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Introduction: Hyperspectral imaging (HSI) is a powerful, non-destructive

technology that enables precise analysis of plant nutrient content, which can

enhance forestry productivity and quality. However, its high cost and complexity

hinder practical field applications.

Methods: To overcome these limitations, we propose a deep-learning-based

method to reconstruct hyperspectral images from RGB inputs for in situ needle

nutrient prediction. The model reconstructs hyperspectral images with a spectral

range of 400–1000 nm (3.4 nm resolution) and spatial resolution of 768×768.

Nutrient prediction is performed using spectral data combined with competitive

adaptive reweighted sampling (CARS) and partial least squares regression (PLSR).

Results: The reconstructed hyperspectral images enabled accurate prediction of

needle nitrogen, phosphorus, and potassium content, with coefficients of

determination (R²) of 0.8523, 0.7022, and 0.8087, respectively. These results

are comparable to those obtained using original hyperspectral data.

Discussion: The proposed approach reduces the cost and complexity of

traditional HSI systems while maintaining high prediction accuracy. It facilitates

efficient in situ nutrient detection and offers a promising tool for sustainable

forestry development.
KEYWORDS

hyperspectral image reconstruction, deep learning models, machine learning
regression, in situ prediction of pine needle nutrients, precision forestry
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1 Introduction

China is one of the countries with the widest pine tree planting

area in the world. Many different types of pine trees have been

widely planted in various parts of China, which are not only used

for wood production and building materials, but also widely used in

fields such as papermaking, chemical industry, and medicine (Yang

et al., 2015; Leggate et al., 2020). Nutrient analysis of pine trees is

crucial for understanding their growth environment, growth status,

and wood quality (Yuan et al., 2015). By detecting the nutritional

components of pine trees, their health status, growth rate, and soil

quality in the environment can be evaluated, which helps to develop

appropriate maintenance measures, improve the growth efficiency

and wood quality of pine trees.

Hyperspectral imaging (HSI) is an advanced technology that

acquires hundreds of narrow spectral bands at each spatial location,

yielding a rich hyperspectral cube that integrates both spectral and

spatial information. It enables qualitative and quantitative analysis

of chemical composition, material quality, and other properties,

making it a valuable tool for agricultural and forestry monitoring.

Owing to its high spectral resolution and non-destructive nature,

HSI is particularly well-suited for real-time and precision

agriculture, allowing comprehensive assessments of crop growth

and nutritional status (Fu et al., 2021; Wang et al., 2021; Zhao et al.,

2020; Sethy et al., 2022).

Relying on these advantages, numerous studies in recent years

have applied hyperspectral imaging (HSI) across a range of

agricultural and forestry scenarios. This approach has

demonstrated substantial application value; for example, in

agriculture, He et al. improved leaf nitrogen estimation in winter

wheat by employing multi-angle hyperspectral data (He et al.,

2016), Yu et al. developed a spectral transfer vegetation index for

rapid and accurate nitrogen inversion (Yu et al., 2022), Meiyan et al.

applied spectral decomposition methods to estimate leaf nitrogen

under UAV conditions (Meiyan et al., 2023), and Lan et al.

combined near-infrared HSI with leave-one-out partial least

squares regression in a two-step approach to assess internal apple

fruit quality (Lan et al., 2021). In forestry applications, Ni et al.

introduced a weight-adjusted convolutional neural network to

predict nitrogen content in Masson’s pine seedlings using near-

infrared spectra (Ni et al., 2019), while Li et al. integrated near-

infrared spectra with partial least squares regression to estimate

nitrogen content in different tissues of Masson’s pine (Li et al.,

2022). These findings underscore the growing role of HSI as a key

technology in agricultural and forestry applications, particularly for

nutrient detection (Guo et al., 2021).

Despite its numerous advantages, the application of hyperspectral

imaging (HSI) in agriculture and forestry is constrained by several

factors. First, HSI technology struggles to achieve an optimal balance

between spectral and spatial resolution; typically, higher spectral

resolution comes at the expense of lower spatial resolution, and

vice versa (Zhang et al., 2022). Second, the time-intensive nature of

data collection and processing limits the real-time application of HSI

(Arad et al., 2020). Additionally, the large volume of raw

hyperspectral data hampers efficient transmission and storage.
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Furthermore, the high cost of hyperspectral cameras and related

hardware restricts their widespread use, particularly for organizations

with limited budgets (Fang et al., 2018; Signoroni et al., 2019). These

factors collectively underscore the need for cost reduction, sensor

fusion, and data-sharing platforms to enable broader HSI

applications (Lan et al., 2024).

Consequently, research has shifted toward acquiring reliable

hyperspectral information at lower cost. At this point, a novel

approach has been proposed to reconstruct multichannel

hyperspectral images from conventional RGB images. RGB imaging is

more accessible and cost-effective than hyperspectral imaging; however,

a key challenge lies in effectively mapping the limited information in

RGB images to the rich spectral information in hyperspectral data (Shi

et al., 2018). Fortunately, deep learning techniques have made

remarkable progress in computer vision, profoundly transforming

fields such as image classification, object detection, and segmentation.

This progress has extended to hyperspectral imaging, where deep

learning methods are now applied to hyperspectral reconstruction

and related tasks. The combination of deep learning and

hyperspectral imaging holds great potential for more efficient and

accurate spectral data analysis (Zhang et al., 2022).

In recent years, deep-learning-based hyperspectral reconstruction

techniques have become increasingly mature. As reconstruction

accuracy has improved, numerous studies have demonstrated

promising results across various applications. However, limited

research has addressed the use of hyperspectral reconstruction for

estimating plant nutrient components or quality grades in forestry

and agriculture; most applications have predominantly focused on

food testing. Zhao et al. applied a hyperspectral convolutional neural

network with residual connections (HSCNN-R) to assess the soluble

solid content (SSC) of tomatoes using only 36 samples, yielding a

regression R² of 0.51 (Zhao et al., 2020). Yang et al. employed a pre-

trained MST++ model to invert rice physiological parameters,

achieving an R² of 0.40 for soil and plant analyzer development

(SPAD) values (Yang et al., 2024). Recently, Ahmed MT et al. used

HSCNN-R for hyperspectral reconstruction to predict SSC in sweet

potato varieties, obtaining a regression R² of 0.69 on the test set

(Ahmed MT et al., 2024b). Furthermore, in a comparative study by

the same team, HSCNN-D, MST++, and HRNET were evaluated for

their ability to predict the dry matter content (DMC) of sweet potato

(Ahmed MT et al., 2024c). Yi et al. applied MPRNet to reconstruct

visible and near-infrared spectra to identify the geographical origin of

beef, achieving high classification accuracies of 98.58% and 94.38%

on the training and testing sets, respectively (Yi et al., 2024). These

studies collectively highlight a novel opportunity to leverage

hyperspectral reconstruction methods for estimating the nutrient

content of plants.

In this study, we improved the existing network architecture by

extending the hyperspectral reconstruction range from 400–700 nm

(31 bands) to 400–1000 nm (176 bands), while simultaneously

enhancing the spectral resolution from 10 nm to 3.4 nm. This

expansion aligns with the spectral range and resolution

requirements for accurately estimating the content of key nutrients

in pine needles. Four state-of-the-art models were adopted and

modified as baselines: MIRNet (Multi-Scale Residue Network),
frontiersin.org
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HRNet (Hierarchical Regression Network), MPRNet (Multi-Stage

Progressive Network), and Restormer (Restoration Transformer).

MIRNet (Zamir et al., 2020), introduced at ECCV 2020,

demonstrated strong performance in the NTIRE 2022 spectral

reconstruction challenge, achieving a PSNR of 33.29 dB. HRNet

(Zhao et al., 2020), presented at CVPR 2019, utilizes a hierarchical

structure and achieved 26.89 dB in the same task. MPRNet (Zamir

et al., 2021), presented at CVPR 2021, and Restormer (Zamir et al.,

2022), presented at CVPR 2022, employ encoder-decoder and

transformer-based architectures, respectively; both performed

strongly in NTIRE 2022, yielding PSNRs of 33.50 dB and 33.40 dB.

After modifying these four baseline models, we evaluated and

compared their reconstruction performance. Ultimately, MIRNet

demonstrated the highest accuracy and was selected to reconstruct

hyperspectral images of pine canopies from RGB inputs. Spectral

features extracted from these reconstructed images were then used

in regression models to predict pine needle nutrient content. The

reconstructed spectra generated by MIRNet achieved strong

coefficients of determination (R²p) on the test set — 0.8523 for

nitrogen, 0.7022 for phosphorus, and 0.8087 for potassium —

closely matching the results obtained from original hyperspectral

data (0.9038, 0.6815, and 0.8370, respectively), thereby validating

the effectiveness of the proposed approach.
2 Materials and methods

2.1 Dataset preparation

This study aims to predict the nutritional composition of pine

needles using a dataset comprised of canopy-level needle images
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from 282 trees of 1-year-old Pinus elliottii × Pinus caribaea hybrids.

The experiment was conducted at the Hongling Seed Orchard

Nursery in Taishan, Guangdong Province, China (22.164769°N,

112.822761°E). The seedlings were selected and potted by experts in

soil composed of loess and a lightweight substrate in a 6:4 ratio, with

a pot height of 16 cm. Among the 282 samples, 162 were used for

hyperspectral reconstruction, while the remaining 120 were

reserved for final nutrient prediction. Unlike many previous

studies that rely on detached pine needles collected under

laboratory conditions, this study preserved the structural integrity

of the needles by conducting data collection in situ without any

physical disruption (see Figure 1). Although the imaging was

performed in a laboratory setting, the process maintained the

original morphology of the samples. This approach enhances the

ecological validity and generalizability of the resulting models.

Consequently, models trained on this in situ dataset are more

likely to accurately reflect real-world field conditions and

maintain strong predictive performance in practical applications.

In this study, a visible and near-infrared hyperspectral camera

(Gaifields Pro-V10, Dualix Spectrum Imaging Co.) was used to

capture hyperspectral images of pine needle canopies under

controlled laboratory conditions. The spectral range spanned

400–1000 nm and comprised 176 spectral bands. During image

acquisition, illumination was provided by a halogen ring light with a

photosynthetic photon flux density (PPFD) ranging from 88 to 95

μmol/(m²·s) and a lighting uniformity of 7.6%.

To simulate natural daylight and enhance the model’s

generalizability to field conditions, RGB images were generated

from hyperspectral data using the CIE 1931 color matching

functions and the CIE standard illuminant D65. D65, with a

correlated color temperature of approximately 6500 K, closely
FIGURE 1

Hyperspectral imaging system.
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approximates the spectral distribution of natural midday outdoor

light, encompassing both direct sunlight and diffuse skylight

components. These RGB images were then used as input features

for the spectral reconstruction model. Although the data were

collected indoors, applying the D65-based RGB transformation

allowed us to approximate realistic field illumination conditions,

thereby improving the robustness and applicability of the trained

model in outdoor scenarios.

During training, hyperspectral images were evenly divided into

two subsets: 88 spectral bands in the visible range (400–700 nm)

and the rest in the near-infrared range (700–1000 nm), which were

used as training targets. This division was motivated by two main

factors. First, spectral reflectance patterns in the visible range

exhibit greater variability than those in the near-infrared range;

training the model separately on these two segments can help

improve reconstruction accuracy. Second, hyperspectral images

contain large amounts of spectral information, which can lead to

high memory consumption and slow GPU computation during

training. By splitting the data into two parts, we enable parallel

training, thereby improving computational efficiency and

accelerating the training process.
2.2 Hyperspectral image reconstruction

2.2.1 Improvement of four reconstruction models
This study evaluated four models whose original architectures were

designed to reconstruct a spectral range of 400–700 nm, encompassing

only 31 bands. This range falls predominantly within the visible

spectrum and fails to provide sufficient spectral resolution and

generalization capability for accurately analyzing pine needle

nutrients. Furthermore, the lack of near-infrared (NIR) information

limits the models’s ability to predict nutrient content, as NIR signals are

strongly related to plant health. Previous research by Rahim Azadnia

et al. identified key spectral regions associated with nitrogen (510–540

nm, 670–690 nm, 910–920 nm, and 985–995 nm), phosphorus (575–

585 nm, 620–635 nm, 670–685 nm, 685–700 nm, and 965–975 nm),

and potassium (505–515 nm, 555–570 nm, 590–605 nm, 685–700 nm,

920–930 nm, and 950–965 nm) (Azadnia et al., 2023). Similarly, Di Lin

et al. applied the continuous wavelet transform (CWT) to identify

effective NIR spectral regions for estimating nutrients; their study

revealed four key spectral bands for nitrogen within 770–875 nm,

four for phosphorus within 730–858 nm, and five for potassium within

755–890 nm (Lin et al., 2024). Consequently, the ability to accurately

reconstruct segments of the NIR spectrum is crucial for improving the

precision and reliability of nutrient predictions.

To address these limitations, we implemented several key

modifications. The number of spectral bands was increased from

31 to 176, and the reconstruction range was expanded to 400–1000

nm to encompass the NIR spectrum (750–1000 nm). Furthermore,

we applied a segmented computing approach by separately

reconstructing the visible (400–700 nm) and NIR (700–1000 nm)

regions. This strategy improved reconstruction accuracy while

effectively retaining the essential NIR signals for more reliable

nutrient estimation.
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As shown in Figure 2, the improvements to the MIRNet model

primarily involve several key modifications. First, at the input stage,

the RGB image undergoes dimensional expansion to capture more

detailed features. In this study, a 2D convolution is used to expand

the three-channel RGB input to 88 channels. The expanded feature

representation is then fed into subsequent network modules for

further processing. One of the core strengths of the MIRNet model

is its ability to maintain high-resolution representations while

achieving high-quality image reconstruction. This is accomplished

by integrating Multi-Resolution Residual Blocks (MRB), Selective

Kernel Feature Fusion (SKFF), and Dual Attention Units (DAU). In

the improved model, the number of Recursive Residual Groups

(RRG) is set to 2, with each RRG containing one MRB module.

Additionally, the number of upsampling and downsampling layers

within the MRB module is set to 3. The final output consists of two

88-dimensional spectral components, which are merged to form the

final 176-dimensional reconstructed hyperspectral cube.

As shown in Figure 3, the improved HRNet adopts a U-shaped

structure. The three-channel RGB image is fed into an eight-layer

hierarchical framework, where every two layers process different

feature scales. The input RGB image is first expanded into an 88-

dimensional feature cube. From the middle towards both ends, the

channel resolution progressively increases while the spatial

resolution decreases. At the middle of the model, the two central

layers consist of two 2D convolutional modules, four Residual

Dense Blocks, one Residual Global Block, and an additional 2D

convolutional module. The remaining six layers follow the structure

shown in the figure, each ending with a PixelShuffle operation. This

operation rearranges the feature maps to match the shape of the

preceding layer and connects them accordingly. This upsampling

and downsampling structure preserves feature integrity,

maintaining the original data distribution while ensuring

adaptability. As a result, it enhances reconstruction accuracy

while effectively capturing essential details.

For the improvement of the MPRNet model, as shown in

Figure 4, a process similar to MIRNet is adopted, where the

three-channel RGB image is first expanded to 88 dimensions

through an input convolution. Utilizing an encoder-decoder

architecture, the reconstruction task is divided into multiple

progressively optimized subtasks across two spectral ranges. In

this study, the process is structured into three stages. In the first

stage, the input image is divided into four parts. In the second and

third stages, the network gradually expands the reconstruction

range while learning reconstruction functions to capture multi-

scale contextual information. In the third stage, the number of

Original Resolution Blocks (ORB) is set to three. Finally, features

from different scales are integrated to generate the final 176-

dimensional reconstructed hyperspectral image. The key

characteristics of this model include the use of a Supervised

Attention Module (SAM) for progressive learning and the

implementation of a Cross-Stage Feature Fusion (CSFF)

mechanism to enhance feature propagation across stages,

ensuring the extraction of more fine-grained spectral information.

In the improved Restormer model, as shown in Figure 5, the

three-channel RGB image is first processed through an overlapped
frontiersin.org
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patch embedding layer, expanding its dimensions from 3 to 108.

The transformed data is then fed into the Transformer blocks of the

encoder, where the spatial resolution is enhanced while the number

of channels is progressively reduced. In this study, the entire model

is structured into two parallel branches, each consisting of a four-

layer architecture. The number of Transformer blocks in these four

layers is set to 2, 3, 3, and 4, respectively. At the end of each branch,

the extracted features are passed into the decoder, which is also

composed of Transformer blocks. The decoder refines the features

while recovering high-resolution details. Finally, the features from

both branches are merged to form the final 176-dimensional

hyperspectral cube. The Restormer model employs a Multi-Dconv

Head Transposed Attention mechanism within its Transformer

blocks. This attention layer enhances feature representation by

performing query-key interactions across channels. Additionally,

Restormer introduces a Gated Feed-Forward Network (GFN),

which selectively allows only informative features to propagate
Frontiers in Plant Science 05
through the network, thereby improving the efficiency of

information transmission.

2.2.2 Quality evaluation
In the field of spectral image reconstruction, researchers

typically use multiple image quality evaluation metrics to assess

the quality of hyperspectral images reconstructed from RGB

images. These indicators aim to quantify the differences between

reconstructed hyperspectral images and ground truth hyperspectral

images, and provide objective measures of the quality of spectral

image reconstruction. In this study, Mean Relative Absolute Error

(MRAE), Root Mean Square Error (RMSE), and Peak Signal to

Noise Ratio (PSNR) were used as evaluation metrics. During the

model training process, we are particularly concerned with the

MRAE coefficients. The MRAE was used as the loss function to

enhance resistance to outlier data and enable uniform evaluation of

each band under varying lighting conditions (Shi et al., 2018), and
FIGURE 2

Improved MIRNet network architecture.
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the model will be trained until this metric converge. The model with

the best performance during the training phase will be selected for

the final hyperspectral reconstruction, and all three-evaluation

metrics will be used in the evaluation process of the testing and

validation dataset. Their definitions are shown in Equations 1-3. H

andW represent the height and width of the image, i and j represent

the coordinates of pixels in the height and width of the image, IG
represents the ground truth spectral image, IR represents the

reconstructed spectral image, peak is the scalar of the peaking

signal value.

MRAE = 1
H�Wo

H

i=1
o
W

j=1
(
IR(i, j) − IG(i, j)j j

IG(i, j)
) (1)

 RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

H�Wo
H

i=1
o
W

j=1
(IG(i, j) − IR(i, j))

2

s
(2)

  PSNR = 10lg( peak2

RMSE2 ) (3)
2.3 Nutritional component prediction

In this study, the processing of pine needle hyperspectral images

first involved the extraction of regions of interest (ROIs) to suppress

interference from the black background board and retain only the
Frontiers in Plant Science 06
effective area of the pine needle. To achieve this, a threshold was

applied to generate a mask, which was then used to extract spectral

data for subsequent analysis. The average spectral reflectance of

each channel was computed, yielding a one-dimensional array of

176 values. To minimize the effects of external conditions and

instrument variability on spectral data, a thorough preprocessing

pipeline was implemented. This pipeline included denoising,

wavelength calibration, and spectral calibration to help ensure

data accuracy and reliability and to enhance the precision of

subsequent machine learning regression. Specifically, Multiple

Scatter Correction (MSC) and First Order Differentiation (D1)

were applied to improve spectral data quality and regression

accuracy. To further reduce data dimensions and optimize model

performance, the Competitive Adaptive Reweighted Sampling

(CARS) algorithm was used to select representative spectral

bands. CARS performs iterative sampling and PLS regression

calculations to identify the most informative spectral variables,

thereby improving the efficiency and robustness of data

processing and model development.

In the regression stage of this study, samples were divided into

training and testing sets at a ratio of 8:2, with the testing set reserved

for final model evaluation. To predict nutrient content, we

employed Partial Least Squares Regression (PLSR), a classical

regression method that combines the dimensional reduction

capabilities of Principal Component Analysis (PCA) with

multivariate regression. PLSR identifies new components that
FIGURE 3

Improved HRNet network architecture.
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maximize the covariance between independent and dependent

variables, establishing a linear relationship between them. It is

widely used in spectral analysis and nutrient modeling due to its

ability to handle high-dimensional data and multicollinearity.

During training, ten-fold cross-validation was employed to

enhance the model’s robustness and generalization capability. To

comprehensively evaluate predictive performance, three key metrics

were utilized: the prediction coefficient of determination (R²p), the root

mean square error of prediction (RMSEP), and the relative prediction

deviation (RPD), as defined in Equations 4-6. In these equations, S

Sresidual denotes the sum of squared residuals—the squared differences

between predicted and observed values—while SStotal represents the

total sum of squares, indicating the variability of the observed values

around their mean. ŷ i and ŷ i represent the predicted and actual values,

respectively. These metrics provide a direct assessment of the model’s

generalization and predictive accuracy on unseen data. Specifically, a

higher R²p, lower RMSEP, and larger RPD reflect improved predictive

performance and greater practical utility. Therefore, these three metrics

are used as the primary indicators for evaluating the final effectiveness

of the model in this study.

R2 = 1 − SSresidual
SStotal

(4)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(ŷ i − yi)

2

s
(5)

RPD = 1ffiffiffiffiffiffiffiffiffiffi
(1−R2)

p (6)
2.4 Computational environment

The computations in this study were conducted using the cloud

computing platform Autodl. The remote server was supported by a 15v

CPU Intel(R) Xeon(R) Platinum 8474C, 80GB of memory, and an

RTX 4090D (24GB). During the training process, the number of

training epochs was set to 200, with each epoch containing 1000

iterations, the batch size of the training set was 2, the learning rate was

1e-4, and the dimensions of the dataset used for training were 768×768.

The patch size was set to 128 with a stride of 8. For adjusting the

learning rate, the Adam optimizer was employed with parameters b1 =
0.9 and b2 = 0.999. The analysis was conducted using Python 3.8.19.

The reconstruction model was trained using open-source Python

packages, including Scikit-learn, PyTorch, and OpenCV-Python.
FIGURE 4

Improved MPRNet network architecture.
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3 Results

3.1 Reconstruction performance of the
models in this study

The initial step in training the reconstruction model involved

processing the input RGB images and preparing the corresponding

hyperspectral data as ground truth. As detailed in Section 2.1, two

segments of hyperspectral data were used as the reference, with the

matching RGB images serving as inputs to the model. The training

dataset comprised 140 images, while the validation dataset included

22 images. Training continued until the loss convergence criterion

was satisfied, after which the best-performing model was selected

for further evaluation. Table 1 summarizes the parameter count,

computational cost, and validation performance of the four models

across the 400–700 nm and 700–1000 nm spectral ranges.

In our study, the MIRNet model demonstrated strong

performance in hyperspectral reconstruction, particularly across

both the 400–700 nm and 700–1000 nm ranges. For the 400–700

nm range, MIRNet achieved a minimum mean relative absolute error

(MRAE) of 0.4424, a root mean square error (RMSE) of 0.0349, and a

peak signal-to-noise ratio (PSNR) of 29.22 dB. For the 700–1000 nm

range, the corresponding values were 0.3233, 0.0531, and 25.65 dB,
Frontiers in Plant Science 08
respectively. Additionally, MIRNet exhibited the lowest computational

cost among the tested models, requiring only 58.15 gigaflops and

featuring the smallest model size of 20.18 million parameters. These

attributes significantly improved the algorithm’s efficiency and

supported the deployment of future embedded applications.
3.2 Comparison of the performance of
existing methods

To more clearly demonstrate the superiority of our proposed

model, this section reviews and compares the performance of

several representative methods in hyperspectral reconstruction

tasks in recent years. These methods, including HSCNN-D,

HRNet, and MPRNet, serve as intuitive and compelling

benchmarks against which we can evaluate and highlight the

advantages of our approach. In a study by Md. Toukir Ahmed

et al. investigating agricultural product quality through

hyperspectral image reconstruction, the HSCNN-D model was

used to reconstruct 204 spectral bands (400–1000nm) from RGB

images of sweet potato. The model achieved a mean relative

absolute error (MRAE) of 0.8601, a root mean square error

(RMSE) of 0.0545, and a peak signal-to-noise ratio (PSNR) of
FIGURE 5

Improved Restormer network architecture.
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26.86 dB on the validation set. On the test set, the corresponding

metrics were 0.7914, 0.0566, and 25.91 dB, respectively (Ahmed

et al., 2024b). Furthermore, in another study by the same team

focusing on chicken embryo mortality, the HRNet model

demonstrated improved reconstruction performance, yielding an

MRAE of 0.0936, RMSE of 0.0151, and PSNR of 36.79 on the

validation set (Ahmed et al., 2024a). However, this study

reconstructed only 10 spectral bands within the 520–903nm

range, which likely contributed to its higher reconstruction

accuracy due to reduced spectral complexity.

Notably, in a study by Weiguo Yi et al. on geographical origin

identification of beef, the MPRNet model was applied to reconstruct

hyperspectral images (400–1000nm, 125 bands) from RGB inputs.

The model performed exceptionally well, yielding an MRAE of 0.177,

RMSE of 0.0165, and PSNR of 35.76 (Yi et al., 2024). The high

reconstruction accuracy in this study may be due to the large

proportion of beef regions within each image and their relatively

flat surface characteristics, which minimize depth of field effects.

Additionally, the small number of spectral bands to be reconstructed

further facilitated accurate reconstruction. Overall, existing methods

all demonstrate a certain ability to reconstruct hyperspectral images

and are applicable to a range of datasets and application scenarios.

However, they struggle to balance reconstruction accuracy with

spectral resolution. Our approach effectively overcomes this

limitation, offering a more robust solution that achieves both high

reconstruction accuracy and strong spectral fidelity.
3.3 Reconstructed spectral quality
assessment

In the final prediction of nutrient components, spectral data

within the 400–450 nm and 950–1000 nm ranges were deliberately

excluded. This decision was based on two primary considerations:

the high noise levels observed in these spectral regions and their

limited relevance to the absorption peaks of the three essential

nutrients—nitrogen, phosphorus, and potassium. Including such

noisy and non-informative wavelengths could compromise

prediction accuracy. To enhance both model efficiency and

predictive performance, the spectral range of 450–950 nm was
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selected for nutrient content estimation. Following hyperspectral

image reconstruction, spectral data within this range were extracted

for subsequent regression analysis, and the quality of the

reconstructed spectra was rigorously evaluated.

To assess model generalization, eight samples were randomly

selected from the 120 test set samples, as shown in Figure 6. The

results demonstrate that MIRNet and MPRNet generally provided

the best spectral alignment with the ground truth, whereas

Restormer and HRNet exhibited more pronounced reconstruction

errors across specific spectral bands.

Specifically, MIRNet consistently showed superior spectral

fitting across most samples, particularly in wavelengths beyond

700 nm. In contrast, MPRNet exhibited notable fluctuations in this

range, especially in samples c and h. HRNet performed

exceptionally well on sample c; however, for other samples—

particularly f and g—it displayed considerable error fluctuations

beyond 700 nm, indicating variable reconstruction stability.

Restormer exhibited inconsistent performance across all eight

samples, with marked discrepancies observed in samples c, d, and g.

It is also worth noting that in samples a, c, h, and h, MIRNet

slightly overestimated the 550 nm peak relative to the ground truth.

Nonetheless, in the context of full-spectrum reconstruction,

MIRNet demonstrated the most stable and accurate performance,

while utilizing the fewest parameters and the least computational

resources among all models evaluated. This strong performance

may be attributed to MIRNet’s selective kernel fusion mechanism,

which effectively integrates features from different receptive fields

and enhances the model’s ability to manage spatial and channel

resolution challenges.
3.4 Visual quality assessment of the
reconstructed images

To more intuitively illustrate the performance of hyperspectral

reconstruction, visual analysis was incorporated into the evaluation

process. The Mean Relative Absolute Error (MRAE) index was first

used to generate error heatmaps, showing the differences between

the reconstructed spectra at 700 nm and the ground truth spectra

for four representative samples, as shown in Figure 7. These
TABLE 1 Reconstruction results.

Methods Params(M) FLOPS(G) Band range MRAE RMSE PSNR

MIRNet 20.18M 58.15 G
400-700nm 0.4424 0.0349 29.2153

700-1000nm 0.3233 0.0531 25.6548

HRNet 59.45 M 77.79 G
400-700nm 0.4567 0.0357 29.0037

700-1000nm 0.3282 0.0549 25.3349

MPRNet 29.16 M 320.45 G
400-700nm 0.4475 0.0354 29.0935

700-1000nm 0.3342 0.0551 25.3228

Restormer 75.66 M 106.10 G
400-700nm 0.4668 0.0352 29.1454

700-1000nm 0.3439 0.0560 25.1091
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heatmaps clearly depicted the spatial distribution of reconstruction

errors across the pine needle regions for each model.

The visual analysis highlighted the superior performance of

MIRNet, which exhibited minimal errors throughout the entire

needle area. In comparison, MPRNet showed moderate errors,

particularly in the needle regions of samples c and f. HRNet

demonstrated more pronounced errors in samples d, f, and g,

with a similar distribution pattern to MPRNet across other
Frontiers in Plant Science 10
samples. Restormer performed comparably to MPRNet in sample

f but exhibited substantial errors in other samples, especially sample

c. Combined with the spectral curve analysis discussed earlier, these

results suggest that Restormer struggles with reconstructing fine-

grained regions in the sample data.

Additionally, MRAE-based heatmaps were generated to compare

the reconstruction accuracy of the best-performing MIRNet model

against the ground truth at 500 nm, 700 nm, and 900 nm wavelengths,
FIGURE 6

Comparison of the reconstructed spectra of four models and the ground truth spectra on eight samples. (a–h) represent eight different pine needle
samples.
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as illustrated in Figure 8. These heatmaps further revealed spatial

variations in reconstruction quality across the pine needle structures.

At 500 nm, significant errors were observed in the needle areas, likely

due to surface smoothness and irregularities causing uneven light

reflection and refraction, particularly in shadowed regions. At 900

nm, while the outer edges of the needles exhibited accurate
Frontiers in Plant Science 11
reconstructions, the central regions showed larger errors. This is likely

attributable to the limited depth of field during image acquisition,

compounded by shadowing effects and strong near-infrared responses

in dark areas not easily visible in the RGB spectrum. These findings

emphasize the challenges of achieving uniform reconstruction across

varying spatial and spectral characteristics.
FIGURE 7

Error heatmaps of four networks based on the MRAE metric at 700 nm for eight samples. (a–h) correspond to the same eight pine needle samples
as shown in Figure 6.
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3.5 Prediction results

In this section, the MIRNet model, which achieved the highest

reconstruct ion performance , was employed for final

regression prediction.
Frontiers in Plant Science 12
Figure 9 presents the hyperspectral reflectance curves of pine

needle canopy samples with varying nitrogen concentrations across

the 450–950 nm spectral range. The reflectance curves display

distinct patterns corresponding to four nitrogen levels.

Specifically, in the 450–600 nm region, reflectance decreases as
FIGURE 8

Error heatmaps generated by the MIRNet model using the MRAE metric at 500 nm, 700 nm, and 900 nm across eight pine needle samples.
Subfigures (a–h) correspond to the same eight samples as in Figure 6.
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nitrogen concentration increases. This trend is attributed to the

positive correlation between nitrogen content and chlorophyll levels

in plants. Chlorophyll strongly absorbs light in the 450–470 nm and

630–670 nm bands, leading to reduced reflectance and broader

absorption features, particularly resulting in a diminished green

peak around 550.8 nm.

These spectral variations underscore the sensitivity of

hyperspectral signals to nutrient content and validate the

potential of hyperspectral data for non-destructive estimation of

nitrogen levels in pine canopies.

Regions of interest (ROIs) were extracted from the reconstructed

spectral data, followed by spectral preprocessing. In this study, three

preprocessing methods were applied: Multiplicative Scatter

Correction (MSC), first derivative (D1), and a combination of D1

and MSC (D1+MSC). The original spectra and the results after

applying these preprocessing techniques are illustrated in

Figure 9.The MSC method enhances spectral bands with greater

variability by computing the mean spectrum and correcting the

original spectra through offset adjustments. This process effectively

reduces spectral differences in the 800–987 nm range, corrects

scattering effects, and improves the linearity of chemical

information. The D1 method eliminates baseline drift and noise

interference while enhancing spectral resolution and detail. The

combined D1+MSC approach integrates the advantages of both

methods, optimizing the signal-to-noise ratio and feature

separability, thereby significantly improving the accuracy and

reliability of multi-component detection in complex systems.
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Following preprocessing, the Competitive Adaptive Reweighted

Sampling (CARS) algorithm was employed to extract characteristic

wavelengths, aiming to eliminate redundant bands and enhance

predictive accuracy. These selected wavelengths serve as key

indicators in spectral analysis. By optimizing the weight of data at

these specific wavelengths, both spectral reconstruction and

nutrient content prediction performance can be substantially

improved. The extracted spectral features were then used to

further evaluate the MIRNet model. Additionally, it was observed

that the nutrient content values used as labels had a relatively

narrow range, particularly for phosphorus, whose absolute values

were very small. This limited variation amplifies the impact of noise

and may degrade model performance. To mitigate this effect, target

variables were standardized during the training of machine learning

regression models, thereby improving model robustness. Finally,

grid search was employed to optimize model parameters and reduce

the risk of overfitting.

The final regression results are presented in Table 2,

highlighting the predictive coefficient of determination (R²p), root

mean square error of prediction (RMSEP), and residual predictive

deviation (RPD), which collectively evaluate the model’s

performance on the independent prediction set. Among the

models tested, the PLSR model demonstrated the best overall

performance in this study. Using the reconstructed spectral data,

the D1 preprocessing method achieved the highest R²p value of

0.8523 for nitrogen prediction. For phosphorus prediction, the MSC

preprocessing method yielded the best performance with an R²p of
FIGURE 9

Spectral curves at different nitrogen concentrations and spectral curve after pre-processing. (A) Original spectrum; (B) multivariate scattering
correction (MSC); (C) differentiation (D1); (D) D1+MSC.
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TABLE 2 Comparison of prediction results of ground truth spectra and reconstructed spectra on three nutrient components in the prediction set.

Nutrient Spetra Preprocessing
method+Model

R²p RMSEp RPD Spetra Preprocessing
method+Model

R²p RMSEp RPD

Nitrogen
Ground
Truth

RAW+PLSR 0.8396 0.3920 2.4968

Reconstruct

RAW+PLSR 0.8322 0.4765 2.4411

RAW+SVR 0.8203 0.5081 2.3589 RAW+SVR 0.3200 1.0500 1.2126

RAW+RF 0.6558 0.7032 1.7045 RAW+RF 0.5656 0.7899 1.5173

MSC+PLSR 0.8593 0.4495 2.6661 MSC++PLSR 0.8519 0.4121 2.5991

MSC+SVR 0.6880 0.6695 1.7903 MSC+SVR 0.7379 0.5483 1.9532

MSC+RF 0.6936 0.6634 1.8066 MSC+RF 0.6979 0.6588 1.8194

D1+PLSR 0.8738 0.4850 2.6024 D1+PLSR 0.8523 0.4850 2.6024

D1+SVR 0.8434 0.4742 2.5273 D1+SVR 0.6478 0.5252 1.6849

D1+RF 0.7925 0.5460 2.1952 D1+RF 0.7267 0.6266 1.9128

D1+MSC+PLSR 0.9038 0.3035 3.2246 D1+MSC+PLSR 0.8394 0.4662 2.4951

D1+MSC+SVR 0.7768 0.4181 2.1168 D1+MSC+SVR 0.7146 0.6403 1.8719

D1+MSC+RF 0.8072 0.52625 2.2775 D1+MSC+RF 0.7393 0.5939 1.9587

Phosphorus
Ground
Truth

RAW+PLSR 0.4512 0.7719 1.3499

Reconstruct

RAW+PLSR 0.3918 0.8127 1.2822

RAW+SVR 0.3671 0.7832 1.2570 RAW+SVR 0.2160 0.9227 1.1294

RAW+RF 0.3189 0.8023 1.2117 RAW+RF 0.3062 0.8097 1.2006

MSC+PLSR 0.6950 0.5727 1.810 MSC+PLSR 0.7022 0.5658 1.8326

MSC+SVR 0.3532 0.7817 1.2434 MSC+SVR 0.3947 0.7659 1.2854

MSC+RF 0.4200 0.7403 1.3131 MSC+RF 0.5423 0.7016 1.4782

D1+PLSR 0.6471 0.6160 1.6835 D1+PLSR 0.6232 0.6365 1.6293

D1+SVR 0.4070 0.7582 1.2986 D1+SVR 0.3918 0.6858 1.2823

D1+RF 0.3864 0.7712 1.2766 D1+RF 0.3934 0.8077 1.2839

D1+MSC+PLSR 0.5880 0.6656 1.5580 D1+MSC+PLSR 0.5587 0.6889 1.5053

D1+MSC+SVR 0.4151 0.7529 1.3075 D1+MSC+SVR 0.4834 0.5464 1.3913

D1+MSC+RF 0.4283 0.7841 1.3226 D1+MSC+RF 0.5249 0.7148 1.4508

Potassium
Ground
Truth

RAW+PLSR 0.6684 0.6667 1.7367

Reconstruct

RAW+PLSR 0.7236 0.4805 1.9021

RAW+SVR 0.5801 0.7502 1.5433 RAW+SVR 0.4942 0.6371 1.4062

RAW+RF 0.5177 0.8040 1.4400 RAW+RF 0.4249 0.8780 1.3187

MSC+PLSR 0.7350 0.6592 1.9425 MSC+PLSR 0.8087 0.3997 2.2866

MSC+SVR 0.5181 0.6836 1.4406 MSC+SVR 0.4369 0.8688 1.3326

MSC+RF 0.6254 0.7836 1.6340 MSC+RF 0.5283 0.5283 1.4560

D1+PLSR 0.8182 0.5458 2.3458 D1+PLSR 0.7293 0.6661 1.9221

D1+SVR 0.5244 0.7984 1.4501 D1+SVR 0.5283 0.7952 1.4560

D1+RF 0.5065 0.8133 1.4235 D1+RF 0.5800 0.7503 1.5432

D1+MSC+PLSR 0.8370 0.5170 2.4767 D1+MSC+PLSR 0.7225 0.5633 1.8986

D1+MSC+SVR 0.4721 0.8412 1.3763 D1+MSC+SVR 0.4831 0.6571 1.3909

D1+MSC+RF 0.6300 0.7788 1.6440 D1+MSC+RF 0.5542 0.6102 1.4977
F
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0.7022. In the case of potassium prediction, the MSC method also

achieved the highest R²p value of 0.8087. In this study, PLSR was

selected as a primary regression model due to its inherent

advantages in handling high-dimensional, collinear spectral data.

Compared with Support Vector Regression (SVR) and Random

Forest (RF), PLSR exhibits superior robustness and stability under

limited sample conditions, while simultaneously integrating

dimensionality reduction and regression. Its minimal parameter

tuning requirements and strong interpretability—through

regression coefficients and VIP scores—further enhance its

suitability for hyperspectral analysis. These characteristics make

PLSR a particularly effective and widely adopted approach in

spectroscopic modeling for nutrient estimation tasks.

In related studies, Li used hyperspectral data in the range of

1,100–2,500 nm with a spectral resolution of 8 nm (totaling 175

wavelengths) to determine nitrogen concentrations in different

tissues of slash pine, yielding a coefficient of determination (R²cv)

of 0.66 in cross-validation (Li et al., 2022). Shu Meiyan et al.

employed spectral decomposition methods to estimate the

nitrogen status of maize leaves and identified sensitive

wavelengths at 470 nm, 538 nm, 638 nm, 682 nm, 710 nm, 734

nm, and 830 nm. Using a CARS-SVR regression model, they

achieved a R² of 0.68 on the test set (Meiyan et al., 2023). In

another study, Yakun Zhang conducted in situ, non-destructive

detection of nitrogen content in soybean leaves using hyperspectral

imaging in the 380–1000 nm range. The model attained a maximum

R²p of 0.9428 on the validation set. However, it is noteworthy that

the nitrogen content range in that study was relatively wide (8.275–

44.724 mg/g), and the hyperspectral data included 707 spectral

bands—factors that likely contributed to the model’s high

performance (Zhang et al., 2024). Similarly, Di Lin et al. used in

situ hyperspectral data (400–900 nm) to predict nitrogen,

phosphorus, and potassium content in the maize canopy. Their

model achieved validation R² values of 0.821, 0.732, and 0.773 for

nitrogen, phosphorus, and potassium, respectively (Lin et al., 2024).

These results are comparable to those obtained in the present study.

Considering that the hyperspectral data used in this research were

reconstructed rather than directly acquired, the findings strongly
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demonstra te the effec t iveness and re l iab i l i ty of the

proposed methodology.

Finally, each element was evaluated using its respective optimal

model on both ground-truth and reconstructed test sets, and the

resulting regression performances are illustrated in Figure 10. The

figure highlights the differences in the R²p values among the three

elements. It is noteworthy that in this study, the prediction

performance for phosphorus based on reconstructed spectra was

slightly superior to that achieved using ground-truth hyperspectral

data. This phenomenon may be primarily attributed to the

inherently low phosphorus concentration—typically ranging

between 0.8 mg/g and 1.6 mg/g—as well as its distribution across

both needle and root tissues. Compared to nitrogen and potassium,

phosphorus exhibits a more dispersed spatial distribution, which

increases the uncertainty in machine learning-based regression.

Nevertheless, this outcome indirectly supports the reliability and

robustness of our reconstructed spectral data.
4 Discussion

4.1 Comparison of prediction performance
between the original model and the
improved model

As detailed in Section 2.2, the original MIRNet model

reconstructed hyperspectral images within the 400–700 nm range,

encompassing 31 spectral bands. In this study, we extended the

spectral range to 400–1000 nm by utilizing 176 bands, thereby

incorporating the near-infrared (NIR) region. While most existing

research and publicly available datasets on hyperspectral

reconstruction focus primarily on the visible spectrum (<700

nm), many hyperspectral imaging studies have already expanded

into the NIR or even infrared regions. As a result, although

hyperspectral reconstruction approaches offer cost advantages,

their performance often lags behind that of direct hyperspectral

imaging, particularly in the extended spectral range. Despite the

inherent challenges of reconstructing NIR spectra, our approach
FIGURE 10

Comparison of scatter plot fitting results of three nutrients obtained from ground truth spectra and reconstructed spectra on the test set.
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achieved low-error reconstruction across the full 400–1000

nm spectrum.

For comparative analysis, we applied the original MIRNet

model to RGB images of pine canopy needles to reconstruct

hyperspectral images across 31 bands (400–700 nm), as

summarized in Table 3. The reconstructed spectral data were

then used for nutrient content prediction to evaluate the model’s

effectiveness. Spectral preprocessing and feature band selection

methods were kept consistent. The results showed that the

highest R² values on the prediction set for nitrogen, phosphorus,

and potassium were 0.8159, 0.5040, and 0.7007, respectively—

representing decreases of 4.3%, 28.2%, and 13.4% compared to

the improved reconstruction model. These findings emphasize the

importance of both enhancing the reconstruction model and

expanding the spectral range.
4.2 The influence of different degrees of
fuzziness on the accuracy of model
reconstruction

In Section 3.3, we observed that nearly all samples exhibited

increased reconstruction errors in the central region at the 900 nm

band. This phenomenon is likely due to image blurring caused by

depth-of-field effects during image acquisition. To test this

hypothesis, we applied Gaussian blurring with varying kernel

sizes to the central regions of samples b, c, and f, where the issue

was most pronounced. These blurred images were then used for

hyperspectral reconstruction, and the resulting errors at 900 nm

were visualized using heatmaps, as shown in Figure 11. From left to

right, the images represent the original sample and those blurred

with Gaussian kernels of sizes 5, 15, 25, and 35, respectively. The

heatmaps clearly indicate that as blurring intensity increases,

reconstruction errors in the central region become more severe.

The average MARE for the three samples increased from 0.0124,

0.0122, and 0.0215 to 0.0154, 0.0141, and 0.0256, respectively,

supporting our hypothesis.

The reconstructed spectral reflectance curves in Figure 12

further demonstrate the impact of blurring. For samples b and c,

the spectral range from 450 to 750 nm remained largely unaffected.

However, beyond 750 nm, sample b exhibited greater sensitivity to

blurring than sample c. When the Gaussian kernel size exceeded 5,

the reconstructed spectra for sample b consistently fell below the

original values, whereas sample c maintained stable spectra across
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all levels of blurring. This robustness is likely attributed to the

smaller surface area of sample c.

In contrast, sample f showed significant sensitivity to blurring in

the 500–600 nm and 750–950 nm ranges. Notably, reconstruction

errors increased markedly when Gaussian kernels of sizes 5 and 15

were applied. However, with larger kernel sizes, the errors in both

spectral ranges gradually stabilized. Importantly, for all three

samples, reconstruction errors remained nearly unchanged when

Gaussian kernel sizes reached 25 and 35, demonstrating the

MIRNet model’s remarkable robustness in handling highly

blurred images.

Given the structural characteristics of pine needle canopies, depth-

of-field effects during image acquisition are unavoidable. However,

this limitation also presents valuable insights for future research. Since

the ultimate goal of this study is to deploy the model on external

agricultural equipment, real-world image captures will inevitably

involve variations in equipment, camera angles, and lighting, leading

to varying degrees of image blurring. Therefore, future research will

focus on integrating spatial and spectral super-resolution techniques

to enhance the quality of original RGB images, thereby improving the

overall accuracy of hyperspectral reconstruction.
5 Conclusions

This study investigates the application of hyperspectral image

reconstruction techniques for estimating nutrient content in pine

canopy needles, with the goal of enhancing model performance for

practical deployment in forestry and agriculture. We improved the

architectures of MIRNet, HRNet, MPRNet, and Restormer to

reconstruct hyperspectral images from three-channel RGB inputs,

extending the spectral range to 400–1000 nm across 176 bands to

meet the spectral requirements for predicting three key nutrients.

All four networks demonstrated strong reconstruction

performance; however, MIRNet consistently outperformed the

others across both the 400–700 nm and 700–1000 nm ranges,

despite having the fewest parameters and lowest computational

complexity. Owing to its superior accuracy and lightweight design,

MIRNet was selected as the reconstruction model for subsequent

regression experiments.

For nutrient content prediction, we employed the hyperspectral

data reconstructed by MIRNet and applied a partial least squares

regression (PLSR) model to estimate nitrogen (N), phosphorus (P),

and potassium (K) concentrations in the samples. The predictions
TABLE 3 Comparison of prediction results between improved model and original model (Only display the best results).

Nutrient Model Preprocessing
method+Model

R²p RMSEp RPD Model Preprocessing
method+Model

R²p RMSEp RPD

nitrogen Improved D1+PLSR 0.8523 0.4850 2.6024 Original MSC+PLSR 0.8159 0.4991 2.3308

phosphorus Improved MSC+PLSR 0.7022 0.5658 1.8326 Original D1+PLSR 0.5040 0.6934 1.4199

potassium Improved MSC+PLSR 0.8087 0.3997 2.2866 Original D1+PLSR 0.7007 0.6333 1.8280
fron
The values shown in bold represent the highest (or best-performing) results among the compared methods in each experiment.
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on the test set closely aligned with those derived from the original

hyperspectral dataset captured by a hyperspectral camera.

Additionally, we conducted the same experiment using the

original, unmodified network architectures, which reconstructed

hyperspectral data with only 31 bands. The prediction accuracy for

all three nutrients was significantly lower than that achieved using

our enhanced model, underscoring the value of both architectural

improvements and spectral range expansion.
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Overall, these findings demonstrate the effectiveness of our

approach in accurately reconstructing hyperspectral information

and predicting plant nutrient content. By enabling in-situ

estimation through RGB-based hyperspectral reconstruction, the

proposed method substantially reduces system complexity and cost

while maintaining high predictive performance. This research

provides both a solid theoretical foundation and practical

advancements for precision forestry, supporting enhanced plant
FIGURE 11

The reconstruction results under different degrees of Gaussian blur. From left to right: the original image, and Gaussian blur kernel sizes of 5, 15, 25,
and 35. The results are shown for three representative samples: (b, c, f) from the eight samples in Figure 6.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1630758
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1630758
management, optimized resource allocation, and improved

productivity under real-world field conditions.
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