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Mining novel genes underlying agronomical traits is a crucial subject in plant biology, 
essential for enhancing crop quality, ensuring food security, and preserving 
biodiversity. Wet experiments are the main methods to uncover genes with target 
functions but are expensive and time-consuming. Machine learning, in contrast, can 
accelerate  the gene discovery  process by learning from accumulated data, making it 
more efficient and cost-effective. However, despite their potential, existing 
machine-learning tools to mine stress-resistant genes in plants are scarce. In this 
study, we developed the first known machine learning model, SaGP (Saline-alkali 
Genes Prediction), to identify plant saline-alkali tolerance genes based on 
sequencing data. It outperformed traditional computational tools, i.e., BLAST,  and  
correctly identified the latest published genes. Moreover, we utilized SaGP to 
evaluate three recently published genes: GhAG2, MdBPR6, and  TaCCD1. SaGP
correctly identified all their functions. Overall, these results suggest that SaGP can 
be used for the large-scale identification of saline-alkali tolerance genes and served 
as a framework for the development of additional automated tools, thus promoting 
crop breeding and plant conservation. To efficiently identify salt-alkali resistant genes 
in large-scale data, we developed a user-friendly, freely accessible web service 
platform based on SaGP (https://www.sagprediction.com/). 
KEYWORDS 

machine learning, saline-alkali tolerance genes, gene mining, feature selection, SAGP 
1 Introduction 

Enhancing plants’ tolerance to abiotic stresses has long been the focus in biology and 
breeding science. Early efforts focused purely on plant phenotypes (Meuwissen et al., 2001; 
Meyer et al., 2012). Later works began to decipher the genetic bases underlying key traits 
based on quantitative trait loci (QTL) mapping (Kang et al., 2019) and genome-wide 
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association studies (GWAS) (Gupta, 2021). Many functional genetic 
variants have been identified, resulting in breeding plants with 
excellent traits (Wang et al., 2016; Zhao et al., 2024) and developing 
effective species conservation strategies (Chen et al., 2022; 
Gougherty et al., 2021). However, despite these achievements, 
these works are time-consuming and costly (Dou et al., 2021) and 
overall have low precision in determining functional variants 
(Mackay et al., 2009; Wray et al., 2013), resulting in inefficient 
plant selection and breeding. Moreover, they focus on a few model 
species, such as Arabidopsis, maize, rice, etc. Taking full advantage 
of knowledge from these species and utilizing them to boost the 
identification of functional genetic variants in other species are 
still challenging. 

With the development of genetics and informatics, a new 
framework is now being proposed to boost efficiency and cut the 
cost of current research, i.e., Breeding 4.0 (Wallace et al., 2018). It is 
characterized by high-throughput sequence data (Ding et al., 2023; 
Yang et al., 2013) combined with computational methods (Jarrahi, 
2018). Traditional computational methods, such as BLAST 
(Altschul et al., 1990), may fit Breeding 4.0, but their poor 
accuracy can lead to inefficiency (Dai et al., 2020; Li et al., 2022). 
On the other hand, machine learning (ML) may provide an 
alternative to traditional computational approaches (Fu et al., 
2023; Qiao et al., 2024; Van Dijk et al., 2021). It has been used in 
genomic selection-assisted breeding (Yan and Wang, 2023) and in 
assessing plants’ vulnerability under future climates regarding their 
genetic compositions (Sang et al., 2022). Moreover, several studies 
have implemented machine learning algorithms to identify plant 
genes with specific functions. For example, PGB was used to detect 
photosynthetic-related genes based on a voting algorithm (Wang 
et al., 2022). DRPPP based on SVM was created to predict disease 
resistance proteins with high performances (Pal et al., 2016). 
ConSReg based on regularized LASSO was developed to identify 
key transcription factors responsive to specific abiotic stresses, 
which outperformed traditional enrichment-based methods (Song 
et al., 2020). These works can provide important tools for Breeding 
4.0 to precisely screen target genes on a large scale and thus facilitate 
crop improvement and species conservation. Unfortunately, similar 
work to identify genes resistant to abiotic stresses are scarce. 

In this study, we proposed a framework to construct intelligent 
tools to identify novel plant abiotic stress resistant genes. Focusing 
on saline-alkali stress, i.e., excessive accumulation of neutral salts 
and sodic salts that leads to decreased crop productivity (James 
et al., 2012) and the loss of native biodiversity worldwide (Briggs 
and Taws, 2003), we developed the first known machine learning 
model (SaGP, Saline-alkali Genes Prediction) to identify plant 
saline-alkali tolerance genes. It achieves 0.99 prediction accuracy 
better than BLAST assessed with the independent test dataset. To 
further evaluate the performance of SaGP, we tested some latest 
published genes, including GhAG2 (Yu et al., 2022), MdBPR6 
(Zhang et al., 2023), and TaCCD1 (Cui et al., 2023), and SaGP 
correctly identified all their functions. Overall, the results suggest 
that SaGP can be used to fast and accurately identify saline-alkali 
tolerance genes in plants on a large scale with sequencing data, thus 
Frontiers in Plant Science 02 
promoting crop breeding and plant conservation. SaGP is freely 
available at www.sagprediction.com. 
2 Results 

2.1 Model comparison and SaGP 
construction 

The five cost-sensitive methods performed differently regarding 
their capacity to distinguish saline-alkali tolerance and non
tolerance genes. Overall, the Weighted Cross-Entropy (WCE) 
method had the best performances regarding MCC, Balanced 
Accuracy, and PR-AUC (Figure 1; see Supplementary Figure S1 
for Accuracy, F1 score, and ROC-AUC values). Moreover, different 
groups of features showed different pertinency to the gene function 
of saline-alkali tolerance. Among them, ACC-PSSM achieved the 
highest and most stable performances across all metrics, followed by 
PDT-Profile (Figure 1; Supplementary Figure S1). In contrast, 
several features, such as ACC and AAAFF, had the lowest 
performances (Figure 1; Supplementary Figure S1). We further 
compared the performances of SaGP models constructed using four 
different feature sets—ACC-PSSM, all features, and the top two and 
top five groups ranked by MCC—with those of traditional tools 
HMMER and BLAST. The performances of BLAST were generally 
low with respect to MCC, Balanced Accuarcy, F1 score, and 
Accuracy (Figure 2a). Only 84% and 3.6% of saline-alkali 
tolerance genes can be correctly identified by BLAST (Figure 2a), 
respectively, suggesting their inability to screen for saline-alkali 
tolerance genes on a large scale. The set with all features performed 
slightly better than ACC-PSSM in terms of MCC, while ACC-PSSM 
performed best regarding F1 score and Balanced Accuracy 
(Figure 2a). Because extracting all features is time-consuming, we 
thus implemented SaGP based on ACC-PSSM. 

Next, we compared the classification performances of the SaGP 
with the other four classifiers—SVM, Random Forest (RF), XGBoost, 
and deep neural network (DNN)—under the same cost-sensitive 
learning setting using the WCE loss function. The comparison was 
based on five evaluation metrics: Accuracy, F1 score, Area Under the 
ROC Curve (AUROC), Area Under the Precision-Recall Curve 
(AUPRC), and MCC. Among all models, SaGP outperformed all 
other classifiers, achieving the highest MCC (0.5988) and AUPRC 
(0.6021) (Table 1, Figure 2b), which underscores its superior ability to 
correctly identify saline-alkali tolerance genes under imbalanced 
conditions. It also attained competitive values in F1 score (0.5563) 
and AUROC (0.9408) (Table 1, Figure 2b), indicating both reliable 
classification and strong ranking capability. 

To further evaluate the capacity of SaGP to identify novel 
saline-alkali tolerance genes, we predicted the three latest 
published genes, i.e., GhAG2 (Yu et al., 2022), MdBPR6 (Zhang 
et al., 2023), and TaCCD1 (Cui et al., 2023). The predictions were 
consistent with the experimental results in the literature (Table 2), 
supporting that SaGP can correctly uncover novel saline-alkali 
tolerance genes. 
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2.2 Feature importance analysis	 

We next analyzed the contribution of individual ACC-PSSM 
features to the SaGP. Based on gain values, the top 20 most 
Frontiers in Plant Science 03	 
important features were identified (Figure 3a). Features such as 
ACC_PSSM_F3215, ACC_PSSM_F2649, and ACC_PSSM_F137 
contributed most to the model’s performance. Correlation 
analysis revealed low redundancy among these features, with 
FIGURE 2 

(a) The performances of ACC-PSSM, all features, MCC2, MCC5, BLAST and HMMER based on the test dataset. (b) Performance comparison of SVM, 
RF, XGBoost, DNN, and SaGP on the independent test dataset. 
FIGURE 1 

The performances of five cost-sensitive methods and 40 groups of protein features based on the test dataset. EL, Equalization loss; FL, Focal loss; 
LaL, Logit-adjusted loss; LdaML, Label-distribution-aware margin loss; WCE, weighted cross-entropy; MCC, Matthew’s Correlation Coefficient; PR-
AUC, the area under the precision-recall. See Table 3 for the details of 40 groups of protein features. 
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most pairwise Pearson correlation coefficients below 0.5 
(Figure 3b), indicating they capture distinct aspects of the input 
data. SHAP value analysis further confirmed the importance and 
directionality of these features (Figure 3c). For example, higher 
values of ACC_PSSM_F3215 and ACC_PSSM_F2649 were 
positively associated with model output, suggesting their strong 
influence in identifying tolerant genes. 

To further explore their biological relevance, we investigated the 
potential functional significance of key features. ACC-PSSM_3215 
This feature represents the autocovariance of proline residues at a 
lag of 9 within the PSSM (Position-Specific Scoring  Matrix),

capturing the evolutionary correlation between prolines separated 
by nine amino acid positions in the sequence. Proline is a well
established osmoprotectant in plants under salt stress, known for 
enhancing osmotic adjustment, stabilizing proteins and membrane 
structures, and mitigating oxidative damage through reactive 
oxygen species (ROS) scavenging. SHAP analysis revealed a 
positive association between higher values of this feature and the 
likelihood of a sequence being classified as a positive (salt-tolerant) 
sample. Notably, this feature exhibited significantly elevated values 
in salt-tolerant sequences, suggesting an enrichment of long-range 
proline interactions potentially involved in the formation of 
adaptive structural motifs or regulatory elements. These findings 
indicate that the model effectively captured biologically meaningful 
signals associated with proline-mediated stress adaptation. 
Importantly, despite the absence of explicit structural domain 
Frontiers in Plant Science 04
annotations, the model implicitly leveraged functional 
characteristics embedded within the primary sequence. The 
biological relevance of this proline-related feature thus provides 
strong support for both the predictive consistency of the positive 
samples and the interpretability of the model. 
2.3 Web services of SaGP 

To maximize the accessibility of the SaGP and minimize the 
difficulty of its use, we implemented it as a highly automated 
webserver (https://www.sagprediction.com/) with  JavaScript,
Nodejs, Tailwind CSS (responsive design), HTML5, Docker, and 
Nginx. The only input from the users is the protein sequences 
encoded by their interested genes. SaGP will automatically process 
the sequences and return its predictions in a formatted table. Users 
are allowed to download the predicted results for future use. 
3 Discussion 

Deciphering gene functions has long been the central topic in 
biology and bioinformatics. With the advancement of high
throughput sequencing technologies, the massive accumulation of 
new sequences in public databases has far exceeded the capacity of 
traditional wet experiments. This has led to the development of 
computational methods and tools to accelerate the process of gene 
function identification, providing guidance for wet lab experiments 
and reducing the costs and time associated with wet experiments. 
One such method is homolog-based or domain-based (e.g., 
BLAST), involving comparing the genomic sequences of different 
organisms to infer gene functions based on their similarity to 
known genes. Another method is machine learning to predict the 
functions of unknown genes based on their sequence features. 
Several studies have compared the performance of both methods 
in identifying proteins with targeted functions, such as pathogenic 
proteins (Li et al., 2022) and antifreeze proteins (Eslami et al., 2018; 
Kandaswamy et al., 2011). Overall, these studies suggest that 
machine learning-based methods are superior to homolog/ 
domain-based  methods  regarding  speed  and  accuracy.  
Consistently, in this study, we found that the performances of 
SaGP were higher than homolog/domain-based methods. 

One possible explanation for the incapacity of homolog/ 
domain-based methods to identify salt-alkali tolerance genes may 
be caused by the fast protein evolution. In plants, the main 
TABLE 2 The 40 groups of protein features extracted in our study, their 
abbreviations, and corresponding tools. 

Gene SaGP 
Prediction 

Experiment Description 

GhAG2 yes salt resistance In cotton, the over-expression 
of GhAG2 increased the 
germination rate under the 
saline environment 
(Yu et al., 2022). 

MdBPR6 yes salt sensitivity In apple, suppression of 
MdPRP6 reduces the 
accumulation of ROS and Na+ 

under the saline environment 
(Zhang et al., 2023). 

TaCCD1 yes alkali sensitivity In wheat, suppression of 
TaCCD1 can promote plant 
growth under the alkaline 
environment 
(Cui et al., 2023). 
TABLE 1 Performance of SVM, RF, XGBoost, DNN, and SaGP on the independent test dataset. 

Model Accuracy Balanced Accuracy F1 ROC-AUC PR-AUC MCC 

SaGP 0.989 ± 0.0006 0.649 ± 0.0226 0.556 ± 0.0688 0.941 ± 0.0261 0.602 ± 0.0651 0.598 ± 0.0600 

RF 0.987 ± 0.0005 0.556 ± 0.0147 0.200 ± 0.0473 0.814 ± 0.0265 0.368 ± 0.0669 0.328 ± 0.0452 

XGBoost 0.988 ± 0.0007 0.604 ± 0.0256 0.341 ± 0.0694 0.882 ± 0.0281 0.493 ± 0.0762 0.448 ± 0.0558 

SVM 0.987 ± 0.0012 0.574 ± 0.0361 0.441 ± 0.0842 0.835 ± 0.0351 0.445 ± 0.0683 0.503 ± 0.0750 

DNN 0.99 ± 0.0011 0.710 ± 0.0333 0.554 ± 0.0645 0.883 ± 0.0300 0.529 ± 0.0632 0.583 ± 0.0592 
 
frontiersin.org 

www.sagprediction.com/
https://doi.org/10.3389/fpls.2025.1629794
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qiao et al. 10.3389/fpls.2025.1629794 
mechanisms of salt-alkali tolerance involve ions transport (e.g., Na+ 

and Ca2+) and detoxification (Deinlein et al., 2014; Zhang et al., 
2022). Proteins with these biochemical and cellular functions tend 
to evolve more rapidly, resulting in low sequence similarities among 
homologous proteins (Devos and Valencia, 2000; Qiao et al., 2024; 
Xie et al., 2024) which disadvantages homolog-based and domain

based methods. Moreover, the functional space of genes/proteins is 
more complex than the sequence space, making it even more 
challenging to identify genes with specific functions based solely 
on sequence similarity (Devos and Valencia, 2000). SaGP, on the 
other hand, has the potential to overcome this challenge by 
capturing complex relations hidden in the sequence data based on 
machine learning algorithms and key protein features. Indeed, 
among all features, we found that ACC-PSSM performed best 
followed by PDT-Profile. Both ACC-PSSM and PDT-Profile 
capture evolutionary information (Dong et al., 2009; Liu et al., 
2012). In addition, they also include sequence order effects (Dong 
et al., 2009; Liu et al., 2012), which may include information about 
local interactions/structures that are important for ion binding and 
transporting. Combining both groups of features barely improved 
Frontiers in Plant Science 05 
model performances, suggesting that redundant information exists 
between them. Nevertheless, these results suggest evolution and 
sequence order are two crucial components for building machine 
learning tools to distinguish salt-alkali tolerance and non-tolerance 
genes in plants. 

It is important to note that SaGP was trained with negative 
samples from Arabidopsis thaliana. It may have low performance to 
identify salt-alkali non-tolerance genes in species phylogenetically 
far distant from Arabidopsis thaliana. To evaluate the model’s 
generalization capability across different species, we selected three 
latest published genes for validation: GhAG2 (cotton) (Yu et al., 
2022), MdBPR6 (apple) (Zhang et al., 2023), and TaCCD1 (wheat) 
(Cui et al., 2023). The prediction results of SaGP were consistent 
with the experimental results, indicating the effectiveness of SaGP in 
predicting salt-alkali resistant genes across different species. The 
significant advancements in sequencing technologies allows us to 
access extensive genetic data from a variety of plants more quickly 
and at a lower cost. However, due to the long growth cycles and high 
costs, the stress tolerance genes of many plants are not well studied. 
The application of SaGP provides superior guidance compared to 
FIGURE 3 

(a) Top 20 most important ACC_PSSM features based on gain. (b) Pairwise pearson correlation of top 20 ACC_PSSM features ranked by importance. 
(c) SHAP value summary for top ACC_PSSM features in SaGP. 
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BLAST for the rapid and accurate identification of salt-alkali 
tolerance genes in genomic data of these plants. Additionally, to 
efficiently identify salt-alkali resistant genes, we developed a user
friendly and freely accessible web service platform based on SaGP. 
This platform allows users to obtain prediction results only by 
inputting protein sequences, without the need for downloading 
models, installing software, or deploying any environment. In 
summary, SaGP offers a reliable identification tool for mining 
novel salt-alkali tolerant genes based on large-scale data, it also 
can serve as a fundamental model for the development of additional 
automated tools, which can greatly facilitate studies in plant genetics 
(Li et al., 2024; Zafar et al., 2024) and crop breeding (Kumar et al., 
2022; Sun et al., 2023), and promoting global agricultural 
Frontiers in Plant Science 06
sustainability (Sun et al., 2023). As the availability of genomic data 
continues to grow, the expansion of the training dataset will further 
enhance predictive capabilities of SaGP. 
4 Materials and methods 

4.1 Data collection and processing 

4.1.1 Positive samples 
Saline-alkali tolerance genes were manually curated from published 

literature. A total of 537 experimentally validated genes from 308 gene 
families were collected. To reduce potential confounding factors, 
FIGURE 4 

The framework of SaGP. In brief, protein sequences were used to construct SaGP. Both positive and negative sequences were validated with 
literature and RNA-seq data, respectively. Sequences were filtered to remove errors and redundancy. Protein features were extracted, selected, and 
used to train the machine learning models. The model with the best performances were evaluated based on the test dataset and were used to 
identify novel salt-alkali tolerance genes in plants. 
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transcription factors were removed. Additionally, we filtered 
out sequences containing irregular characters (e.g., “X”) and

sequences shorter than 78 amino acids—the minimum observed 
length among positive samples. To minimize sequence redundancy, 
we applied CD-HIT with a sequence identity threshold of 90%, 
resulting in 262 high-confidence non-redundant tolerance-related 
protein sequences. 

4.1.2 Negative samples 
Negative samples were collected from the Arabidopsis thaliana 

genome, specifically from the TAIR database (Berardini et al., 
2015), after excluding any gene families known to be associated 
with saline-alkali tolerance. Transcription factors and low-quality 
sequences (containing non-standard residues or shorter than 78 
amino acids) were also removed. CD-HIT (Li et al., 2001) was used 
to eliminate redundant sequences at a 90% identity threshold, 
yielding 17,753 non-tolerance protein sequences. 

To further ensure the reliability of the negative dataset, we 
reanalyzed RNA-seq data from Anderson et al. (2018) (Anderson 
et al., 2018) (GEO accession: GSE116332), which profiled gene 
expression in Arabidopsis thaliana under both control and salt 
stress conditions. Gene expression levels were quantified using 
StringTie, and differential expression analysis was conducted 
using DESeq2. Notably, none of the negative genes exhibited 
significant differential expression between salt-treated and control 
conditions, confirming their non-responsiveness to salt stress at the 
transcriptomic level. 
4.2 Feature extraction and selection 

Engineering protein features to capture the underlying patterns 
of salt-alkali tolerance and non-tolerance genes is crucial to 
constructing accurate SaGP models (Figure 4). Here, we used 
three programs to extract protein features, i.e., Pse-in-one2.0 (Liu 
TABLE 3 The 40 groups of protein features extracted in our study, their 
abbreviations, and corresponding tools. 

Features Tools 

Auto-cross covariance (ACC) Pse-in-One 2.0 

Physicochemical distance transformation (PDT) Pse-in-One 2.0 

Profile-based Auto-cross covariance (ACC-PSSM) Pse-in-One 2.0 

PseAAC of Distance-Pairs and reduced alphabet scheme 
(Distance Pair) 

Pse-in-One 2.0 

Distance-based Residue (DR) Pse-in-One 2.0 

Profile-based physicochemical distance transformation 
(PDT-Profile) 

Pse-in-One 2.0 

General parallel correlation pseudo amino acid 
composition (PC-PseAAC-General) 

Pse-in-One 2.0 

Parallel correlation pseudo amino acid composition 
(PC-PseAAC) 

Pse-in-One 2.0 

Top-n-gram Pse-in-One 2.0 

Accumulated Amino Acid Frequency (AAAF) MathFeature 

Accumulated Amino Acid Frequency with 
Fourier (AAAFF) 

MathFeature 

Electron-ion interaction potential Mapping 
(EIIP Mapping) 

MathFeature 

Integer Mapping MathFeature 

Kmer Frequency Mapping (KFM) MathFeature 

Amino acid composition (AAC) MathFeature 

Complex Networks without threshold MathFeature 

Dipeptide composition (DPC) MathFeature 

Xmer k-Spaced Ymer Composition Frequency (kGap) MathFeature 

Tripeptide composition (TPC) MathFeature 

Amino Acid to K Part Composition (AAKC) ftrCOOL 

Amino Acid Autocorrelation-
Autocovariance (AAutoCor) 

ftrCOOL 

Amphiphilic Pseudo-Amino Acid Composition 
(series) (APAAC) 

ftrCOOL 

Adaptive skip dipeptide composition (ASDC) ftrCOOL 

Composition of k-Spaced Grouped Amino Acids 
pairs (CkSGAApair) 

ftrCOOL 

Conjoint Triad (conjointTriad) ftrCOOL 

k-Spaced Conjoint Triad (conjointTriadKS) ftrCOOL 

Composition_Transition_Distribution (CTD) ftrCOOL 

CTD Composition (CTDC) ftrCOOL 

CTD Distribution (CTDD) ftrCOOL 

CTD Transition (CTDT) ftrCOOL 

Dipeptide Deviation from Expected Mean value (DDE) ftrCOOL 

Expected Value for each Amino 
Acid (ExpectedValueAA) 

ftrCOOL 

(Continued) 
TABLE 3 Continued 

Features Tools 

Expected Value for Grouped Amino 
Acid (ExpectedValueGAA) 

ftrCOOL 

Expected Value for Grouped K-mer Amino 
Acid (ExpectedValueGKmerAA) 

ftrCOOL 

Expected Value for K-mer Amino 
Acid (ExpectedValueKmerAA) 

ftrCOOL 

Grouped Amino Acid K Part 
Composition (GAAKpartComposition) 

ftrCOOL 

k Grouped Amino Acid 
Composition (kGAAComposition) 

ftrCOOL 

Pseudo-Amino Acid Composition (Parallel) (PSEAAC) ftrCOOL 

Pseudo K_tuple Reduced Amino Acid Composition 
Type-11 (PseKRAAC_T11) 

ftrCOOL 

Quasi Sequence Order (QSOrder) ftrCOOL 
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et al., 2015), ftrCOOL (Amerifar et al., 2022), and MathFeature 
(Bonidia et al., 2022). Overall, 40 groups of protein features were 
extracted, representing important information about protein 
evolution, physicochemical properties, global and local sequence 
patterns, and residue interactions (Table 3). To reduce 
computational complexity and feature redundancy, features with 
zero variance or highly correlated with other features (absolute 
Pearson correlation coefficients > 0.8) were removed. The sequences 
data was split into training, validation, and independent test 
datasets with a ratio of 80:10:10. A univariate feature selection 
algorithm based on t-test and the training dataset was then used to 
select the set of features to construct machine learning models 
(Figure 4). In total, 5377 features were retained. 
4.3 SaGP construction and evaluation 

Overall, the ratio between saline-alkali tolerance and non
tolerance sequences was 1:68, which leads to an imbalanced 
learning problem. To address this issue and to construct SaGP 
with  potentia l ly  optimal  performance,  we  tested  the  
performances  of  cost-sensit ive  methods  to  tackle  the  
imbalanced learning problem (Tanha et al., 2020) (Boldini 
et al., 2022). compared the potentials of five cost-sensitive 
methods, weighted cross-entropy (WCE), Focal loss (FL), Logit
adjusted loss (LaL), Label-distribution-aware margin loss 
(LdaML), and Equalization loss (EL), to improve imbalanced 
classification in drug discovery. Here, we followed their scheme to 
train and evaluate our models that is Lightgbm (Ke et al., 2017) 
was used to train the models based on the training dataset; each 
model was optimized using Hyperopt (Boldini et al., 2022) based  
on the validation dataset; their performances were evaluated 
based on the independent test dataset. To assess the relative 
importance of different group features for identifying saline
alkali tolerance and non-tolerance genes, we evaluated each 
group’s features separately. 

To comprehensively evaluate model performances, six metrics 
were calculated, i.e., Accuracy, Balanced Accuracy, F1 score, the 
area under the receiver operating characteristic curve (ROC-AUC), 
the area under the precision-recall (PR-AUC) curve and Matthew’s 
Correlation Coefficient (MCC). Several studies have compared the 
performances of these metrics for imbalanced binary classification, 
and in general, MCC was recommended (Chicco and Jurman, 2020, 
2023). We, therefore, used MCC as the main reference to select the 
optimal model for SaGP. 

To further confirm the power of SaGP to uncover novel saline
alkali tolerance genes, we collected three more genes from the latest 
publications, i.e., GhAG2 (Yu et al., 2022), MdBPR6 (Zhang et al., 
2023), and TaCCD1 (Cui et al., 2023), as additional tests. In 
addition, we assessed the performance of BLAST to identify salt
alkali tolerance genes. In brief, all salt-alkali tolerance genes in the 
training and validation datasets were used to construct the search 
database. Sequences from the test dataset were used as the query 
sequence of BLAST. E value 0.01 was used to indicate a significant 
similarity (hit). 
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SUPPLEMENTARY FIGURE 1 

The performances of five cost-sensitive methods and 40 groups 
of protein features based on the test dataset. Abbreviations: EL, 
Equalization loss; FL, Focal loss; LaL: Logit-adjusted loss; LdaML, Label-
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distribution-aware margin loss; WCE, weighted cross-entropy; MCC, 
Matthew’s Correlation Coefficient; ROC-AUC, the area under the receiver 
operating characteristic curve. See Table 3 for the details of 40 groups of 
protein features. 
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