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Landscape structure, climate
variability, and soil quality
shape crop biomass patterns
in agricultural ecosystems
of Bavaria
Maninder Singh Dhillon1*, Thomas Koellner2, Sarah Asam3,
Jakob Bogenreuther2, Stefan Dech1,3, Ursula Gessner3,
Daniel Gruschwitz1, Sylvia Helena Annuth2, Tanja Kraus3,
Thomas Rummler4, Christian Schaefer1,
Sarah Schönbrodt-Stitt 1, Ingolf Steffan-Dewenter5,
Martina Wilde1,6 and Tobias Ullmann1

1Department of Remote Sensing, Institute of Geography and Geology, University of Würzburg,
Würzburg, Germany, 2Department of Ecological Services, Faculty of Biology, Chemistry and Earth
Sciences, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth,
Bayreuth, Germany, 3German Remote Sensing Data Center (DFD), German Aerospace Center
(Deutsches Zentrum für Luft- und Raumfahrt (DLR), Wessling, Germany, 4Department of Applied
Computer Science, Institute of Geography, University of Augsburg, Augsburg, Germany, 5Department
of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany, 6Department of
Physical Geography and Soil Science, Institute of Geography and Geology, University of Würzburg,
Würzburg, Germany
Understanding how environmental variability shapes crop biomass is essential for

improving yield stability and guiding climate-resilient agriculture. To address this,

we compared biomass estimates from a semi-empirical light use efficiency (LUE)

model with predictions from amachine learning–remote sensing framework that

integrates environmental variables. We applied a combined LUE and random

forest (RF) model to estimate the mean biomass of winter wheat and oilseed rape

across Bavaria, Germany, from 2001 to 2019. Using a 5 km2 hexagon-based grid,

we incorporated landscape metrics (land cover diversity, small woody features),

topographic variables (elevation, slope, aspect), soil potential, and seasonal

climate predictors (mean and standard deviation of temperature, precipitation,

and solar radiation) across the growing season. The RF-based approach

improved predictive accuracy over the LUE model alone, particularly for winter

wheat. Biomass patterns were shaped by both landscape configuration and

climatic conditions. Winter wheat biomass was more influenced by

topographic and landscape features, while oilseed rape was more sensitive to

solar radiation and soil properties. Moderately diverse landscapes supported

higher biomass, whereas an extreme landscape fragmentation or high variability

showed lower values. Temperature thresholds, above 21 °C for winter wheat and
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12 °C for oilseed rape, were associated with biomass declines, indicating crop-

specific sensitivities under Bavarian conditions. This hybrid modeling approach

provides a transferable framework to map and understand crop biomass

dynamics at scale. The findings offer region-specific insights that can support

sustainable agricultural planning in the context of climate change.
KEYWORDS

crop biomass modeling, landscape diversity, climate variability, random forest
regression, small woody features, climate-resilient agriculture, sustainable agriculture,
machine learning
GRAPHICAL ABSTRACT
1 Introduction

Understanding the spatial and temporal drivers of crop

productivity is essential for enhancing agricultural resilience in

the realm of climate change, land-use intensification, and

biodiversity loss (Foley et al., 2011; Kastner et al., 2022; Ray

et al., 2015). Across temperate Europe, rising temperatures,

shifting precipitation regimes, and land-use changes have altered

the distribution of yields for major crops such as winter wheat

(WW) and oilseed rape (OSR) (Bönecke et al., 2020; Faye et al.,
02
2023; Schmidt and Felsche, 2024). These challenges are

particularly pronounced in Bavaria, Germany’s largest federal

state, where diverse agroecological gradients — ranging from

alpine terrain to fertile lowlands — create heterogeneous

growing environments that complicate biomass prediction

(Bönecke et al., 2020; Dhillon et al., 2023a; Maestrini and

Basso, 2018).

WW and OSR are economically and agronomically important

crops in Bavaria (Statistik, 2020). Mapping their biomass patterns

accurately is crucial for improving yield forecasting and informing
frontiersin.org
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landscape-level management decisions under climate uncertainty.

Traditional light-use efficiency (LUE) models provide a

physiologically grounded approach to estimating biomass from

solar radiation and stress modifiers (e.g., temperature, vapor

pressure deficit) (Dhillon et al., 2020, 2023c). However, they often

fall short of capturing fine-scale spatial heterogeneity and the

nonlinear effects of terrain, soil potential, and landscape structure

on productivity (Riedesel et al., 2023; Stocker et al., 2018; Turner

et al., 2002).

Recent advances in remote sensing (RS) and machine learning

offer new pathways for overcoming these limitations. Random

Forest (RF) models provide a flexible, non-parametric framework

capable of incorporating multi-scale environmental variables,

modeling complex interactions, and improving prediction

accuracy across diverse landscapes (Breiman, 2001; Liaw and

Wiener, 2002). When integrated with RS-derived biomass

estimates, RF models can enhance both the mechanistic realism

and spatial resolution of crop productivity assessments (Dhillon

et al., 2023b; Leng and Hall, 2020; Peichl et al., 2021). This approach

is valuable in regions such as Bavaria, where terrain complexity and

climatic gradients create diverse growing conditions, and it may

also be applicable in other areas with similar environmental

heterogeneity and data availability.

Additionally, the structure of agricultural landscapes is

increasingly recognized for its role in supporting ecosystem

services that can contribute to crop yield stability and

productivity (Tscharntke et al., 2012). Landscape metrics — such

as the Shannon Diversity Index (SHDI), calculated to capture the

diversity of land cover types, and the distribution of small woody

features (SWFs) — influence microclimatic buffering, pollinator

availability, and pest suppression (Dainese et al., 2019; Tamburini

et al., 2020). These features capture the landscape complexity and

have been associated with improved resilience in both temperate

and tropical systems (Edwards et al., 2015; Grass et al., 2019).

However, the extent to which these features modulate biomass

variation in WW and OSR remains underexplored in Central

European systems, particularly under varying climate conditions

and from a geostatistical perspective.

Moreover, topographic variables, such as elevation, slope angle

and aspect, alongside the soil potential (e.g., fertility, water-holding

capacity) strongly influence biomass productivity by modulating

local microclimates, water availability, and mechanization

feasibility (Gessler et al., 1995; Maestrini and Basso, 2018). These

environmental gradients interact with climate variability, shaping

crop responses in spatially heterogeneous ways that are not clearly

captured by traditional yield models (Bönecke et al., 2020).

Against this backdrop, this study aims to evaluate the predictive

accuracy of a coupled approach that integrates RF with LUE-

modeled biomass, comparing it against stand-alone LUE biomass

estimates from Dhillon et al. (2023a) at the hexagon level and

statistical yield data at the district level for the entire Bavaria.

Additionally, we assess how biomass varies for WW and OSR in

response to interacting environmental drivers across Bavaria, and

determine the extent to which RF models explain biomass

distribution across diverse landscapes and climatic conditions.
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To achieve these aims, we integrate RS-derived biomass data

with a suite of spatial and spatio-temporal predictors, including the

Shannon Diversity Index (SHDI), small woody features (SWFs),

topography, soil potential, and climate variability from 2001 to

2019, using a 5 km² hexagon-based spatial framework. To further

interpret the influence of predictors on biomass outcomes across

crops and regions, we apply SHapley Additive exPlanations (SHAP)

values and Partial Dependence Plots (PDPs). This multi-

dimensional approach offers insights into crop-specific responses

to environmental heterogeneity and supports evidence-based

agricultural planning under changing environmental conditions.
2 Materials and methods

2.1 Study area

This study focuses on Bavaria, the largest federal state in

Germany, extending from 47°N to 50.5°N latitude and 9°E to 14°E

longitude (Figure 1). Spanning approximately 70,550 km², about

one-fifth of Germany’s land area, Bavaria features a highly

heterogeneous terrain, ranging from the Bavarian Alps in the south

to the Bavarian Forest and Fichtel Mountains in the east. It includes

lowland regions such as the Franconian Basin in the north and the

Danube River Valley traversing the central-southern part of the state.

This spatial gradient significantly influences the regional climate, with

mean annual temperatures ranging from -3.3°C to 11°C and annual

precipitation sums from 500 mm in northern lowland areas to over

3,100 mm in the southern Alp (DWD, 1991–2020).

Forests cover 36.9% of Bavaria, while agricultural land accounts

for 31.7%, primarily under cereal cultivation (Dhillon et al., 2022).

According to LfStat (2020), WW occupied 23.9% of arable land,

followed by silage and corn maize (21.4%), winter barley (11.4%),

and summer barley (1.8%). OSR, grouped under “other field crops,”

constitutes around 1%.

The analysis was structured around six distinct agricultural

regions in Bavaria accounting for their agroecological and

geomorphological conditions: the Alps and Pre-Alps, East-Bavarian

Mid-Range Mountains, Franconia, Northern Bavarian Hill Area,

Region of Jurassic Sediments, and Tertiary Hills Region (Wiesmeier

et al., 2013; Wittmann, 1983; Würfl et al., 1984). Crop distribution

varies across these regions. For example, the share of Bavaria’s total

WW and OSR cultivation located in the Alps and Pre-Alps was

minimal— 0.8% and 0.1%, respectively— while in the East-Bavarian

Mid-Range Mountains, these shares were 2.0% and 0.7%. This limited

presence is likely due to the cooler, wetter climate and rugged terrain

in these areas. In contrast, with its warm, dry climate and fertile soils,

Franconia supports 10.4% of WW and 1.8% of OSR. The Northern

Bavarian Hill Area supported moderate cultivation (WW: 5.5%, OSR:

1.1%), while the Region of Jurassic Sediments (WW: 7.8%, OSR: 2.2%)

and Tertiary Hills Region (WW: >20%) represented key regions with a

large share of WW and OSR cultivation, supported by favorable soil

and climatic conditions. These proportions represented the average

field area between 2005 and 2019 [calculated from the field data by the

Integrated Administration and Control System (IACS)].
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2.2 Data

2.2.1 Satellite-based biomass data
Biomass was estimated using an LUE model based on a fused

Landsat–MOD13Q1 NDVI time series at 30 m resolution. The

fusion employed the Spatial and Temporal Adaptive Reflectance

Fusion Model (STARFM) algorithm (Gao et al., 2006) to produce
Frontiers in Plant Science 04
an 8-day, cloud-free NDVI dataset (Dhillon et al., 2022). The LUE

model incorporated solar radiation and stress scalars for minimum

temperature (Tmin’), and vapor pressure deficit (VPD’) (Dhillon

et al., 2023a) (Equation 1).

Biomass =  o
EOS

SOS
APAR* (Tmin

0 �VPD0
)*  ∈o (1)
FIGURE 1

(A) Overview of the study region where the analysis is performed individually for Bavaria and its six agricultural areas: Alps and Pre-Alps, East-
Bavarian Mid-Range Mountains, Franconia, Northern Bavarian Hill Area, Region of Jurassic Sediments, and Tertiary Hills Region. (B) The analysis is
performed at hexagon levels on Bavaria’s land cover map (https://www.landklif.biozentrum.uni-wuerzburg.de/, accessed on 21 June 2021). Each
hexagon has an area of 5 km2. Every hexagon is used to retrieve the field-based information on winter wheat and oilseed rape fields. The enlargement
(displayed with a dark red box on the top-left map) shows the agricultural area of the village Volkach in Lower Franconia (northern Bavaria), with a peach-
green color of agricultural fields in 2019.
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In this equation, APAR is absorbed photosynthetically active

radiation (MJ m−2 day−1), SOS and EOS are the start-and end of

seasons of WW and OSR, and єo is the optimal light-use efficiency

(grams of carbon per megajoule of APAR (gC MJ−1)). The total

aboveground biomass calculated by the LUE model is equivalent to

the net primary productivity (NPP) (decitonnes (dt) ha−1 yr−1,

with 1 dt ha−1 = 100 kg ha−1). Biomass was calculated per pixel for

each crop-specific growing season: 15 February to 20 April for OSR

(Zamani-Noor and Feistkorn, 2022) and 15 April to 30 June for

WW (Harfenmeister et al., 2021), for each year from 2001 to 2019.

Field boundaries and crop type information from the IACS

database were used to identify WW and OSR pixels prior to LUE

modeling, ensuring that biomass was estimated only within

confirmed crop fields. All biomass values were expressed in dt

ha−1, representing area-standardized estimates of productivity.

2.2.2 Climate data
Daily climate variables, i.e., mean temperature (°C),

precipitation (mm), and solar radiation (W m−2), were obtained

from the Department of Applied Computer Science, Institute of

Geography, University of Augsburg (https://www.uni-augsburg.de/

de/fakultaet/fai/geo/prof/georkl/, accessed on 21 June 2021). These

data were dynamically downscaled to 2,000 m resolution from

ERA5 reanalysis using the hydrologically enhanced WRF model

(Gochis et al., 2018; Hersbach et al., 2020; Skamarock et al., 2019).

The dataset covered the 2001–2019 period and was aggregated by

crop-specific growing seasons to calculate growing-season means

and standard deviations (SDs) per year hexagon for each climate

variable, as described in Section 2.3.1.

2.2.3 Topography and soil potential
Topographic variables, including elevation (m a.s.l.), slope angle

(degrees), and aspect (radians), were derived from the Shuttle Radar

Topography Mission (SRTM) dataset at 30 m spatial resolution

(Farr et al., 2007). Elevation data were accessed and processed in

Google Earth Engine, where slope and aspect were calculated using

the platform’s built-in terrain analysis functions.

Soil potential was derived from the Müncheberg soil quality

ranking (SQR) dataset (Mueller et al., 2013), developed by the Leibniz

Centre for Agricultural Landscape Research (ZALF) (https://

www.bgr.bund.de/DE/Themen/Boden/Ressourcenbewertung/

Ertragspotential/Ertragspotential_node.html, accessed on 10

December 2023). The SQR evaluates the long-term agricultural

soil quality on a 0–100 scale, thus providing an approximation of

the crop yield potential. It was available at 250 m resolution.

2.2.4 IACS crop boundaries
Field-specific boundaries for WW and OSR were extracted from

IACS data provided by the Bavarian State Institute for Agriculture

(Bayerische Landesanstalt für Landwirtschaft, LfL) under a data

agreement with the University of Würzburg. These shapefiles,

available from 2005 to 2019, were used both to identify crop-

specific pixels prior to LUE biomass modeling and to mask

topographic, soil, and climate variables. This ensured that all

analyses were strictly limited to areas cultivated with winter
Frontiers in Plant Science 05
wheat or oilseed rape. For the years 2001 to 2004, the field

boundaries of WW and OSR were reconstructed with the

following approach: Pixels were identified for which the NDVI

time series during the respective growing seasons closely matched

the phenological profiles of these crops observed in 2005. NDVI

data from fields delineated by the earliest available IACS boundaries

were used for this. This step ensured consistency across the full

2001–2019 period and allowed us to capture long-term trends and

interannual climate variability in biomass predictions.

2.2.5 Land use/land cover data
The land use/cover (LULC) map used in this study was

generated as part of the interdisciplinary Landklif project (https://

www.landklif.biozentrum.uni-wuerzburg.de/, accessed on 21 June

2021) by integrating multiple datasets, including the Amtliche

Topographisch-Kartographische Informationssystem (ATKIS),

IACS, and Corine Land Cover (CLC, 100 m resolution). The LULC

map represents land use conditions for 2019 and was developed for

research purposes rather than as an official dataset. The classification

process reclassified features from ATKIS, IACS, and CLC into six

major land use categories: agriculture (annual crops, perennial crops,

and managed grassland), forest (deciduous, coniferous, and mixed

forest), grassland (managed and permanent grasslands), urban areas

(settlements and traffic infrastructure), water bodies, and natural/

semi-natural areas (hedgerows, wetlands, unmanaged grasslands, and

succession areas). A hierarchical selection approach was applied to

resolve spatial and thematic inconsistencies among IACS, ATKIS,

and CLC datasets. IACS was prioritized for agricultural areas due to

its high spatial accuracy and crop-specific detail; ATKIS for forest,

grassland, urban, and water classes due to its detailed topographic

data; and CLC to supplement natural and semi-natural areas. Where

classification conflicts (e.g., the same parcel labeled differently across

sources) or data gaps occurred, CLC was used to fill in missing or

inconsistent information. The resulting harmonized land use/cover

map formed the basis for calculating landscape metrics.

2.2.6 Small woody features
Small woody features (SWFs) were derived from the Copernicus

SWF dataset (2018) (https://land.copernicus.eu/pan-european/high-

resolution-layers/small-woody-features/small-woody-features-2018,

accessed 17 August 2023). The percentage of woody linear and

patchy vegetation (e.g., hedgerows, tree rows) per hexagon was used

to quantify local landscape complexity at 5 m resolution.

2.2.7 In-situ crop yield data
District-level crop yield data for WW and OSR (dt ha−1) from

2001–2019 were obtained from the LfStat and used to validate

modeled biomass outputs (https://www.statistikdaten.bayern.de/,

which may require access credentials or institutional affiliation for

data download, accessed on 21 June 2021). To validate the modeled

biomass, hexagon-based RF-predicted biomass values were

converted to yield estimates using crop-specific harvest indices:

0.48 for WW (Hay, 1995) and 0.30 for OSR (Diepenbrock, 2000).

These yield estimates were then aggregated to the district level and

compared to LfStat yield statistics using quadratic regression. Model
frontiersin.org
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performance was evaluated using the coefficient of determination

(R²), root mean square error (RMSE), and normalized

RMSE (NRMSE).
2.3 Methods

2.3.1 Data preparation
All datasets were spatially aligned to a hexagonal grid of 5 km²

resolution covering Bavaria (Figure 2). The hexagon framework

enabled spatial aggregation of predictors and response variables.

Within each hexagon, biomass (dt ha-1) was first averaged annually

per hectare and then across the 2001–2019 period, ensuring that

values reflect mean biomass per unit area rather than total biomass

for each hexagon and crop.

Climate variables (precipitation, temperature, and solar

radiation) were first extracted as daily data from 2001 to 2019

and then aggregated for each crop’s growing season. For each year,

growing-season precipitation sums, growing-season mean

temperatures, and growing-season mean solar radiation were

calculated, along with their respective SDs per hexagon. These
Frontiers in Plant Science 06
annual growing-season metrics were then averaged across the 19

years to derive multi-annual mean and SD values per hexagon,

serving as spatio-temporal predictors in the RF model.

Topographic variables (elevation, slope, aspect) and soil

potential values represent static landscape features. The elevation

and terrain data were originally developed in 2007, while soil

potential maps were compiled in 2013. As these variables do not

change annually, their values were assumed to be stable across the

entire study period. Accordingly, they were extracted at their native

spatial resolutions and aggregated to hexagon-level means and SDs,

using crop-specific masks from 2005 to 2019 (based on IACS data)

and from 2001 to 2004 (as reconstructed in Section 2.2.4). This

allowed consistent spatial representation of topography and soil

quality across the full 2001–2019 time series, enabling inclusion of

early years that were essential for analyzing long-term climate

variability and trends in biomass accumulation. The spatial

distributions of climate predictors for WW and OSR are shown

in Figures A1 and A2, while the distributions of topographic and

soil predictors are presented in Figure A3.

Landscape diversity was measured using the SHDI, which was

computed on the 30 m resolution 2019 LULC map using a 9×9
FIGURE 2

Overview of the data processing and modeling workflow for biomass prediction of winter wheat (WW) and oilseed rape (OSR) in Bavaria using
Random Forest (RF) models. The upper panel illustrates the hexagon-based data preparation approach, integrating spatial predictors (landscape
metrics, topography-soil) and spatio-temporal climate variables (temperature, precipitation, solar radiation) alongside LUE-modeled biomass for the
period 2001 – 2019. Predictor variables include the mean and standard deviation (SD) of Shannon Diversity Index (SHDI), small woody features
(SWF), topographic, soil, and climate factors. Biomass responses for WW and OSR were calculated per hexagon and used in RF modeling with a
70:30 train-test split. Model validation involved two steps: (1) comparing RF-modeled biomass to district-level yield statistics from LfStat, and (2)
benchmarking RF against LUE-modeled biomass at the hexagon scale. The right panel presents the main analytical outputs: (i) variable importance
analysis ranking predictor contributions to model accuracy, (ii) Bivariate SHapley Additive exPlanations (SHAP)-based spatial analysis revealing local
predictor impacts across Bavaria, and (iii) Partial Dependence Plots (PDPs) showing the global marginal effects of key predictors (e.g., temperature)
on biomass.
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moving window (270 m×270 m). SHDI values were then aggregated

within each 5 km² hexagon based on five land cover classes:

agriculture, forest, grassland, water, and natural/semi-natural

areas. This window size was selected to balance local sensitivity

with landscape-level smoothing, allowing the capture of relevant

habitat heterogeneity without being overly influenced by small-scale

noise. Compared to smaller windows (e.g., 3×3 or 7×7), the 9×9

window provided a more ecologically meaningful representation of

land-cover diversity at the hexagon scale (Dhillon, 2023). SHDI

values ranged from 0 (no diversity) to ~1.6, with values above 0.8

reflecting moderate to high land-cover diversity. The mean SHDI

captured overall diversity, while the SD of SHDI reflected landscape

heterogeneity and fragmentation (McGarigal et al., 2002; Wagner

and Fortin, 2005). SWF (%) was calculated per hexagon from 5 m

resolution data. The spatial distributions of mean SHDI, SD SHDI,

and SWF (%) across Bavaria are presented in Figure A4.

2.3.2 RF modeling
We selected the RF regression models due to its well-

documented robustness in handling nonlinear relationships,

multi-collinearity, and mixed data types without requiring strict

assumptions about data distribution. RF has been widely used in

agro-ecological studies for spatial prediction and variable

importance analysis (Breiman, 2001; Dhillon et al., 2023b). Given

our study’s focus on interpretability and the large number of spatial

predictors, RF was a suitable and computationally efficient choice.

Although alternative models such as gradient boosting or support

vector machines exist, this study focused on RF as a representative

and widely accepted machine learning approach.

RF regression models were applied separately for WW and OSR

using the randomForest package in R (Liaw and Wiener, 2002). The

response variable was multi-annual mean biomass, with predictors

grouped as follows: (i) climate (mean and SD of temperature, solar

radiation, and precipitation), (ii) topography and soil (mean and SD

of elevation, slope angle and aspect, and soil potential), and (iii)

landscape structure (mean and SD of SHDI and percent SWF cover).

Model performance was evaluated using a 70:30 train-test split.
2.3.3 Statistical analysis
Model performance was assessed through two validation steps:

(i) RF-predicted biomass was converted to crop yield using harvest

indices (0.48 for WW and 0.30 for OSR), averaged per district, and

compared to official yield statistics from LfStat (as described in

Section 2.2.7), and (ii) RF- and LUE-predicted biomass was

compared at the hexagon scale. Model accuracy was quantified

using: (i) the R² (Equation 2), (ii) the RMSE (Equation 3), and the

NRMSE (Equation 4) calculated as:

R2 = 1 − o(Oi − Pi)
2

o(Oi − O0)2
(2)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Oi − Pi)

2

s
(3)
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NRMSE =
RMSE
O0 *100 (4)

In the equation, Pi is the predicted value, Oi is the observed

value, O’ is the observed mean value, and n is the total number of

observations. Variable importance was assessed using mean

decrease in accuracy. To interpret the contribution of each

predictor variable in the RF models, we applied SHAP and PDPs.

SHAP values provide a local explanation by quantifying the

influence of each predictor on individual predictions (i.e., per

hexagon in our study). The values are derived from cooperative

game theory and are normalized between 0 (no influence) and 1

(maximum influence), enabling spatial visualization of variable

importance across Bavaria (Lundberg and Lee, 2017). This allows

us to identify which variables matter most and where in the

landscape they are most influential.

In contrast, PDPs offer a global explanation by showing the

marginal effect of a predictor on the model’s output, averaged across

the data. Each PDP curve illustrates how changes in a single

predictor (e.g., mean solar radiation or slope angle) affect the

predicted biomass when all other predictors are held constant

(Friedman, 2001). This contributes to understanding the

direction, threshold effects, and nonlinearity in the relationship

between environmental variables and biomass. Together, these

methods provide a comprehensive understanding of model

behavior: SHAP values reveal where and how strongly variables

matter locally, while PDPs show how variables relate to biomass

production across their full value range.
3 Results

3.1 Model validation and key predictors of
biomass

District-level yield validation quantifies the accuracy of the RF

model. For WW, the model achieves an R2 of 0.87, RMSE of 2.85 dt

ha−1, and NRMSE of 4.10% (Figure 3A). For OSR, the model yields

an R2 of 0.86, RMSE of 1.24 dt ha−1, and NRMSE of 3.50%

(Figure 3B). These results indicate a strong agreement between

predicted and observed yields at the district level. This strong

relationship likely stems from the integration of key agro-

environmental predictors such as seasonal climate variability,

landscape diversity, and soil potential, which collectively capture

the main drivers of yield variation at the district level. The model is

evaluated against mean LUE-derived biomass for 2001–2019 at the

hexagon scale. The RF model attains an R² of 0.73 (RMSE = 14.10 dt

ha−1) for WW and an R² of 0.71 (RMSE = 0.96 dt ha−1) for OSR

(Figures 4A, B), reflecting substantial spatial agreement across both

crops. However, the scatter plot for WW displays a compressed

range, particularly at the lower biomass end. Only a few

observations fall below 50 dt ha−1 and the model overestimates

low biomass. In contrast, OSR shows a more continuous, near-

normal distribution, suggesting more consistent agreement across

the full biomass range. The model is evaluated against mean LUE-

derived biomass from 2001 to 2019 at the hexagon level. For WW,
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the RF model achieved an R2 of 0.73, a RMSE of 14.10 dt ha−1, and a

NRMSE of 29.01% (Figure 4A). For OSR, the model yielded an R2 of

0.71, RMSE of 9.60 dt ha−1, and NRMSE of 12.47% (Figure 4B).

These results indicate substantial spatial agreement for both crops,

with a lower relative prediction error for OSR. The scatter plot for

WW shows a compressed range, particularly at the lower biomass

end, where few observations fall below 50 dt ha−1 and the model

tends to overestimate values. In contrast, OSR displays a more

continuous distribution across the biomass range, indicating more

consistent model performance and lower dispersion of errors.

Variable importance analysis reveals crop-specific predictors of

biomass. For WW, the mean elevation, SHDI, and soil potential are

most influential (Figure 5A), indicating a strong influence of

topography and landscape structure. For OSR, solar radiation,
Frontiers in Plant Science 08
precipitation, and soil potential are the most important predictors

(Figure 5B), suggesting greater sensitivity to climatic conditions.
3.2 Effects of landscape features on
biomass distribution

For WW, SHDI, expressed as a dimensionless index, has a

strong influence in Franconia, the Region of Jurassic Sediments, and

the Tertiary Hills Region (bluish colors in Figure 6A). Biomass

increases where SHDI exceeds 0.8 and plateauing at 1.4 (Figure 6C).

High variability (SD > 0.6) in SHDI is associated with reduced

biomass. SHAP analysis determines the positive effect of moderate

woody element presence (greenish colors in Figure 6A). SWFs have
FIGURE 3

The scatter plots compare the RF-modeled yields (dt ha-1) against the mean of the district-level agricultural yields of (A) winter wheat (WW) and (B)
oilseed rape (OSR) from the LfStat. The green dots represent WW. Orange dots represent OSR for each district. Plots contain a solid line to visualize
the correlation of pixels between the referenced and modeled yield values. n represents the number of districts available to validate WW and OSR in
Bavaria.
FIGURE 4

The scatter plots compare the RF-modeled biomass (dt ha-1) against the LUE-modeled biomass of (A) winter wheat (WW) and (B) oilseed rape (OSR).
The green dots represent WW. Orange dots represent OSR for each hexagon. Plots contain a solid line to visualize the correlation of pixels between
the referenced and modeled biomass values. N represents the number of hexagons available for validation for WW and OSR in Bavaria.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1630087
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dhillon et al. 10.3389/fpls.2025.1630087
the most decisive influence in the East-Bavarian Mid-Range

Mountains, the Northern Bavarian Hill Area, and the Alps and

Pre-Alps. The PDP reveals that predicted biomass increases with

SWF coverage, reaching a plateau at approximately 7% SWF cover,

indicating a positive but saturating effect of woody elements on

WW productivity (Figure 6D). Around 25% of hexagons in

Franconia, 27% in the East-Bavarian Mid-Range Mountains, and

30% in the Tertiary Hills Region show co-influence from both

landscape metrics (Figure 6B).

For OSR, SHDI has the greatest influence in Franconia and the

Tertiary Hills Region (bluish colors in Figure 7A), while SWFs exert

a stronger influence in the Alps, Pre-Alps and the East-Bavarian

Mid-Range Mountains (greenish colors in Figure 7A). Around 40%

of hexagons in Franconia, 34% in the Tertiary Hills Region, and

26% in the Region of Jurassic Sediments show co-influence from

SHDI and SWF (Figure 7B). Biomass increases with SHDI up to

approximately 1.4 but declines sharply when variability (SD)

exceeds 0.8, indicating a negative effect of highly fragmented

landscapes (Figure 7C). This negative effect at high SD values

may partially reflect a statistical artifact, as hexagons with high

mean SHDI often consist of uniformly diverse land-cover

compositions, which inherently constrain further variability.

However, such configurations also reduce the dominance of

productive crop land, potentially lowering biomass, and the RF

model captures this relationship through its hierarchical structure.

The predicted biomass consistently rises with increasing SWF

coverage, reaching a plateau near 7%, reflecting a positive but

saturating effect of woody elements on OSR productivity (Figure 7D).
3.3 Climate influence on biomass
distribution

Solar radiation emerges as the most important climatic

predictor for WW, especially in the Tertiary Hills Region

(Figure 8A). Biomass increases with mean solar radiation,
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plateauing at ~280 W m−2 per day (Figure 8D), while variability

above 40 W m−2 per day reduces biomass (Figure 8E). Temperature

positively influences biomass between 17 – 20°C, with declines

beyond 21°C (Figure 8B). Even slight interannual variability in

temperature, exceeding just 0.1 – 0.2 °C, appears to substantially

reduce predicted biomass, highlighting the crop’s sensitivity to

temperature fluctuations (Figure 8C). Precipitation above 2 mm

day−1 supports higher biomass (Figure 8F), but variability exceeding

0.2 mm day−1 has a negative impact (Figure 8G). These thresholds

represent model-derived inflection points from PDP analysis under

the 2001–2019 conditions in Bavaria.

For OSR, solar radiation is the most influential climatic driver

(Figure 9A). Biomass increases with solar radiation up to ~250 W

m−2 per day (Figure 9D), with little gain beyond this value.

Temperature stability is associated with higher biomass, but

declines are evident when the mean temperature exceeds 12°C

(Figure 9B). Precipitation has positive effects above 1.5 mm day−1

(Figure 9F), while high variability (SD > 0.15 mm day−1)

corresponds to reduced biomass (Figure 9G). In contrast to WW,

variability in temperature and solar radiation shows little effect on

OSR biomass (Figures 9C, E). This may reflect OSR’s earlier

growing season (mid-February to April), during which climatic

conditions are typically more stable. As with WW, the thresholds

represent model-based responses specific to the 2001–2019 climatic

conditions in Bavaria and are not intended as universal

physiological limits.
3.4 Role of soil and topography in biomass
patterns

Across Bavaria, the biomass of WW decreases with increasing

elevation, particularly beyond 300 m a.s.l., and stabilizes at lower

values beyond 400 m (Figure 10B). Slope angle shows an adverse

effect on biomass, with reductions starting beyond 3°, and further

declines beyond 8° (Figure 10D). In contrast, biomass positively
FIGURE 5

Variable importance for prediction of multi-annual mean biomass (2001-2019) at the hexagon level for winter wheat (WW) and oilseed rape (OSR).
Panels (A) and (B) show the variable importance at the Bavarian scale for WW and OSR, respectively. Green bars represent WW, and orange bars
represent OSR. SD refers to standard deviation, SWF refers to small woody features, and SHDI stands for the Shannon Diversity Index.
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responded to soil potential, increasing sharply above an SQR score

of 60 and plateauing near 75 (Figure 10C). This reflects the soil’s

capacity to support high productivity under favorable conditions.

SHAP values indicate that soil potential exerts a particularly strong

influence on biomass in Franconia and the Tertiary Hills Region. At

the same time, elevation emerges as a key factor in areas with

pronounced altitudinal gradients, including the Alps, East-Bavarian

Mid-Range Mountains, and the Region of Jurassic Sediments, where

its impact on biomass is notably higher (Figure 10A).
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OSR biomass shows a milder decline with elevation, with the

lowest values occurring between 350–400 m above sea level,

followed by a slight recovery above 450 m (Figure 11B). The

effect of slope angle is weaker than for WW, with only a slight

reduction in biomass occurring beyond 8° (Figure 11D). Biomass

increased with soil potential above 50, reaching a peak near an SQR

score of 75 (Figure 11C). SHAP analysis confirms that soil potential

plays a central role across all oilseed rape-growing regions, while

slope shows minimal spatial influence (Figure 11A).
FIGURE 6

Spatial and statistical analysis of the influence of Shannon Diversity Index (SHDI) and Small Woody Features (SWF) on winter wheat (WW) biomass
across Bavaria. (A) Bivariate SHapley Additive exPlanations (SHAP) map displaying normalized SHAP values (range: 0–1) for SHDI and SWF per
hexagon, with higher values indicating stronger influence on WW biomass. A zoomed-in hexagon highlights an example where SWF has a high
influence (green tone), while SHDI influence is low, suggesting a landscape with abundant woody elements but low overall land cover diversity.
(B) Hexagon density matrix (%) showing the proportion of hexagons influenced by high/low SHDI and high/low SWF across Bavaria’s six agricultural
regions: APA (Alps and Pre-Alps), EBMRM (East-Bavarian Mid-Range Mountains), Franconia, NBHA (Northern Bavarian Hill Area), RJS (Region of
Jurassic Sediments), and THR (Tertiary Hills Region). (C) Partial Dependence Plots (PDPs) showing the effect of SHDI mean and standard deviation
(SD) on predicted WW biomass. While mean SHDI indicates overall land cover diversity, the SD of SHDI reflects intra-hexagon variability, i.e., whether
the landscape is uniformly diverse or contains spatial heterogeneity in patch types. (D) PDP showing the effect of SWF (%) on predicted biomass of
WW. In both PDPs, predicted biomass values are normalized between 0 and 1, with 1 indicating maximum modeled biomass.
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4 Discussion

4.1 Advantages of coupling RF with LUE for
biomass prediction

Our study demonstrates that coupling the RF regression model

with LUE-derived biomass outputs improves predictive accuracy

compared to using the LUE model alone. While LUE models are

widely applied for estimating annual biomass based on

physiological constraints such as solar radiation, temperature
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stress, and vapor pressure deficit, they are limited in capturing

the environmental heterogeneity’s spatial and temporal variability

(Turner et al., 2002). The coupled RF approach leverages

mechanistic process understanding and data-driven pattern

recognition by integrating LUE-modeled biomass as the response

variable and enriching the model with a broader set of predictors.

The predictors included the mean and SD of spatial variables (e.g.,

SHDI, elevation, slope, aspect, and soil potential) and spatio-

temporal climate variables (mean and SD of temperature, solar

radiation, and precipitation) from 2001 to 2019. Compared to the
FIGURE 7

Spatial and statistical analysis of the influence of Shannon Diversity Index (SHDI) and Small Woody Features (SWF) on oilseed rape (OSR) biomass
across Bavaria. (A) Bivariate SHapley Additive exPlanations (SHAP) map displaying normalized SHAP values (range: 0–1) for SHDI and SWF per
hexagon, with higher values indicating stronger influence on WW biomass. A zoomed-in hexagon highlights an example where SWF has a high
influence (green tone), while SHDI influence is low, suggesting a landscape with abundant woody elements but low overall land cover diversity.
(B) Hexagon density matrix (%) showing the proportion of hexagons influenced by high/low SHDI and high/low SWF across Bavaria’s six agricultural
regions: APA (Alps and Pre-Alps), EBMRM (East-Bavarian Mid-Range Mountains), Franconia, NBHA (Northern Bavarian Hill Area), RJS (Region of
Jurassic Sediments), and THR (Tertiary Hills Region). (C) Partial Dependence Plots (PDPs) showing the effect of SHDI mean and standard deviation
(SD) on predicted WW biomass. While mean SHDI indicates overall land cover diversity, the SD of SHDI reflects intra-hexagon variability, i.e., whether
the landscape is uniformly diverse or contains spatial heterogeneity in patch types. (D) PDP showing the effect of SWF (%) on predicted biomass of
WW. In both PDPs, predicted biomass values are normalized between 0 and 1, with 1 indicating maximum modeled biomass.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1630087
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dhillon et al. 10.3389/fpls.2025.1630087
stand-alone LUE model (R² = 0.79, RMSE = 4.51 dt ha−1 for WW),

the coupled RF-LUE approach improved accuracy by ~10% and

reduced RMSE by 36% (Dhillon et al., 2023a). For OSR, while R²

remained at 0.86, coupling nearly halved the RMSE, highlighting

the added value of combining physiological modeling with machine

learning. These findings are consistent with prior results from our
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earlier study, where a hybrid RF model using LUE-derived biomass

achieved a ~14% improvement in R² and reduced error relative to

the LUE model alone (Dhillon et al., 2023b). However, that study

was limited to the year 2019, used only climate variables as

predictors, and was conducted at the district level. In contrast, the

current study spans a longer period (2001–2019), integrates
FIGURE 8

Spatial and functional impact of climate variables on winter wheat (WW) biomass across Bavaria. (A) SHapley Additive exPlanations (SHAP)-based
spatial distribution of the influence of mean temperature (red), mean solar radiation (yellow), and mean precipitation (blue) on predicted WW
biomass. (B–G) Partial Dependence Plots (PDPs) showing the relationship between normalized predicted biomass and (B) mean temperature, (C)
standard deviation (SD) of temperature, (D) mean solar radiation, (E) SD of solar radiation, (F) mean precipitation, and (G) SD of precipitation. In all
PDPs, predicted biomass values are normalized between 0 and 1, with 1 indicating maximum modeled biomass.
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additional landscape, topographic, and soil predictors, and applies a

finer-scale hexagon-based spatial framework for improved

resolution and generalizability. Similar outcomes were reported

by Shahhosseini et al. (2021), who showed that integrating
Frontiers in Plant Science 13
outputs from process-based crop models into machine learning

frameworks reduced yield prediction errors by 7–20% across the

U.S. Corn Belt. Overall, integrating RF with LUE offers a more

robust modeling framework by capturing nonlinear responses and
FIGURE 9

Spatial and functional impact of climate variables on oilseed rape (OSR) biomass across Bavaria. (A) SHapley Additive exPlanations (SHAP)-based
spatial distribution of the influence of mean temperature (red), mean solar radiation (yellow), and mean precipitation (blue) on predicted WW
biomass. (B–G) Partial Dependence Plots (PDPs) showing the relationship between normalized predicted biomass and (B) mean temperature, (C)
standard deviation (SD) of temperature, (D) mean solar radiation, (E) SD of solar radiation, (F) mean precipitation, and (G) SD of precipitation. In all
PDPs, predicted biomass values are normalized between 0 and 1, with 1 indicating maximum modeled biomass.
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threshold effects and better accounting for spatial variation across

landscapes (De’ath and Fabricius, 2000).

While the hybrid RF-LUE approach substantially improved

prediction accuracy, further analysis of the validation scatter plots

revealed crop-specific differences in model behavior. For OSR, the
Frontiers in Plant Science 14
modeled biomass values followed a relatively continuous and near-

normal distribution across the full biomass range, suggesting

consistent predictive performance. In contrast, the WW scatter

plot displayed a compressed distribution, with few low-biomass

hexagons and an overestimation of low values. This discrepancy
FIGURE 10

Spatial influence of soil-topography factors on the predicted biomass of winter wheat (WW) across Bavaria. (A) SHapley Additive exPlanations
(SHAP)-based analysis illustrating the impact of mean elevation (gray), mean soil potential (brown), and mean slope (green) on biomass prediction.
Higher intensity colors indicate a stronger influence of the respective factors. (B–D) Partial dependence plots (PDPs) showing the relationship
between predicted biomass and (B) mean elevation (m a.s.l.), (C) mean soil potential, and (D) mean slope (°). In all PDPs, predicted biomass values
are normalized between 0 and 1, with 1 indicating maximum modeled biomass.
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may arise from limitations in the LUE model’s ability to represent

low biomass conditions for WW, potentially linked to NDVI

saturation effects, phenological misclassification, or unaccounted

environmental stressors. These observations emphasize that, in

addition to global accuracy metrics such as R² and RMSE, the
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distributional characteristics of model predictions provide valuable

insights into model performance and should be considered in future

model refinements.

Although RF models require careful tuning to avoid overfitting,

coupling them with mechanistic crop models improves both
FIGURE 11

Spatial influence of soil-topography factors on the predicted biomass of oilseed rape (OSR) across Bavaria. (A) SHapley Additive exPlanations (SHAP)-
based analysis illustrating the impact of mean elevation (gray), mean soil potential (brown), and mean slope (green) on biomass prediction. Higher
intensity colors indicate a stronger influence of the respective factors. (B–D) Partial dependence plots (PDPs) showing the relationship between
predicted biomass and (B) mean elevation (m a.s.l.), (C) mean soil potential, and (D) mean slope (°). In all PDPs, predicted biomass values are
normalized between 0 and 1, with 1 indicating maximum modeled biomass.
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interpretability and accuracy (Segal, 2004; Shahhosseini et al., 2021).

This hybrid approach holds promise for advancing large-scale, spatially

explicit biomass estimation under diverse environmental conditions.
4.2 Landscape effects on biomass
predictions

Our findings reinforce a growing body of evidence that landscape

structures, specifically landscape diversity and the presence of SWFs,

play a critical role in predicting crop biomass production across diverse

agricultural systems. These results are consistent with landscape-scale

studies demonstrating how land-use diversity enhances ecosystem

resilience by buffering crops against environmental stressors (Nelson

and Burchfield, 2021). For instance, analyses across counties in the

USA reported that increased landscape complexity can boost corn and

wheat yields by up to 20%, an effect attributed to pollination, pest

regulation, and microclimatic moderation improvements (Nelson and

Burchfield, 2021).

The role of SWFs in enhancing crop stability is also well-

documented in agroecological literature. The stabilizing effect of

SWFs on biomass observed in this study is likely due to their

capacity to buffer microclimatic extremes and support beneficial

arthropod populations. Previous research has shown that woody

features, such as hedgerows and tree lines serve as habitats for

pollinators and natural enemies of pests (Albrecht et al., 2020).

They also reduce wind exposure and enhance soil moisture

retention, factors especially critical during dry periods. Galpern

et al. (2020) showed that even small additions of complex land cover

at field boundaries can increase yield outcomes. Similarly, Nguyen

et al. (2022) used RS to demonstrate that yields in canola fields were

higher up to 100 meters from structurally complex field margins in

a 100 × 100 km area of Alberta, Canada—a finding that resonates

with our results. In our study, higher biomass levels of WW and

OSR are predicted in regions of Bavaria (approximately 70,550 km²)

characterized by greater landscape diversity and increased presence

of SWFs, indicating that such structural complexity supports higher

biomass at a much broader spatial scale.

Importantly, our results underscore the crop-specific nature of

landscape effects. While both WW and OSR benefitted from

moderate to high SHDI and SWF coverage, OSR appeared more

sensitive to variation in landscape structure—particularly as

represented by the spatial distribution and diversity of land cover

types. This heightened sensitivity does not necessarily reflect a

response to environmental fluctuations (e.g., climatic variability),

but rather suggests that oilseed crops may be more influenced by

local habitat configuration, potentially due to their narrower

ecological tolerances and more complex phenological

requirements (Ahmad et al . , 2021). In contrast, WW

demonstrates less sensitivity to spatial variation in landscape

structure, which may reflect the broader ecological adaptability

often observed in cereal crops (Baldoni et al., 2021). Regionally, this

was most apparent in Franconia and the Tertiary Hills Region,

where higher SHDI and moderate SWF coverage coincided with

greater biomass production, while the more fragmented Alpine and
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East-Bavarian Mid-Range Mountains regions showed lower

performance under similar conditions.

Interestingly, we also observed a plateau in the relationship

between biomass and the highest values of SHDI or SWF. This

suggests that beyond a certain threshold, increasing structural

complexity does not necessarily lead to further biomass gains.

One possible explanation lies in management constraints

associated with highly structured agricultural landscapes: smaller

fields, irregular shapes, and dense boundary features can limit the

efficiency of mechanized farming, reduce field-level management

intensity, or complicate crop rotation strategies. These landscapes

may also reflect less intensive farming systems (e.g., smallholder or

low-input agriculture), which could naturally yield lower biomass

despite their ecological benefits. Thus, while moderate levels of

landscape complexity appear beneficial, very high values may not

always correspond to the highest productivity levels.

Collectively, these results highlight the value of incorporating

spatial landscape metrics into biomass modeling frameworks.

When used alongside climatic and edaphic predictors, metrics

such as SHDI and SWF can enhance our ability to predict and

manage spatial variability in crop performance. Furthermore, they

lend empirical support to the principles of ecological intensification:

maintaining structurally diverse agricultural landscapes not only

supports biodiversity but also improves yield stability under

increasing climatic variability.
4.3 Climate variability as an important
driver of biomass prediction

Our study quantifies that both mean climatic conditions and

their interannual variability are critical drivers of crop biomass

distribution across Bavaria. While solar radiation, temperature, and

precipitation set the baseline for photosynthetic activity and

biomass accumulation, their year-to-year fluctuations play an

outsized role in destabilizing yields. This trend is particularly

evident in regions with pronounced seasonal shifts. In this regard,

regions like the Tertiary Hills Region and Franconia, with favorable

but seasonally variable climatic regimes, showed higher biomass

sensitivity to fluctuations in solar radiation and precipitation. A

likely reason is that their relatively high productive potential is more

easily disrupted by inconsistent weather.

The pronounced sensitivity of WW biomass to fluctuations in

solar radiation, temperature, and precipitation reflects its

physiological dependence on consistent energy and water

availability. In contrast, OSR biomass appears less sensitive to

interannual variability in solar radiation and temperature, which

may be explained by differences in phenology. Compared to WW,

the limited sensitivity of OSR biomass to these variables likely stems

from its earlier growing season, from mid-February to April, which

coincides with a climatologically more stable period. This temporal

mismatch with the more variable spring and summer conditions

may reduce OSR’s exposure to weather extremes, weakening the

influence of climatic variability in the RF model. However, OSR

responds notably to precipitation variability, highlighting crop-
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specific climatic sensitivities. These results align with global-scale

studies that estimate approximately one-third of yield variability is

attributable to climate variability, especially in temperature and

precipitation (Ray et al., 2015; Vogel et al., 2019). For instance,

heatwaves and droughts during key phenophases have been shown

to account for a majority of yield losses in cereals like wheat and

maize (Lesk et al., 2016), while erratic rainfall patterns can lead to

synchronous crop failures across broad geographic areas (Mehrabi

and Ramankutty, 2019).

In our study, solar radiation emerges as the most influential

climatic driver for OSR based on SHAP analysis, as indicated by the

dominant blue shading across Bavaria in Figure 9A. This spatially

explicit pattern shows that solar radiation has a stronger and more

widespread influence than other climate variables. These findings

corroborate previous research emphasizing radiation stability as a

core determinant of y ie ld res i l ience , part icular ly in

photosynthetically intensive crops (Tack et al., 2015). Likewise,

temperature effects were non-linear. WW and OSR exhibited crop-

specific thresholds beyond which biomass declined, suggesting

different thermal tolerances and reproductive sensitivities. This

observation is consistent with modeling and field-based studies

that link yield instability to extreme temperature events and poor

thermal adaptation (Zhao et al., 2017).

In Germany, the differentiated responses of WW to

precipitation variability also echo earlier studies that highlight

how moisture inconsistency, not just total rainfall, is a major

determinant of yield outcomes (Becker et al., 2025). While OSR

appeared slightly more tolerant to fluctuations, both crops exhibited

substantial declines under high variability, emphasizing the

importance of rainfall consistency for biomass accumulation.

Overall, the findings underscore that climatic variability, not

just mean conditions, must be explicitly incorporated into biomass

prediction models. Metrics such as the SD of solar radiation,

temperature, and precipitation offer crucial insights into crop

sensitivity and potential adaptation pathways. As climate

extremes become more frequent under global change (e.g., in

Franconia (Paeth et al., 2023)), integrating such variability metrics

can improve model robustness and support the design of climate-

smart agricultural systems. Future resilience strategies should

consider both physiological thresholds and crop-specific climate

sensitivities alongside interventions such as drought-tolerant

cultivars, adjusted sowing dates, and supplemental irrigation to

buffer against the impacts of erratic weather patterns.

It should be noted, however, that the climate thresholds derived

from our RF model should not be interpreted as fixed physiological

limits. These thresholds reflect modeled responses based on

regional data (2001–2019) and may vary with cultivar,

management practices, and interannual climatic conditions. WW

and OSR varieties grown in Bavaria have differing phenological

traits and climate adaptation strategies, which likely influence their

observed sensitivity. Future studies that incorporate cultivar-

specific data and more detailed phenological modeling could

provide further insight into the robustness and generalizability of

these thresholds.
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4.4 Role of topography and soil in biomass
patterns

The study results highlight the critical influence of topography

and soil on spatial patterns of crop biomass, reinforcing prior

evidence that these factors shape yield stability in heterogeneous

agricultural landscapes. Across Bavaria, terrain complexity varies

substantially, from the high-elevation Alps and Pre-Alps to the

gently rolling Tertiary Hills Region and the fertile plains of

Franconia, each presenting distinct constraints and opportunities

for crop growth. Steep slopes (>3°–8°) significantly limit biomass

production for both WW and OSR. These areas are often associated

with shallower soils, higher erosion risks, and reduced

mechanization efficiency: factors that can constrain water and

nutrient availability and ultimately limit crop growth potential

(Chen et al., 2022; Lann et al., 2024). In upland regions like the

Alps, Pre-Alps, and East-Bavarian Mid-Range Mountains, such

topographic constraints likely intensify the impact of climatic

stressors by reducing thermal accumulation and shortening

effective growing periods.

Conversely, the Tertiary Hills Region and Franconia,

characterized by moderate slopes and deeper, fertile soils,

consistently supported higher biomass. This corresponds with the

study of Pennock et al. (1992), showing that gently sloped, lowland

areas accumulate water and nutrients more effectively and offer

more stable yield conditions. Such zones typically exhibit less

interannual yield volatility due to favorable soil texture, organic

content, and moisture retention.

Biomass increases sharply with soil potential beyond values of

50–60 and plateaus near 75, indicating a strong positive relationship

between soil quality and productivity for both crops, as shown in

the PDPs for WW and OSR (Figures 10C and 11C). These

thresholds align with previous research demonstrating that high-

yield zones correlate with favorable edaphic traits, where soil quality

can compensate for moderate climatic stress (Van Wart

et al., 2013).

The study results underscore the need to consider the terrain

and edaphic variability when modeling biomass at fine spatial

scales. While climate sets the baseline for productivity, the

realization of yield potential is strongly modulated by topographic

and soil conditions. These factors are especially variable across

Bavaria’s diverse agricultural zones. Integrating these variables into

machine learning models enhances predictive accuracy and

provides a more comprehensive understanding of local

yield determinants.

The study results underscore the importance of integrating both

climatic and non-climatic variables when modeling biomass at fine

spatial scales. Climatic factors (e.g., solar radiation, temperature,

precipitation) define the fundamental biophysical limits for

photosynthesis and growth, but the actual realization of yield

potential is strongly modulated by soil and topographic

conditions, which influence water availability, drainage, and

nutrient uptake. These factors vary substantially across Bavaria’s

heterogeneous landscapes and are critical for explaining local
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deviations in biomass. Prior studies have also emphasized the role

of soil and terrain in shaping yield outcomes under comparable

climatic settings (e.g (Folberth et al., 2016; Grassini et al., 2015)).
4.5 Limitations and outlook

This study offers valuable insights into spatial patterns of crop

biomass by integrating a semi-empirical LUE model with a data-

driven RF approach. While the framework performed robustly

across Bavaria’s diverse agricultural regions, several limitations

should be acknowledged. First, hexagons with less than 5 hectares

of WW or OSR were excluded to reduce noise from sparsely

cultivated areas. Although this improved model stability, it may

have limited the representation of smallholder and fragmented

fields, especially in regions like the EBMRM and the Alps.

Including smaller fields with improved classification methods

could enhance spatial coverage in future applications.

Second, the model did not include management practices such

as crop rotation, fertilization, or tillage, which are known to

influence biomass production and its variability. Incorporating

such data, where available, could increase model accuracy and

relevance for precision agriculture. Third, while LUE-derived

biomass maps provide a physiologically meaningful response

variable, they do not directly reflect harvested yields and are

subject to assumptions related to crop-specific stress responses.

This distinction is crucial, as end-users such as farmers and

policymakers are primarily concerned with actual yields. Several

studies highlight that the biomass–yield relationship can decouple

under extreme climatic conditions. For instance, excessive rainfall

may not substantially reduce biomass but can increase the risk of

fungal diseases, lodging, or incomplete grain filling, ultimately

reducing harvestable yield (Trnka et al., 2014). Similarly, heat

stress during reproductive phases can drastically reduce grain or

seed formation despite sufficient vegetative biomass (Zhao et al.,

2017). Therefore, further calibration using in-situ biomass and yield

observations, especially under extreme weather conditions, could

enhance the reliability of biomass-based yield proxies. This could

improve the applicability of such models in climate-resilient

agricultural planning. Additionally, crop-specific differences in the

distribution of predicted biomass values suggest that model

refinements, particularly for low-biomass WW fields, could

further enhance predictive accuracy. While this study focused on

RF regression models for predictive modeling, future research could

explore how other machine learning algorithms compare in terms

of accuracy, interpretability, and computational cost, especially in

data-rich agricultural systems.

Despite these limitations, the modeling framework

demonstrates potential for transferability. This stems from the

simplicity of using the LUE model to estimate biomass from

remote sensing data to different crop types and the flexibility of

integrating its outputs with RF modeling. Additionally, the

framework relies solely on available climate inputs (e.g., ERA-

Interim ERA-Interim from the European Centre for Medium-

Range Weather Forecasts [ECMWF]), land use and land cover
Frontiers in Plant Science 18
maps, and incorporates spatially aggregated predictors, such as

climate, soil, topography, and landscape structure, wherever such

data are available. This makes the approach adaptable to other crops

and agroecosystems, particularly in temperate or topographically

complex regions.
5 Conclusions

This study presents a spatially explicit framework for

understanding the environmental factors influencing biomass

production in winter wheat and oilseed rape across Bavaria,

Germany. By combining remote sensing–derived biomass with a

machine learning approach and multi-source environmental

predictors within a hexagon-based spatial structure, the study

captures both spatial variability and interannual climatic

fluctuations from 2001 to 2019.

The findings show that integrating remote sensing with

environmental variables, such as climate, landscape structure,

topography, and soil potential, offers a robust approach for

characterizing regional biomass patterns. Landscape configuration

emerged as an important driver, with moderate levels of land-cover

diversity and small woody feature coverage associated with

increased biomass. However, excessive landscape variability,

especially in land-use diversity, corresponded with biomass

reductions, indicating potential trade-offs between complexity

and productivity.

Climatic factors also played a key role, with crop-specific

thresholds evident in response to temperature, solar radiation,

and precipitation variability. Notably, winter wheat showed

higher sensitivity to interannual climatic fluctuations, while

oilseed rape displayed resilience in more stable early-

season conditions.

By incorporating both mean and variability metrics of

environmental drivers, the modeling framework effectively

explained spatial patterns in crop biomass across ecologically

diverse regions. This emphasizes the importance of accounting

not only for average growing conditions but also for the stability

of those conditions over time.

The approach developed here is scalable and transferable,

particularly in regions where remote sensing and environmental

data are accessible. Future research should expand this framework

to additional crop types, integrate temporal land-use dynamics, and

incorporate farm-level management practices to better capture

decision-driven variability. Doing so will help enhance the

precision of agricultural planning and support the development of

resilient, climate-adaptive farming systems under ongoing

environmental change.
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