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Introduction: Shikimic acid, as a critical precursor for oseltamivir synthesis in

antiviral pharmaceuticals, faces escalating global demand. Although Ginkgo

biloba leaves have emerged as a promising natural source of shikimic acid

owing to their exceptional content of this valuable compound and substantial

biomass production capacity, the molecular mechanisms underlying its

biosynthesis and downstream metabolic regulation in G. biloba leaves remain

largely unknown.

Methods: Here, the concentration of shikimic acid in 33 clones were assessed,

and 1# (referred as HS) had the highest level. The shikimic acid content in HS was

119% higher than that in 24# (referred as LS), which possessed the lowest

shikimic acid level. Concurrently, we analyzed downstream metabolites

including flavonoids, phenylalanine, tryptophan and tyrosine, along with

transcriptomic and metabolomic profiles in HS and LS.

Results: The concentrations of flavonoids, phenylalanine, tryptophan and

tyrosine in HS were markedly lower than those in LS. Principal component

analysis (PCA) and partial least squares discriminant analysis (PLS-DA) analyses

revealed clear differences in metabolites between HS and LS. Numerous

metabolites and genes related to biosynthesis and downstream metabolic

partitioning of shikimic acid were significantly differentially regulated. For

instance, the transcript levels of malate dehydrogenase (MDH) and ribose-5-

phosphate isomerase (RPI), that are involved in shikimic acid biosynthesis, were

more upregulated in HS compared to LS. The abundances of tyrosine,

tryptophan, luteolin and dihydromyricetin and the mRNA levels of chorismate

synthase (CS), chalcone synthase (CHS), chalcone isomerase (CHI) and

flavanone-3b-hydroxylase (F3H), that are implicated in downstream

metabolism of shikimic acid were downregulated in HS compared to LS.

Additionally, the abundances of abscisic acid and auxin in HS were lower than

those in LS. Through association analysis, 27 metabolites, 33 structural genes and

28 transcription factors, such as ERFs, C2H2s andMYBs that play roles in shikimic

acid accumulation were identified.
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Conclusion: These results suggest that metabolites and structural genes

participating in biosynthesis and downstream metabolism of shikimic acids,

and phytohormones and transcript factors play essential roles in shikimic acid

accumulation in G. biloba leaves.
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1 Introduction

Shikimic acid (3, 4, 5-trihydroxy cyclohexene carboxylic acid),

as a natural occurring hydroaromatic compound with chiral

characteristics (Quan et al., 2012), has antioxidant, anti-

inflammatory and antiviral activities (Marchiosi et al., 2019;

Gandhi et al., 2023). Shikimic acid is generally utilized as an

essential precursor for synthesizing Oseltamivir, which is a

frontline antiviral medicine critical for prophylaxis and treatment

of influenza A/B viruses (Kancharla et al., 2009; Tripathi et al.,

2014). Beyond pharmaceutical applications, shikimic acid and its

derivatives have substantial agricultural utility, functioning as plant

growth enhancers (Al-Amri, 2013), eco-friendly herbicides and

antimicrobial agents (Dıáz-Quiroz et al., 2018). Despite recent

advances in the processes of chemical and microbial synthesis as

viable alternatives (Rawat et al., 2013; Bilal et al., 2018; Candeias

et al., 2018), plant-derived shikimic acid continues to dominate

industrial-scale antiviral production due to its inherent non-toxic

profile (Marchiosi et al., 2019).

Shikimic acid serves as a central metabolic node within the

shikimate pathway, which is a universal biosynthetic route

responsible for the synthesis of flavonoids and amino acids

(Kougan et al., 2013). The study about accumulation of shikimic

acid has been mainly performed in bacteria, involving multiple

enzymatic reactions (Wu et al., 2022; Shende et al., 2024). Briefly,

the initial reaction of the shikimate synthetic pathway occurs by the

formation of 3-deoxy-D-arabinoheptose-7-phosphate (DAHP) via

condensation of phosphoenolpyruvate (PEP) and erythrose-4-

phosphate (E4P) (Herrmann and Weaver, 1999). Subsequently, 3-

dehydroquinate (DHQ) synthase catalyzes the conversion of DAHP

into DHQ, which is further dehydrated by DHQ dehydrase into 3-

dehydroshikimate (DHS) (Maeda and Dudareva, 2012). NADPH-

dependent shikimate dehydrogenase then catalyzes the reduction of

DHS to yield shikimic acid. Thereafter, shikimate kinase (SK)

catalyzes the production of shikimate-3-phosphate (S3P) (Tzin

e t a l . , 2012) . S3P i s subsequent ly conver ted to 5-

enolpyruvylshikimate-3-phosphate (EPSP) under the catalyzes of

EPSP synthase (Wang et al., 2017; Gandhi et al., 2023). Chorismate

synthase (CS) ultimately transforms EPSP into chorismate, which is

a pivotal branch-point metabolite that feeds into the biosynthesis of

aromatic amino acids (phenylalanine, tryptophan and tyrosine) and

other secondary metabolites (Gu et al., 2017). Despite its
02
pharmacological significance, critical knowledge gaps persist

regarding the regulatory mechanisms governing shikimic acid

accumulation in plants.

The current industrial production of shikimic acid relies on

extraction from mature fruits of Chinese star anise (Illicium verum).

Thus, the fruiting season and production of mature fruits limits the

output of shikimic acid. Recent phytochemical analysis by Kulić

et al. (2022) found that the concentration of shikimic acid in Ginkgo

biloba leaves is about 20 mg g-1, which is lower than the 66 mg g-1

reported in mature fruits of Chinese star anise (Ramazani et al.,

2021). However, the annual biomass yield of G. biloba leaves is

much higher than mature fruits of Chinese star anise. Moreover,

given their renewable nature and rapid harvest cycles, G. biloba

leaves present a promising alternative source for this

pharmacologically significant precursor compound. Other plant

species, such as sweetgum (Liquidambar styraciflua) and Pinus

elliottii, have also been reported to produce shikimic acid (Martin

et al., 2010; Xie et al., 2012). However, sweetgum-derived shikimic

acid is extracted from non-renewable bark and wood tissues, while

P. elliottii needles contain lower concentrations compared to G.

biloba leaves (Xie et al., 2012). Although microbial synthesis using

genetically engineered Escherichia coli has become an important

alternative approach (Bilal et al., 2018), this method often relies on

costly substrates. In contrast, G. biloba is widely cultivated and

generates substantial leaf biomass annually, making it an

ecologically sustainable and economically feasible plant-

based source.

As a gymnosperm species belonging to Ginkgopsida, G. biloba

L. is extensively cultivated in China, Korea, and Japan (Zhao et al.,

2010; Crane, 2018). Its leaves extracts have various health benefits,

such as anti-inflammatory, neuroprotective and anti-aging

properties (Yu et al., 2022). Additionally, in order to preserve old

books, G. biloba leaves are used to be inserted among the pages,

demonstrating G. biloba leaves play an important role in traditional

Chinese culture. Nevertheless, despite generating substantial

biomass in Chinese plantations, current utilization remains

insufficient, and only 1.5–2.9% of the leaf biomass ends up with a

valuable product (Kulić et al., 2023). The extraction of shikimic acid

from G. biloba leaves not only holds significant economic value but

also promotes sustainable resource management. Noticeably, our

preliminary experiments have shown that the content of shikimic

acid varies greatly among different G. biloba clones. Similarly,
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different ginkgo clones also exhibit contrasting flavonoid

concentration in the leaves. For instance, Yao et al. (2012) found

that the flavonol glycoside content in Anjie (a ginkgo clone) was

19.19 times higher than that in TaiXing (a ginkgo clone), which

possessed the lowest level. It is of great significance to screen G.

biloba clones with great shikimic acid concentration, and further

analyze the molecular mechanism underlying shikimic acid

accumulation in G. biloba leaves.

Here, the leaves from 33 G. biloba clones were collected,

respectively, and the content of shikimic acid was quantified.

Metabolome and transcriptome were employed to detect the

abundances of metabolites and expression levels of genes in the

leaves of G. biloba. The aims of this study were to (i) identify G.

biloba clones with high shikimic acid content, (ii) identify

metabolites, structural genes and transcript factors related to

shikimic acid accumulation in G. biloba leaves.
2 Materials and methods

2.1 Plant materials and harvest

From the G. biloba nursery in Nanjing Forestry University (32°

04’N, 118° 48’E, Nanjing, China), 33 clones (namely 1#-33#, 18-

year-old) with leaf utilization potential were selected. These clones

were originated from Pizhou, Jiangsu Province, and were selected in

2005 based on seedling height and ground diameter. Afterward,

these clones were transplanted into a common garden in Nanjing

forestry university with uniform spacing (4m × 4m) to minimize

environmental variation. In mid-April, the healthy functional leaves

were harvested from every clone and immediately wrapped in

tinfoil and frozen in liquid nitrogen. Leaf samples were ground

into fine powder with a mortar and a pestle in liquid nitrogen. The

fine-powdered samples were then stored at an ultralow temperature

refrigerator for further analyses. For each clone, six branches that

exhibited similar growth status and exposed to sunlight were

selected. For physiological and metabolomic analyses, leaves from

each branch were collected separately to form an individual sample,

resulting in six biological replicates for each clone. For the

transcriptomic analysis, equal amounts of leaf samples from every

two branches were pooled together to form a mixed sample.

Consequently, three mixed samples were obtained for each clone.
2.2 Determination of shikimic acid

The concentration of shikimic acid was measured as described

by Zelaya et al. (2011) and Joubert et al. (2023) with minor

modifications. Briefly, ca. 50 mg oven-dried fine powders were

mixed with 0.25 mol L-1 hydrochloric acid for 30 min. After

centrifuged (6000 g) for 10 min, the supernatant was collected

and diluted three times. The reaction was initiated by adding 1% (w/

v) periodate solution. Three hours later, the reaction was stopped by

adding a solution containing 1 mol L-1 NaOH and 1mol L-1
Frontiers in Plant Science 03
glycinate. Shikimic acid concentrat ion was measured

spectrophotometrically at 380 nm.
2.3 Determination of phenylalanine,
tryptophan and tyrosine

Phenylalanine concentration was assayed using a phenylalanine

content kit (Nanjing Jiancheng Bioengineering Research Institute

Co., Nanjing, China) following the kit’s instructions.

Tryptophan and tyrosine were assayed as described previously

(Park et al., 2012; Botella et al., 2023) with minor modifications.

Briefly, frozen powder was homogenized in 100 µL extraction

solution containing 50% ethanol and 0.1 mol L-1 HCl. The

mixture was centrifuged (13800 g, 4°C, 20 min), and the

supernatant was filtered through an organic membrane (0.22

mm). The filtered supernatant was used to determine tryptophan

and tyrosine with liquid chromatography-mass spectrometry (LC/

MS, LTQ-XL, Thermo Scientific, Waltham, MA, USA).
2.4 Determination of flavonoid

The concentration of flavonoid in the leaves were analyzed as

described previously (An et al., 2024; Cui et al., 2025). Briefly, oven-

dried fine powder (ca. 200 mg) was packed with filter paper and

washed with 100 mL petroleum ether in Soxhlet extraction to remove

impurities for 8 h. Afterward, the purified packed fine powder was

extracted in 10 mL methanol at 60 °C for 30 min, and this procedure

was repeated twice. The extraction was transferred into a new

volumetric flask, ensuring the final volume to 20 mL. The extraction

was homogenized with 5% sodium nitrite, 10% aluminum nitrate, and

1 mol L-1 NaOH for 5, 6 and 10 min, respectively. The absorbance of

the mixture was determined spectrophotometrically at 510 nm.
2.5 Metabolite profiling analysis

Since shikimic acid content in 1# (referred as HS) was the

highest while that in 24# (referred as LS) was the lowest (Figure 1a),

1# and 24# were selected to explore metabolomic analysis of

shikimic acid synthesis and downstream metabolism. The clones

of No.1 (HS) and No.24 (LS) originate from distinct individual trees

and are not derived from mutated shoots of any single tree.

Nontargeted metabolites in the leaves were analyzed based on the

method described previously (Yu et al., 2022; Hong et al., 2023).

Briefly, fresh fine powders (ca. 100 mg) were extracted with 500 mL
of 80% methanol and were incubated on ice for 5 min. The mixture

was centrifuged (15000 g, 4°C) for 20 min. The collected

supernatant was diluted with mass spectrometry water until

methanol content was 53%. Then, the samples were transferred to

fresh tubes and centrifuged (15000 g, 4°C) for 20 min. Finally, the

supernatant was collected and injected into a Vanquish UHPLC

system (Thermo Fisher Scientific, Waltham, MA, USA) coupled
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with an Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo

Fisher Scientific) for liquid chromatography tandem mass

spectrometry (LC-MS/MS) analysis.

LC–MS/MS raw data were processed using the Compound

Discoverer 3.1 (CD3.1, Thermo Fisher Scientific) to perform peak

alignment, picking and area quantification. Subsequently, the

precise qualitative and relative quantitative results were obtained

by matching the peaks with mzCloud, mzVault and MassList

databases. The metabolites were annotated using the KEGG

database, HMDB database and LIPIDMaps database (Marco-

Ramell et al., 2018). The metabolites with VIP > 1, P-value < 0.05

and log2 (Fold change) ≥ 1 (or ≤ -1) were considered to be

differentially regulated. Notably, electrospray ionization (ESI) was

employed as the ion source, and was conducted in both positive and

negative ion modes.
2.6 RNA sequencing and bioinformatic
analysis

Total RNA from the leaves of HS and LS was isolated using a

polysaccharide polyphenol plant total RNA kit (DP441, TianGen,

Beijing, China), respectively. RNA integrity was evaluated using
Frontiers in Plant Science 04
Agilent 2100 bioanalyzer. Subsequently, cDNA libraries were

constructed and sequenced on illumina NovaSeq 6000 (Illumina,

San Diego, CA, USA). The analysis of RNA sequencing data was

performed as described earlier (Lu et al., 2022; Du et al., 2024).

Briefly, the original sequencing data were filtered to obtain clean

data. The clean reads were then aligned to the G. biloba genome

(Guan et al., 2016) (Genome ID: 100613, available at http://

gigadb.org/dataset/100613) using HISAT2 (v.2.0.5). StringTie

software was used to assemble the new transcripts, and

featureCounts (v.1.5.0-p3) was used to calculate the Fragments

Per Kilobase Million (FPKM) of each gene. Significantly

differentially expressed genes (DEGs) were identified on the basis

of |log2 (Fold change)| ≥ 1 and a false discovery rate (FDR) < 0.05.

The clusterProfiler software (v.3.8.1) was used for gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analyses (Li et al., 2024b). GO terms and KEGG pathways with P-

values < 0.05 were considered to be significantly enriched (Xiang

et al., 2024). Three cDNA libraries were generated and sequenced

for HS and LS, respectively. The sequencing data were deposited to

the Genome Sequence Archive (GSA, https://ngdc.cncb.ac.cn/gsa/)

under Project ID CRA025492.

DEGs were annotated and functional categorized as described

by Yu et al. (2021); (Lu et al., 2024) with minor modifications.
FIGURE 1

Concentration of shikimic acid in the leaves of 33 Ginkgo biloba clones (a), and concentrations of flavonoids, phenylalanine, tryptophan and tyrosine
in the leaves of 1# and 24# (b). P-values obtained from one-way ANOVA test are indicated: *P < 0.05; **P < 0.01; ***P < 0.001.
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Briefly, the coding sequences of DEGs were retrieved from the G.

biloba’s genomic database. The closest homologue of a G. biloba

gene in Arabidopsis thaliana was identified by searching its coding

sequence against the protein sequence database of Arabidopsis using

translated nucleotide BLAST (BLASTX). Identifiers of Arabidopsis

genes closest to these DEGs were then submitted to MapMan

(http://mapman.gabipd.org/) for functional analysis.
2.7 Association analysis of transcription
factors and DEGs involved in shikimic acid
biosynthesis and downstream metabolism

Considering the critical roles of transcription factors (TFs) in

shikimic acid biosynthesis and downstream metabolism, the

Pearson correlation coefficient (R) between differentially

expressed TFs and shikimic acid content was calculated.

Candidate TFs were defined to have an absolute R-value greater

than 0.92 and a P-value less than 0.05. To further identify key TFs

regulating the accumulation of shikimic acid, R were calculated

between these candidate TFs and DEGs involved in the shikimic

acid biosynthesis and downstream metabolism. Significant

correlations were defined as |R| > 0.95 with P-value < 0.05.

Correlations between key TFs and DEGs were displayed using

Cytoscape (v.3.10.1).
2.8 Integrative analysis of metabolome and
transcriptome

The differentially accumulated metabolites (DAMs) and DEGs

involved in shikimic acid biosynthesis and downstream metabolism

were used for the integrative analysis, and the Pearson’s correlation

coefficients between them were calculated (Yu et al., 2022). A

correlation was considered statistically significant if the absolute

value of the |R| exceeded 0.8 with a P-value less than 0.05. Heatmaps

were used to reveal the correlation between these DAMs and DEGs.
2.9 Fluorescence quantitative PCR
experiment

Total RNA was extracted as mentioned above. Quantitative RT-

PCR (RT-qPCR) was conducted as described previously (Zhang

et al., 2023). Specific primers were designed for each DEG, and

Glyceraldehyde 3- phosphate dehydrogenase (GAPDH) was selected

as an internal standard (Supplementary Table S1).
2.10 Statistical analysis

Statgraphics (STN, St Louis, MO, USA) was employed to do

statistical tests as described previously (Lu et al., 2019, 2023). The

data was tested to explore the normality prior to the analysis. One-

way analysis of variance (ANOVA) was employed, and the means
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were regarded to be significantly different if the P-value was less

than 0.05 on the basis of ANOVA F-test.
3 Results

3.1 Shikimic acid, flavonoids, phenylalanine,
tryptophan and tyrosine

The concentration of shikimic acid in the leaves varied greatly

among the 33 G. biloba clones (Figure 1a). Notably, 1# had the

highest shikimic acid level and 24# possessed the lowest content

(Figure 1a). The shikimic acid content in HS was 119% higher than

that in LS (Figure 1a). HS and LS were selected to further study the

metabolomic and transcriptomic mechanism of shikimic acid

accumulation in G. biloba leaves. The concentrations of

flavonoids, phenylalanine, tryptophan and tyrosine, which are

downstream metabolites of shikimic acid, in HS were 17%, 22%,

11% and 23% lower than those in LS, respectively (Figure 1b).
3.2 Metabolomic response

A total of 862 metabolites were identified in positive (451) and

negative (411) ion modes, respectively (Supplementary Table S2).

Principal component analysis (PCA) demonstrated that the first

two principal components explained 60.48% and 57.61% of the total

variance in negative and positive ion modes, respectively, with PC1

serving as the dominant contributor in both analyses (Figures 2a, b).

Partial least squares discriminant analysis (PLS-DA) showed clear

metabolic differences between HS and LS (Figures 2c, d). In the

PLS-DA model, PC1 accounted for 34.79% (negative mode) and

33.44% (positive mode), while PC2 explained 20.94% (negative

mode) and 15.43% (positive mode) of variances, respectively

(Figures 2c, d). For metabolites detected in negative ion mode,

compared with LS, the abundances of 67 metabolites were higher,

whereas those of 71 metabolites were lower in HS, respectively

(Supplementary Figure S1a; Supplementary Table S3). 61

upregulated and 91 downregulated metabolites (in positive ion

mode) were identified in HS vs. LS, respectively (Supplementary

Figure S1b; Supplementary Table S3). According to KEGG pathway

annotation, these DAMs were mainly involved in metabolic

pathways, tryptophan metabolism, galactose metabolism,

aminoacyl−tRNA biosynthesis, and arginine and proline

metabolism (Supplementary Figures S1c, d).

The DAMs were divided into 10 categories, mainly including

benzenoids, flavonoids, amino acids and hormones (Figure 2e;

Supplementary Table S3). The abundances of most benzenoids,

amino acids and hormones, were significantly lower in HS

compared to those in LS (Figure 2e; Supplementary Table S3).

For example, abscisic acid, indole-3-acetic acid, tyrosine,

tryptophan, kynurenic acid, bergenin and 3-dehydroshikimic acid

were downregulated in HS compared to LS (Figure 2e;

Supplementary Table S3). The abundances of 12 flavonoid

metabolites, such as luteolin, kaempferol-3-gentiobioside and
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wight one in HS were significantly lower when compared with those

in LS (Figure 2e; Supplementary Table S3).
3.3 Transcriptomic response

Based on the above physiological and metabolomic data, it was

speculated that there are differences in gene expression patterns

involved in shikimic acid synthesis and downstream metabolism

between HS and LS. To test this hypothesis, the transcriptomes of

leaves from HS and LS were sequenced. A total of six cDNA

libraries from HS and LS were constructed, and 45.1-46.3 million

clean reads were obtained from each library (Supplementary Table

S4). 91.10-91.94% of clean reads can be mapped to the G. biloba

genome database (Supplementary Table S4). Compared with LS,
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671 upregulated and 873 downregulated genes were detected in HS

(Figure 3a). Genes were randomly selected to validate the

transcriptomic data using RT-qPCR (Supplementary Figure S2).

GO enrichment analysis showed that the differentially

expressed genes (DEGs) were significantly enriched in

oxidoreductase activity, acting on paired donors, with

incorporation or reduction of molecular oxygen (GO:0016705),

transferase activity, transferring hexosyl groups (GO:0016758),

xyloglucan: xyloglucosyl transferase activity (GO:0016762),

hydrolase activity, acting on glycosyl bonds (GO:0016798) and

polysaccharide metabolic process (GO:0005976) (Figure 3b).

KEGG pathway enrichment analysis showed that DEGs were

involved in phenylpropanoid biosynthesis, flavonoid biosynthesis,

starch and sucrose metabolism, flavone and flavonol biosynthesis,

and cyanoamino acid metabolism (Figure 3c). These results suggest
FIGURE 2

Principal component analysis (PCA) plots (a, b) and partial least squares discriminant analysis (PLS-DA) plots (c, d) of the metabolites identified in
negative mode (a, c) and positive mode (b, d), enforced with electrospray ionization (ESI) in LC-MS/MS, and hierarchical clustering of the
differentially abundant metabolites between HS (1#, highest shikimic acid content) and LS (24#, lowest shikimic acid content) (e). R²Y, Cumulative
explained variance of the response variable in PLS-DA. Q²Y, Cross-validated predictive variance of the response variable.
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that DEGs are involved in the biosynthesis and downstream

metabolism of shikimic acid. MapMan was used to further

classify these DEGs into functional categories, including

photosynthesis, flavonoid metabolism, hormone metabolism,

amino acid metabolism and transcriptional regulation

(Supplementary Table S5), which are closely correlated with

synthesis and downstream metabolism of shikimic acid.

In the shikimic acid synthesis pathway (Supplementary Figure

S4), malate dehydrogenase (MDH) encoding a pivotal enzyme

responsible for the conversion of l-malate into oxaloacetate

(Rozova et al., 2015) and Ribose-5-phosphate isomerase (RPI)

coding for a cytosolic ribose-5-phosphate isomerase that catalyzes

the conversion of D-ribulose 5-phosphate to d-ribose 5-phosphate

(Faria et al., 2016), were more upregulated in HS compared to LS

(Figure 4a; Supplementary Table S5).
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In the downstream metabol i sm of shik imic ac id

(Supplementary Figure S4), a number of genes that are implicated

in biosynthesis of aromatic amino acids and flavonoids were

downregulated in HS compared to LS (Figure 4b). For instance,

the transcript levels of chorismate synthase (CS) encoding an

enzyme that catalyzes the conversion of 5-enolpyruvylshikimate-

3-phosphate (EPSP) to chorismate was downregulated in HS

compared to LS (Figure 4b; Supplementary Table S5). Similarly,

the mRNA levels of 4-coumarate:CoA ligase (4CL) encoding an

enzyme that catalyzes the ATP-dependent conversion of p-

coumaric acid to p-coumaroyl-CoA, chalcone synthase (CHS)

encoding a key enzyme that condenses p-coumaroyl-CoA with

three molecules of malonyl-CoA to form naringenin chalcone,

flavanone-3b-hydroxylase (F3H) encoding an enzyme that

mediates the stereospecific 3b-hydroxylation of naringenin to
FIGURE 3

Volcano plot of significantly differentially expressed genes (DEGs) between HS and LS (a), as well as gene ontology (GO) enrichment analysis (b), and
dot plot showing kyoto encylopaedia of genes and genomes (KEGG) enrichment analysis of DEGs (c). In panel (b), CC, MF, and BP represent cellular
component, molecular function, and biological process, respectively. In panel (c), the size of the dots represents the number of enriched genes, and
the color indicates the P-value. Gene IDs correspond to gene models from the draft genome of G. biloba published by Guan et al. (2016) (assembly
accession 100613). Detailed information about these genes is presented in Supplementary Table S5.
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dihydrokaempferol, and dihydroflavonol 4-reductase (DFR)

encoding an enzyme that catalyzes the NADPH-dependent

reduction of dihydromyricetin to leucocyanidin, were

downregulated in HS compared to LS (Figure 4b; Supplementary

Table S5).

In the category of hormone metabolism, the transcript levels of

abscisic acid-responsive element-binding factor (ABF) and gem-relate 5
Frontiers in Plant Science 08
(GER5) involved in ABA signaling (Liu et al., 2019) were

downregulated in HS compared to LS (Supplementary Figure S3;

Supplementary Table S5). The mRNA levels of BIG and cullin-

associated and neddylation dissociated (CAND1) involved in auxin

regulation (Gil et al., 2001; Chuang et al., 2004), and like aux1 3 (LAX3)

and GH3.1 implicated in auxin transport (Kasahara et al., 2020), were

downregulated in HS compared to LS (Supplementary Figure S3).
FIGURE 4

Changes in abundances of metabolites and expression levels of genes involved in shikimic acid biosynthesis (a) and downstream metabolism (b) in
HS compared to LS. Metabolites marked with red/blue fonts indicate upregulated/downregulated metabolites in HS compared to LS. Genes marked
with green italic fonts are significantly differentially expressed. Detailed information about these metabolites and genes is presented in
Supplementary Tables S4, S5, respectively. Solid arrows represent single-step enzymatic reactions, while dashed arrows indicate multi-step or
simplified pathways between metabolites.
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3.4 Differentially expressed transcription
factors

A total of 126 differentially expressed TFs were identified in this

study (Supplementary Table S5). The highest abundance of TF

family was MYB (18, 14.29%), followed by PTRs (12, 9.52%), C2H2

(12, 9.52%), HB (7, 5.56%) and AP2-EREBP (7, 5.56%) (Figure 5a).

Notably, only four MYBs were upregulated, while the other 14

MYBs were significantly downregulated in HS compared to LS

(Figure 5b). In addition, most C2H2, bHLH and ARF family genes

were downregulated, while WRKYs and bZIPs were more

upregulated in HS compared to LS (Figure 5b).

Pearson correlation analysis between the transcript levels of

differentially expressed TFs and shikimic acid concentration identified

28 TFs with closely correlations (R ≥ 0.92 or ≤ -0.92) (Supplementary
Frontiers in Plant Science 09
Table S6). Among these, nine TFs, such as enhanced downy mildew 2

(EDM2) and set domain group 26 (SDG26), showed a positive

correlation with shikimic acid content (Supplementary Table S6). The

remaining 19 TFs, such as constans-like 9 (COL9) and myb domain

protein 50 (ATMYB50), displayed a negative correlation with shikimic

acid content (Supplementary Table S6).

Correlation analysis was performed to further calculate the

correlation coefficients between these 28 TFs and DEGs

participating in shikimic acid biosynthesis and downstream

metabolism (Figure 5c). Each TF was closely correlated with 1–6

DEGs involved in shikimic acid biosynthesis and downstream

metabolism (Figure 5c; Supplementary Table S7). Notably, related

to AP2 11 (RAP2.11) and reproductive meristem 16 (REM16) had

the most numbers of closely correlated DEGs (Figure 5c;

Supplementary Table S7). RAP2.11 and REM16 were considered
FIGURE 5

Classification and proportion of differentially expressed transcription factors (TFs) (a), expression profiles of selected TFs (b), and correlation analysis
of candidate TFs and differentially expressed genes involved in shikimic acid biosynthesis and downstream metabolism (c) in the leaves of G. biloba.
Detailed information about these genes is presented in Supplementary Table S5.
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to be key TFs in regulating shikimic acid biosynthesis and

downstream metabolism.
3.5 Association analysis of metabolome
and transcriptome

The correlation between DAMs and DEGs that are involved in

shikimate biosynthetic and downstream metabolic pathways were

analyzed (Figure 6). Apigenin c-pentoside, kaempferol-3-

gentiobioside and luteolin were three metabolites having the

highest numbers of correlated DEGs (Figure 6). Specifically,

kaempferol-3-gentiobioside, apigenin c-pentoside and luteolin

were positively correlated with 19, 8 and 19 DEGs, and were

negatively correlated with 10, 20 and 8 DEGs, respectively

(Figure 6). In addition, beta glucosidase 7 (BGLU7), Arabidopsis

thaliana peroxidase 34 (AtPERX34), peroxidase (PRX) and copper
Frontiers in Plant Science 10
amine oxidase (CuAO) were found to have the largest numbers (21-

22) of correlated DAMs (Figure 6). Therefore, the three DAMs and

four DEGs may play key roles in the shikimic acid biosynthesis and

downstream metabolism in the leaves of G. biloba.
4 Discussion

4.1 The greater synthesis and lower
downstream metabolism of shikimic acid
are essential for higher shikimic acid
concentration in the leaves of G. biloba

The biosynthesis and downstream metabolism of shikimic acid

determine the final shikimic acid concentration in G. biloba leaves.

Notably, in the upstream synthesis of shikimic acid, both MDH

and RPI were significantly upregulated in HS compared to LS.
FIGURE 6

Correlation heatmap of differentially abundant metabolites and differentially expressed genes involved in shikimate biosynthesis and downstream
metabolism. ‘*’ indicates a significant correlation (|R| ≥ 0.8, P-value < 0.05.) between the metabolites and genes. Detailed information about these
genes is provided in Supplementary Table S5.
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Functionally, MDH catalyzes the formation of OAA (as a precursor of

PEP), and RPI generates Ru5P, which can be transformed into E4P

(Stover et al., 2000). E4P and PEP constitute the essential substrate

pairs for shikimic acid biosynthesis (Kruger and von Schaewen, 2003).

These findings suggest that the upregulation ofMDH and RPI play key

roles in higher shikimic acid concentration in HS vs. LS.

Previous studies have demonstrated that the attenuated

downstream metabolic flux exhibit significant accumulation of

shikimic acid in plants (Bochkov et al., 2011; Eloy et al., 2017). The

biosynthesis of aromatic amino acids and flavonoids are two vital

metabolic pathways of downstream shikimic acid metabolism.

Correspondingly, the abundances of several aromatic amino acids

and flavonoid-related metabolites, such as phenylalanine, tryptophan,

tyrosine, dihydromyricetin, (+)-catechin and luteolin, were significantly

lower in HS vs. LS. Based on the association analysis, luteolin was

identified as a key metabolite. In this study, the expression levels of

multiple genes, such as CS, CHS, DFR, PRX, ATPERX34, BGLU7 and

CuAO, which are involved in biosynthesis of aromatic amino acids and

flavonoids were markedly downregulated in HS compared to LS.

Additionally, Integrated analysis of metabolomic and transcriptomic

data revealed that PRX, ATPERX34, BGLU7, and CuAO may play

pivotal roles in shikimate biosynthesis and downstreammetabolism. In

maize (Zea mays), suppression of CHS results in lower flavonoid

production and higher accumulation of shikimic acid derivatives

(Eloy et al., 2017). Similarly, inhibition of the CS in Petunia hybrida

leads to reduced flavonoid accumulation (Zhong et al., 2020). These

results suggest that the downregulation of metabolites and genes

participating in downstream metabolism of shikimic acid contribute

to higher concentration of shikimic acid in HS than that in LS.
4.2 Changes in expression levels of genes
involved in phytohormone metabolism
might contribute to higher shikimic acid
accumulation

Previous studies have shown that ABA and IAA could affect the

metabolism of flavonoid (Jeong et al., 2004; Dong and Lin, 2021),

probably regulating the shikimic acid accumulation in G. biloba

leaves. For instance, exogenous application of ABA increases the

levels of flavonoid-related metabolites, such as isorhamnetin-3-O-

gallate and dihydromyricetin, in Rhododendron chrysanthum after

UV-B radiation (Yu et al., 2024). ABA positively regulates flavonoid

accumulation by upregulating F3’H under drought stress in G.

biloba (Yu et al., 2022). Auxin is also reported to be positively

correlated with flavonoid accumulation by upregulating CHS in

Arabidopsis root galls (PÄSold et al., 2010). In this study, the

abundances of ABA and IAA, and the mRNA levels of ABF, GER,

BIG, CAND1, LAX3 and GH3.1, which are involved in ABA and

IAA signaling and metabolism, were significantly downregulated in

HS compared to LS. These results indicate that the downregulation

of ABA and IAA, along with the lower expression of genes

participating in ABA and IAA signaling and metabolism, play

vital roles in limiting flavonoid biosynthesis, thus contributing to

higher shikimic acid accumulation in HS than that in LS.
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4.3 Transcription factors play an important
role in regulating shikimic acid
accumulation

In this study, the most abundant TFs belonged to the MYB family

members (Figure 5a). Furthermore, in the co-expression network

(Figure 5c), four TFs—MYB6, ZP1, RAP2.11, and MTERF34—

exhibited the most connections with key structural genes, suggesting

their potential regulatory roles in regulating shikimic acid biosynthesis

and downstream metabolism. Previous studies have revealed that

MYBs, C2H2s and ERFs play key roles in regulating flavonoid

biosynthesis (Li et al., 2024a), probably affecting the shikimic acid

concentration in G. biloba leaves. For instance, overexpression of

MYB6 brings about upregulation of DFR2, resulting in larger

concentrations of anthocyanin and proanthocyanidins in poplar

(Wang et al., 2019). As a C2H2 family member, ZAT could regulate

flavonoid biosynthesis by interacting with the promoter regions of

genes involved in flavonoid biosynthesis, such as CHS in Macadamia

integrifolia under high temperature stress (Yang et al., 2023). AP2/ERF

transcription factors can directly target the key genes in the flavonoid

biosynthesis pathway, thereby regulating the synthesis of flavonoid in

Solanum lycopersicum and Citrus (Zhao et al., 2020; Cao et al., 2024).

These results suggest that TFs play key roles in regulating shikimic acid

downstream metabolism, thus bringing about higher shikimic acid

accumulation in HS than that in LS.
5 Conclusion

Taken together, compared to LS, HS exhibited significantly higher

concentration of shikimic acid but lower levels of downstream aromatic

amino acids and flavonoids. Correspondingly, a number of metabolites

and genes that are related to biosynthesis and downstream metabolic

partitioning of shikimic acid were significantly differentially regulated.

For instance, the mRNA levels of MDH and RPI, that are involved in

shikimic acid biosynthesis, were higher in HS vs. LS. The abundances of

luteolin and dihydromyricetin and the mRNA levels of CHS and F3H,

that are implicated in downstream metabolism of shikimic acid, were

lower in HS vs. LS. The abundances of ABA and IAA in HS were lower

than those in LS. Moreover, 28 transcription factors, such as ERFs,

C2H2s andMYBs that play roles in accumulation of shikimic acid were

identified. These results suggest that metabolites and structural genes

involved in biosynthesis and downstream metabolism of shikimic

acids, and ABA, IAA and transcript factors play key roles in

shikimic acid accumulation in G. biloba leaves.
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