temperature probe

(INTERCAP® HMP50; Vaisala, Helsinki, Finland). Photosynthetic

photon flux density (PPFD) was provided by natural light and high-

intensity discharge (HID) lamps (400-Watt high-pressure sodium

(HPS), Energy Technics Horticulture Lighting, York, PA, USA) for 16

h per day and measured every 10 s with a sun calibration quantum

sensor (SQ-110-SS; Apogee Instruments, Logan, UT, USA). Air

temperature, air humidity and average light intensity were logged

every 10 s with a micrologger (CR3000; Campbell Scientific, Logan,

UT, USA). During the experiment, the average (± standard error) day
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and night air temperature, air humidity and daily light integral of

PPFD were 23.7± 0.2°C, 16.6 ± 0.05°C, 55.8 ± 1.9% and 22.2 ±

1.8 mol·m−2·d−1, respectively (Figure 2).

The experiment was conducted using Kale (Brassica oleracea)

‘Red Russian’ (Johnny’s Selected Seeds, Albion, ME, USA). A water-

soluble fertilizer (Hydro Grow Leafy Green Fertilizer; 4.3%N-9.3% P-

35% K: Crop King, Lodi, OH, USA) at 100 mL.L−1 and calcium

nitrate (CropKing) at 78 mL.L−1 was used as fertilizer stock solution

which were used to prepare feeding solutions in the study. Seed

germination was done in 162-cell foam (Horticubes®; Smithers Oasis,

Canton, OH, USA) using a propagation system for hydroponic crop
Frontiers in Plant Science 03
production with nutrient circulation. A diluted solution with EC 1 to

1.2 dS·m−1 and pH 5.8 was used when first leaves appeared. Kale

seedlings were transplanted in the 3rd week from germination. The

time from transplanting to harvest was 4 weeks.
2.2 Treatments and experimental design

The nutrient concentrations in the initial feeding solution are

shown in Table 1. Supplemental water (EC 0.8 dS·m−1, pH 6.4 and

alkalinity 192.8 mg·L−1) was added into the reservoir tanks daily to
FIGURE 2

Growth environment of daily light intensity (DLI), air temperature, relative humidity (RH) in the greenhouse during the study.
FIGURE 1

Growing channel layout showing the location of treatments replications. Channels 1–1 and 8–3 were closed as borders.
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maintain the water level, then EC 1.8 dS·m−1 and pH 5.8 were adjusted

within ±0.05 range according to the treatment settings. EC and pH of

the feeding solution were monitored using EC meter (COM-100, HM

Digital Inc., Redondo Beach, CA, USA) and pH meter (PH-200, HM

Digital Inc., Redondo Beach, CA, USA), respectively. The EC of the

feeding solution was adjusted to 1.8 ± 0.05 dS·m−1 daily using the

fertilizer stock solutions (increase EC) and water (reduce EC) during

the first three weeks of the study. After the adjustment of EC, the pH of

the feeding solution was adjusted to 5.8 ± 0.05 daily using 10% citric

acid (reduce pH) or water (increase pH). In the final (fourth) week of

the study, six reservoir tanks were grouped into three blocks (Figure 1),

and the two reservoir tanks in each block were randomly assigned with

one of the two treatments (Table 2): regular two-part management

(adjust EC with both stock solutions of Hydro Grow Leafy Green

Fertilizer and calcium nitrate until the end of production) and only

calcium nitrate in the final week (adjust EC with only calcium nitrate

during the 4th week of production).

Supplemental water was collected for measurements of EC, pH,

redox, and alkalinity (CaCO3) using a titrator (T7; Mettler Toledo,

Columbus, OH, USA) with an autosampler (InMotion Max; Mettler

Toledo) and a pH probe (DGi115-SC; Mettler Toledo). The feeding

solution from each reservoir tank was collected weekly for

nutrient composition measurements. The nutrient composition of

supplemental water and feeding solution was determined with ion

chromatography systems (IC 600; Thermo Fisher Scientific,

Waltham, MA). The total nitrogen (TN) and total organic carbon

(TOC) concentrations of supplemental water and feeding solution

was determined using the total organic carbon analyzer (TOC-

LCSN, Shimadzu, Kyoto, Japan).
Frontiers in Plant Science 04
Each growing channel contained 18 kale seedlings. To avoid the

edge effects, data were not collected from outermost growing

channels and the two plants cultured on the edge within each

growing channel. Thus, there were 6 replicate channels for each

treatment and 16 plants in each channel. Treatments were assigned

to each channel in a completely randomized design.
2.3 Measurement of gas exchange
properties

Gas-exchange measurements were performed using a portable

gas exchange system (LI-6400XT; LICOR Biosciences, Lincoln, NE)

equipped with a 6-cm2 leaf chamber with built-in LEDs (470 and

665-nm peak wavelengths for blue and red LEDs, respectively).

Illumination was supplied at a PPF of 1,000 mmol·m−2·s−1 by red

and blue LEDs at a ratio of 9:1 under 20°C in the leaf chamber when

supplemental lighting was in use. The reference CO2 concentration

and flow rate through the chamber were 400 mmol·mol−1 and

500 mmol·s−1, respectively.

Four plants of each channel (24 plants for each treatment) were

selected for the photosynthetic property measurement on the 1st,

2nd, 3rd and 4th weeks after transplant. The third fully expended

youngest leaf was selected from each plant for the measurements.

The measurements of photosynthetic rate (Pn), transpiration rate

(Tr), and stomata conductance (Gs) were conducted between

9:00 am and 16:00 pm at a PPFD of 1,000 mmol·m−2·s−1.

Readings were taken when the coefficient of variation (i.e., sample

CO2, sample H2O, and flow rate) was less than or equal to

0.2% (stable), which typically occurred within 10 min. The

intrinsic water use efficiency (WUE) was calculated by dividing

Pn by Tr (Chaves et al., 2004).
2.4 Measurement of relative chlorophyll
content and chlorophyll fluorescence

On the 1st, 2nd, 3rd and 4th week after transplant, four

representative plant samples were selected from each growing

channel (eight plants for each nutrient reservoir tank and 24

plants for each treatment) for relative chlorophyll content (SPAD;

an index of chlorophyll content per unit leaf area) and chlorophyll

fluorescence measurement. The SPAD readings were taken on each

fully expanded leaf with a chlorophyll meter (SPAD-502, Minolta

Corporation, Ltd., Osaka, Japan). Five readings per leaf were taken

at the central point of a leaf between the midrib and the leaf margin

and the values were averaged and recorded. Chlorophyll

fluorescence was measured immediately after dark adaptation

using a Plant Efficiency Analyzer, Handy PEA (Hansatech

Instruments, King’s Lynn, England). The right dark period

duration (20 minutes) and the optimal light intensity (3,500

μmol·m−2·s−1) were evaluated according to Rodolfi et al. (2021).
TABLE 2 Treatments (regular two-part management or only calcium
nitrate in the final week) and experimental design in this study.

Treatment Weeks 1–3 Week 4

Regular
Hydro Grow Leafy Green +
Ca(NO3)2

Hydro Grow Leafy Green +
Ca(NO3)2

Ca(NO3)2
Hydro Grow Leafy Green +
Ca(NO3)2

Ca(NO3)2 only
TABLE 1 Macro-nutrient compositions and concentrations used in the
nutrient solution with EC of 1.8 dS·cm-1 and pH of 5.8.

Parameter Concentrations (mg.L-1)

Total nitrogen (N) 129.2

P 48.3

K 183.2

S 52.1

Ca 136.5

Mg 32.7
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2.5 Harvesting and yield measurements

At four weeks after transplant, twelve kale plants per channel

were harvested. Plants used for the photosynthetic property

measurement were not included in the final harvest due to

possible mechanical disruption of tissues. All plant samples were

separated into roots and shoots and fresh weight was recorded. All

shoot samples were collected for leaf area measurement. Each leaf

sample was scanned for leaf area by using a portable laser leaf area

meter (CI-202, CID Bio-Science, Inc., Camas, WA, USA), and

recorded for the calculation of total leaf area. Then plant samples

were oven-dried at 68°C until a constant weight was reached before

taking the dry weight. All dried samples were filtered through a

10-mesh screen after grinding with a sample mill (Cyclotec™ 1093,

FOSS Analytical, Denmark) and kept in plastic vials for tissue

nutrient analysis.
2.6 Measurement of tissue nutrient analysis

Plant tissue nutrient analysis was conducted using leaf samples of

kale (18 plants per treatment) at Ohio State University’s Service, Testing,

and Research (STAR) laboratory (Wooster, OH, USA) to investigate the

variations in nutrient uptake under two different treatments. Total

concentrations of plant-essential elements (P, K, Ca, Mg, S, Al, B, Cu,

Fe, Mn,Mo, Na, and Zn) were determined bymicrowave digestion with

HNO3 followed by inductively coupled plasma (ICP) emission

spectrometry according to Jones (Jones et al., 1991). Nitrate nitrogen

in plant tissue samples were determined by the NO3-N cadmium

reduction method (Gavlak et al., 2005). Total nitrogen in plant tissue

samples was determined by the Dumas method according to

Association of Official Analytical Chemists (AOAC, 1990).
2.7 Measurement of chlorophyll and
carotenoids

Chlorophyll a, chlorophyll b and carotenoids were extracted

from 25 mg fresh leaf tissues using 100% methanol as the solvent.

Samples were kept in a dark room at 4°C for 24 h. Quantitative

determination of total chlorophyll was carried out immediately after

extraction. Absorbance readings were measured at 661.6 and 644.8

nm for chlorophyll pigments and 470 nm for total carotenoids.

Chlorophyll and carotenoids concentrations were calculated by

Equations 1–4 (Lichtenthaler, 1987):

Chla = 11:25A661:6 − 2:04A644:8 (1)

Chlb = 20:13A644:8 − 4:19A661:6 (2)

Chla+b = 7:05A661:6 + 18:09A644:8 (3)

Carx+c =
(11:24A470 − 1:90Chla − 63:14Chlb)

214
(4)
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2.8 Measurement of total anthocyanins

Total anthocyanins were est imated by a modified

spectrophotometric method of Sukwattanasinit et al. (2007).

Dried and ground plants samples weighing 160 mg were

macerated with 0.1% HCl in 75% MeOH (25 mL) at room

temperature in a dark room for 24 hours, and then filtered. Two

0.5 mL of sample extracts were separately mixed with 2.5 mL of KCl

buffer (0.025 M, pH 1.0), and 2.5 mL of sodium acetate buffer

(0.4 M, pH 4.5). After 30 minutes, the absorbance of each mixture

solution was measured at 520 nm (A520) and 700 mn (A700) using

a UV-Vis spectrophotometer (Genesys 180, Thermo Fisher

Scientific Inc., Waltham, MA, USA). The absorbance of the

measured solution (A) was calculated by the following equation:

A = (A520 − A700)pH1:0 − (A520 − A700)pH4:5

The anthocyanin concentration in the sample was calculated against

the simulated calibration curve of methyl orange and expressed as

percentage of anthocyanin concentration based on dried plant weight.
2.9 Measurement of total concentration of
phenolic compounds

Total concentration of phenolic compounds was determined by

the spectrophotometric method of Stratil et al. (2006). Fresh leaf

samples were cut into small pieces (<0.5 cm) and lyophilized at -52°C

for 48 to 72 h in a freeze dryer lyophilizer (Virtis Freezemobile 12SL,

American Laboratory Trading, East Lyme, CT, USA). The dry matter

was grinded using an automated mini tissue homogenizer (1600

MiniG, SPEX SamplePrep, LLC, Metuchen, NJ, USA). Then two

portions of 500 mg of pulverized lyophilized plant tissue were

weighed for acidic and non-acid extraction. The non-acidic sample

was added with 10 mL of 1:1 methanol: water (purified to 18.2

MOhm.cm; Synergy Water Purification System, MilliporeSigma,

Burlington, MA, USA), and the acidic sample was added with

10 mL of 1:1 methanol: 2.4 M HCl. Both samples were vortexed

for 2 minutes, then incubated at 83°C in a water bath for 150 minutes,

and vortexed for 20 seconds every 30 minutes during the incubation

period. After incubation, 10 mL of pure methanol was added to each

sample and vortexed for 20 seconds. Both samples were centrifuged at

6,000 rpm for 10 minutes, then the supernatants were neutralized

with 5 M NaOH. Then 200 ul of sample supernatant was mixed with

400 ul of 10% Folin-Ciocalteu reagent and 1.6 ml of 700 mMNa2CO3

and incubated for 2 hours at room temperature. Absorbance readings

were measured at 760 nm using a UV-Vis spectrophotometer. The

total concentration of phenolic compounds in the sample was

calculated against the standard curve of a gallic acid solution.
2.10 Measurement of vitamin C

Concentration of vitamin C was determined by the

spectrophotometric method of Kapur et al. (2012). Fresh leaf tissues
frontiersin.org
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of 10 g were grinded using an automated mini tissue homogenizer

(1600 MiniG, SPEX SamplePrep, LLC) with 25 mL phospho-acetic

acid. The mixture was centrifuged at 4,000 rpm for 15 mins, then the

supernatants were collected. The 5 mL supernatant sample was added

with 50 uL of 3% bromine water, 25 uL of 10% thiourea, 1 ml of glacial

acetic acid, and 1 mL of 2,4-DNPH (2 g of 2,4-dintrophenylhydrazine

and 4 g thiourea dissolved in 100 mL of 4.5 M sulfuric acid), then

placed into a water bath at 37°C for 3 hours. After incubation, 5 ml of

chilled 85% H2SO4 was added, and immediately read for absorbance

at 521 nm using a UV-Vis spectrophotometer. The total

concentration of vitamin C in the sample was calculated against the

standard curve of ascorbic acid solution.
2.11 Measurement of total glucosinolates

Total glucosinolates were estimated by spectrophotometric

method of Mawlong et al. (2017). A fresh plant shoot sample of

10 g was homogenized in a 2 ml vial with 80% methanol. This

homogenate was centrifuged at 3,000 rpm for 4 min after keeping

overnight at room temperature. The supernatant was collected

after centrifugation and made up to 2 ml with 80% methanol.

The extraction of 100 ml was used for estimation. A volume of

0.3 ml double distilled water and 3 ml of 2 mM sodium

tetrachloropalladate (58.8 mg Sodium tetrachloropalladate +

170 ml concentrated HCl + 100 ml double distilled water) were

added to the sample. After incubation at room temperature for

1 h, absorbance was measured at 425 nm using a UV-Vis

spectrophotometer (Genesys 180, Thermo Fisher Scientific Inc.,

Waltham, MA). A blank sample, prepared using the same

procedure but without plant extract, was included as a control.

Total glucosinolates were calculated by applying the absorbance

value of each sample taken at 425 nm into the predicted formula:

y = 1:40 + 118:86� A425
2.12 Statistical analysis

Data were analyzed using JMP® for Windows, Version 17.0 Pro

(SAS Institute Inc., Cary, NC). Statistical differences were determined

using a one-way analysis of variance (ANOVA) followed by Tukey’s

honestly significant difference (HSD) test (P = 0.05). In addition,

multiple regression analysis with simple linear and non-linear models

were conducted, and regression plots were presented in the figures to
Frontiers in Plant Science 06
display the changes of plant response parameters during the crop

cycle. The significance of regression coefficient was indicated with *,

** or *** at P of 0.05, 0.01 or 0.001, respectively.
3 Results

3.1 EC and pH adjustments and macro
nutrient concentrations in the feeding
solution

The amount of acid and water usage were similar, while the

volume of stock solutions were significantly different between

treatments (Table 3). Compared to the control, Ca(NO3)2-only

treatment utilized 54.5% less stock solution and 78.0% more

calcium nitrate stock solution in the final week.

Macro nutrient concentrations in nutrient solutions differed

under two treatments in the final week of the study (Figure 3).

Compared to the control, the nutrient solution in the Ca(NO3)2-

only treatment had 19.1%, 87.8%, 84.9%, and 20.3% lower N, P, K

and Mg, respectively, as well as 67.3% higher calcium. However,

there was no significant difference in the concentration of sulfate.

Greater calcium concentration in the Ca(NO3)2-only treatment

resulted from increased application of calcium in that treatment.

Interestingly, despite the extra nitrogen in the treatment, the total

nitrogen concentration was still significantly lower than the control,

aligning with the reduced concentrations of other macro nutrients.

Compared to the original nutrient composition (Table 1), the

macronutrient profile in the Ca(NO3)2-only treatment was

significantly altered during the final week of production. N, P,

and K levels decreased by 89.1%, 14.8%, and 8.1%, respectively,

while Ca, Mg and S levels increased by 38.9%, 55.5% and 674.0%,

respectively. These results may reflect higher nutrient uptake in the

Ca(NO3)2-only treatment due to improved balance of nutrients

accumulated in the stock tank.
3.2 Photosynthetic properties and water
use efficiency

The changing trend of net photosynthetic properties of kale

were similar under two treatments during the study (Figure 4). In

general, Pn and Gs increased over time, and Tr increased in the first

two weeks then reduced, while WUE reduced in the first week then

increased over time. These trends were aligned with higher plant
TABLE 3 Daily usage of stock solutions, acids and water in the nutrient feeding solution to adjust EC to 1.8 dS·m−1 and pH to 5.8 during the study.
Data represents the mean of 30 measurements take.

Treatment Stock solution (mL) Calcium nitrate stock solution (mL) 10% H2SO4 (mL) H2O (L)

Regular two-part 24.4 a 24.4 b 4.8 a 4.3 a

Only Ca(NO3)2 in final week 11.1 b 43.4 a 5.3 a 3.9 a
fro
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growth rate and thicker cuticles over time. However, there was no

significant difference in net photosynthetic properties for kale

among treatments during the study.

Enhanced nitrogen supplementation in the final week improved

kale growth (Figure 5). Compared to the control, treatment of Ca

(NO3)2 had 4.2% higher SPAD value and 1.2% higher chlorophyll

fluorescence value. After seedlings recovered from transplant shock,

the SPAD values in kale were all higher than 0.83, indicating no

stress in leaves in both treatments in this study (Björkman and

Demmig, 1987).
3.3 Plant growth and yield

Enhanced calcium and nitrogen supplementation in the

final week significantly improved kale yields, shoot water

content, and leaf area (Figure 6). Compared to the control, the

Ca(NO3)2-only treatment resulted in a 28.5% increase in shoot

fresh weight, a 22.9% increase in total fresh weight, and a 22.1%

higher fresh shoot-to-root ratio. Additionally, the Ca(NO3)2-only
Frontiers in Plant Science 07
treatment led to an 18.6% increase in shoot dry weight, a 4.8%

increase in total dry weight, and a 13.0% higher dry shoot-to-root

ratio. Furthermore, shoot water content was 0.64% higher, and

leaf area increased by 21.8% under the Ca(NO3)2-only treatment.

These findings are consistent with the enhanced plant growth rate

observed with increased nitrogen and calcium supplementation.

Importantly, there were no significant differences in root biomass

between treatments, indicating that the reduction in other

nutrient elements in the Ca(NO3)2-only treatment did not

negatively impact root growth and development.
3.4 Plant tissue macro and micronutrient
concentrations

Macro and micronutrient concentrations in the tissues were

within or above the sufficiency range based on Bryson et al. (2014)

and Kopsell et al. (2005). In terms of the plant tissue macro nutrient

concentrations, additional application of calcium nitrate improved

not only the nitrogen and calcium concentrations in kale shoot, but
FIGURE 3

Effect of varying nutrient mixing protocols in the final week on macro nutrition concentrations including: total nitrogen (A), phosphate (B), potassium
(C), calcium (D), magnesium (E), and sulfur (F) in nutrient solution on the 1st, 2nd, 3rd, and 4th weeks after transplanting of kale in a nutrient-film
technique hydroponic system containing nutrient solutions with EC of 1.8 dS·m−1. Data points with different letters are significantly different
according to Tukey’s test (a = 0.05). Error bars represent the standard errors (n = 3).
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also led to increased magnesium concentration (Figure 7).

Compared to the control, the nutrient concentrations in the Ca

(NO3)2-only treatment had 46.0%, 27.5%, and 14.4% higher total

nitrogen (N), calcium (Ca), and magnesium (Mg), respectively. All

other nutrient concentrations were not affected by treatment. The

accumulation of Mg in the treatment could be the result of

synergistic effect between N and Mg (Mulder, 1956).

In terms of the plant tissue micronutrient concentrations,

extra application of calcium nitrate improved the iron (Fe), copper

(Cu), boron (B) and molybdenum (Mo) concentrations in kale

shoot (Figure 8). Compared to the control, the nutrient

concentrations in the Ca(NO3)2-only treatment had 15.4%,

18.2%, 9.5%, and 12.6% higher Fe, Cu, B and Mo, respectively.

However, manganese (Mn) and zinc (Zn) concentrations were not

affected by the treatment.
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3.5 Plant tissue nitrate and phytochemicals
concentrations

Enhanced nitrogen supplementation in the final week increased

kale tissue nitrate concentration (Figure 9). Kale is classified as a

medium-nitrate content vegetable products (Colla et al., 2018).

Nitrate concentration of kale in the Ca(NO3)2-only treatment in

this study were comparable with previous research (EFSA, 2009;

Erdoğan and Onar, 2012). The kale shoot nitrate concentration in

the Ca(NO3)2-only treatment (2480.59 mg·kg−1) was 186.8% greater

than the control (864.97 mg·kg−1). According to the report of

European Food Safety Authority (EFSA), the maximum nitrate

range for kale is 6,000-7,000 mg·kg−1 FW (European Union, 2011),

indicating that the observed nitrate concentrations were within safe

limits even with nitrogen enhancement.
FIGURE 4

Effect of Ca(NO3)2 in the final week on the net photosynthetic rate (A), stomata conductance (B), transpiration rate (C), and water use efficiency (D) of
kale on the 1st, 2nd, 3rd, and 4th weeks after transplanting into a nutrient-film technique hydroponic system containing nutrient solutions with EC of 1.8
dS·m−1. Data points with different letters are significantly different according to Tukey’s test (a = 0.05). Error bars represent the standard error (n = 24).
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Enhanced nitrogen supplementation while reducing the

remaining macro and micronutrients in the final week also

affected some key phytochemicals concentrations in kale shoots

(Figure 10). Compared to the control, the phytochemical

concentrations in the Ca(NO3)2-only treatment had 35.7% and

24.0% lower total anthocyanin and vitamin C, but 13.2% higher

total glucocinolates. However, all other phytochemicals (total

chlorophyll, carotenoids, and total phenolics) were not affected

by treatment.
4 Discussion

4.1 Changing mixing protocol in the final
week of growth significantly improves
plant growth, yield, and nutrient
concentration

The modified nutrient adjustment protocol with application of

Ca(NO3)2-only in the final week of kale production enhanced

nutrient uptake, as evident by decreased concentrations of N, P,

K, and Mg in the nutrient solution and increased accumulation of

N, Ca, Mg, Fe, Cu, B, and Mo in kale shoots at harvest. Previous

research on kale and collard indicated macronutrients other than N

accumulate in the nutrient solution several-fold relative to original

concentration in hydroponic systems during crop cycle (Yang et al.,

2024). The modified mixing protocol adapted in this study mitigates

the excess accumulation by reducing the input of these elements

during the final phase of growth. Consequently, this balanced

nutrient formulation coupled with supplemental Ca and N
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improved nutrient absorption during the peak growth phase of

kale in this modified protocol. The observed increase in Mg

accumulation could be attributed to a synergistic interaction

between N and Mg (Mulder, 1956). Similarly, Kullmann et al.

(1989) reported increased leaf K and Mg concentrations with

rising N levels (up to 100 ppm N) in hydroponics-grown oilseed

rape (Brassica napus L.), while Ca/Mg ratios and P concentrations

remained stable, which aligned with our results.

Despite the additional N application, the total N concentration in

the nutrient solution remained significantly lower than that in the

control, indicating increased N uptake. This could explain the higher

shoot nitrate concentration, which aligns with classification of kale as

a medium-nitrate content vegetable (Colla et al., 2018). The nitrate

concentration in Ca(NO3)2-only treated kale (2,480.6 mg·kg-¹ FW)

remained well below the European Union’s safety threshold of 6,000-

7,000 mg·kg-¹ FW (European Union, 2011). Therefore, changing the

mixing protocol with Ca(NO3)2 could be a viable strategy for

increasing yield in crops with a high nitrogen demand in

hydroponic production (Yang et al., 2024).

The Ca(NO3)2-only treatment significantly improved shoot

biomass and increased the shoot-to-root ratio, which positively

correlated with higher nutrient uptake rates. This indicates that N

and Ca availability were limiting factors for shoot growth, whereas

root growth did not require additional nutrient supplementation. de

Almeida et al. (2020) reported that N and Ca deficiencies manifest

earlier than K and Mg deficiencies in hydroponically grown

broccoli. Similarly, Burns (1994a) found that cabbage (cv.

Stonehead) struggled to adapt to N deficiency due to limited N

translocation to the roots, suggesting a minimum nitrate reserve of

0.1 mmol·g-¹ (6,200 mg·kg-¹) in shoots (Burns, 1994b. Our findings
FIGURE 5

Effect of Ca(NO3)2 in the final week on relative chlorophyll content (SPAD) (A), and chlorophyll fluorescence (B) of kale on the 1st, 2nd, 3rd, and 4th
weeks after transplanting into a nutrient-film technique hydroponic system containing nutrient solutions with EC of 1.8 dS·m−1. Data points with
different letters are significantly different according to Tukey’s test (a = 0.05). Error bars represent the standard error (n = 24).
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also align with Bruns et al. (1990), who reported enhanced shoot

growth under increased N application (185–740 mg N·pot-¹) in

hydroponically grown oilseed rape.
4.2 Changing mixing protocol in the final
week of growth had no impact on acid and
water usage, photosynthetic properties, or
root growth

The Ca(NO3)2-only treatment did not affect acid and water

usage or root growth. Nitrate uptake is known to increase pH, while

calcium uptake reduces pH (Admin, 2017). Our results indicate a

balanced uptake rate between nitrate and calcium, which likely

explains the comparable acid usage for pH maintenance between

treatments. These findings align with those of Chowdhury et al.
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(2024), who reported that NO3
--based nutrition (Ca(NO3)2)

provides better pH buffering capacity than NH4
+-based nutrition

((NH4)2SO4) in hydroponic systems for rapeseed (Brassica napus

L.). This pH stability may be linked to the regulation of nutrient

transport channel proteins.

Interestingly, root growth was not affected by the treatment,

which may be attributed to the spatial limitations of the NFT system

channels. Wang et al. (2017) demonstrated that root system

architecture, particularly root size, plays a critical role in nitrogen

use efficiency (NUE) and dry biomass accumulation in rapeseed.

Similarly, Louvieaux et al. (2020) investigated the effects of nitrate

supply (0.2 mM NO3
- [0.1 mM Ca(NO3)2 + 2.4 mM CaCl2],

5.0 mM NO3
- [2.5 mM Ca(NO3)2]) on biomass production and

root morphology in oilseed rape and found that higher nitrate levels

increased shoot and total biomass while decreasing the root-to-

shoot biomass ratio indicating no impact root biomass.
FIGURE 6

Effect of Ca(NO3)2 in the final week on plant tissue fresh weight (A), dry weight (B), shoot water content and leaf area (C) of kale in 4 weeks after
transplanting into a nutrient-film technique hydroponic system containing nutrient solutions with electrical conductivity (EC) of 1.8 dS·m−1. Data
points with different letters are significantly different according to Tukey’s test (a = 0.05). Error bars represent standard errors (n = 72).
frontiersin.org

https://doi.org/10.3389/fpls.2025.1629432
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1629432
These results suggest that future studies should explore the optimal

shoot-to-root ratio for maximizing both crop productivity and

quality in hydroponic systems.

Furthermore, Ca(NO3)2-only treatment had no significant effect

on photosynthetic properties, despite a slight increase in SPAD

values and chlorophyll fluorescence. However, all measured

parameters remained within the healthy range for kale growth,

suggesting that the control treatment still provided suboptimal but

sufficient growing conditions without negatively affecting plant

health. Previous studies have explored the effects of optimized N/

K ratios (Hu et al., 2019) and N/Mg ratios (Mao et al., 2022) on

photosynthetic and growth characteristics of hydroponic grown

kale. Future research should further investigate these nutrient

interactions to refine nutrient management strategies in

controlled environment agriculture.
4.3 Changing mixing protocol in the final
week of growth affected leaf
phytochemical concentration

The Ca(NO3)2-only treatment significantly reduced total

anthocyanin and vitamin C concentration, raised total
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glucosinolate levels, but had no effect on chlorophylls and

carotenoids in kale shoots.

A decline in antioxidant pigments after a nitrogen pulse is

consistent with earlier reports. Shen et al. (2022) reported that

anthocyanins and rutin in rapeseed play key roles in enhancing root

cell resistance to oxidative damage and protecting against soil

pathogen infections. Our findings suggest that modifying mixing

protocol optimized growing conditions for kale compared to the

control. Our previous research also indicated growth promotion via

increased nutrient concentration can lead to reduction of some

phytochemicals such as total anthocyanin, total phenols and

vitamin C (Yang et al., 2021; Yang et al., 2024), suggesting that

better nutrient supply can optimize the plant growth, update

reducing the need for such defensive compounds.

By contrast, total glucocinolates responded positively. The

concentrations we measured (69–78 μg g-¹ FW) fall within the

typical range for kale and other Brassica greens (Sikorska-Zimny

and Beneduce, 2021). Because glucocinolates contain both nitrogen

and sulfur (Baenas et al., 2020), their synthesis is highly sensitive to

the tissue N:S balance (Schonhof et al., 2007). Short−term

enrichment with Ca(NO3)2 increased the external nitrate while

effectively lowering available sulfate, creating an N−rich/S−poor

environment known to raise both aliphatic and indole
FIGURE 7

Effect of Ca(NO3)2 in the final week on macro nutrition concentrations in the shoot part of kale including: nitrogen (A), phosphorus (B), potassium
(C), calcium (D), magnesium (E), and sulfur (F) at 4 weeks after transplanting into a nutrient-film technique hydroponic system containing nutrient
solutions with EC of 1.8 dS·m−1. Data points with different letters are significantly different according to Tukey’s test (a = 0.05). Error bars represent
the standard errors (n = 18).
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glucocinolates, even when total sulfur is adequate (del Carmen

Martı ́nez-Ballesta et al., 2013). Similar nitrate−induced

glucocinolates gains have been documented in broccoli (Schonhof

et al., 2007), kale (Groenbaek et al., 2016) and turnip (Brassica rapa

spp. rapa) (Bonnema et al., 2019).

These results suggest that a brief late−cycle nitrogen boost can

enrich kale with health−promoting glucosinolates without

pushing nitrate levels beyond regulatory thresholds. Future work

should refine N and S dosing schedules and test additional

cultivars to optimize both yield and phytochemical quality in

Brassicaceae family.

Although chlorophyll and carotenoid concentrations did not

differ between treatments, many studies have generally observed

increased chlorophyll and carotenoid concentrations (Chen et al.,

2012; Kopsell et al., 2017; Ogunlela et al., 1989), as well as higher

lutein and b-carotene levels (Kopsell et al., 2007), in response to

appropriate nitrogen supplementation. These discrepancies may be

due to differences in cultivar responses to nutrient treatments, as

highlighted by Schulte auf’m Erley et al. (2017). This suggests the
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need for further screening of glucosinolate-rich cultivars and other

accessions to optimize nutrient management strategies for

phytochemical enhancement in hydroponically grown kale.
4.4 Practical applications for EC based
hydroponic production

In EC-based nutrient management hydroponic systems,

nutrient concentration is typically adjusted by modifying

electrical conductivity (EC), often without tailoring individual

nutrient concentrations. As a result, standard nutrient solutions

deliver all macro- and micronutrients continuously throughout the

crop cycle, regardless of changing plant demand. This can lead to

overaccumulation of certain nutrients and depletion of others,

particularly toward the end of production, resulting in nutrient

imbalances that limit uptake efficiency and reduce crop

performance (Yang et al., 2021 & Yang et al., 2024; Samarakoon

et al., 2020).
FIGURE 8

Effect of Ca(NO3)2 in the final week on micro nutrition concentrations in the shoot part of kale of iron (A), manganese (B), zinc (C), copper (D), boron
(E) and molybdenum (F) at 4 weeks after transplanting into a nutrient-film technique hydroponic system containing nutrient solutions with EC of 1.8
dS·m−1. Data points with different letters are significantly different according to Tukey’s test (a = 0.05). Error bars represent the standard errors (n = 18).
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FIGURE 9

Effect of Ca(NO3)2 in the final week on the nitrate concentration in the shoot part of kale at 4 weeks after transplanting into a nutrient-film
technique hydroponic system containing nutrient solutions with EC of 1.8 dS·m−1. Data points with different letters are significantly different
according to Tukey’s test (a = 0.05). Error bars represent the standard errors (n=18).
FIGURE 10

Effect of Ca(NO3)2 in the final week on the phytochemical concentrations of total chlorophyll (A), carotenoids (B), total anthocyanin (C), total
phenols (D), vitamin C (E), and total glucocinolates (F) in the shoot part of kale at 4 weeks after transplanting into a nutrient-film technique
hydroponic system containing nutrient solutions with EC of 1.8 dS·m−1. Data points with different letters are significantly different according to
Tukey’s test (a = 0.05). Error bars represent the standard errors (n = 24).
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Analysis of the original solution in this study revealed

considerable nutrient imbalances during the final week of

production. While N was nearly depleted due to high plant uptake,

elements such as Ca, Mg and S accumulated excessively in the

solution. This overaccumulation not only results in fertilizer

wastage but may also inhibit the uptake of other essential nutrients

due to ionic competition and osmotic stress (Ye et al., 2022;

Dubey et al., 2021). In contrast, the Ca(NO3)2-only treatment

applied during the final week provided a more balanced and crop-

specific nutrient composition. Compared to the original solution, N

levels decreased by 89.1%, directly addressing the plant’s need for

targeted nitrogen resupply, while P and K—already abundant—

decreased by 14.8% and 8.1%, respectively. Notably, Ca and Mg,

which are essential for cell wall structure (Weng et al., 2022) and

chlorophyll synthesis (Dukic et al., 2023), increased by 38.9% and

55.5%, respectively. However, increase in sulfur (674.0%) highlights

the need for further optimization of nutrient formulation and

solution management strategies, by adjusting the type of acid used

for pH regulation. Overall, this revised mixing protocol better support

plant demand during the final growth stage, optimizing nutrient use

and minimizing excessive accumulation of less-needed elements.

Furthermore, if nutrient solution is discarded at the end of

production, there will be less nutrients in the drainage, minimizing

fertilizer wastage, and environmental pollution.

From an economic standpoint, this modified strategy also

reduces costs. The price for Hydro Grow Leafy Green Fertilizer

ranges from $3.8 to $12.0 per pound (equivalent to $0.80-$2.54

per liter of stock solution), whereas the cost for Ca(NO3)2 is less

with prices ranging between $0.56 and $6.25 per pound ($0.091-

$1.02 per liter of stock solution). By adopting a Ca(NO3)2-only

fertigation protocol in the final week of production, growers can

reduce fertilizer expenses by 16.5% to 40.9%. Morever, this

approach can lead to a 28% increase in kale yield, offering a

cost-effective and productivity-enhancing strategy for

hydroponic production.
5 Conclusion

For EC based nutrient management of hydroponics, use of only

Ca(NO3)2 during the final week of kale production significantly

enhanced nutrient uptake, leading to improved plant growth and

increased yield. Higher nitrogen and calcium availability promoted

greater nutrient assimilation, particularly for N, Ca, Mg, and trace

elements such as Fe, Cu, B, and Mo.

However, phytochemical analysis revealed a reduction in

anthocyanin and vitamin C concentration, while glucosinolate

levels increased slightly. These findings highlight the complex

interplay between nutrient supplementation and secondary

metabolite synthesis, suggesting potential tradeoffs between yield

and certain qualitative attributes.

Overall, the current study introduces a novel nitrogen and

calcium supplementation method for EC based hydroponic crop

management that can enhance kale production in hydroponic

systems leading to increased yield, reduced fertilizer costs, and
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increased resource use efficiency. Future research should focus on

using similar nutrient management strategies to other hydroponic

leafy greens for yield improvements by balancing nutritional

composition in the nutrient solution.
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