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Soils contaminated with heavy metals (HMs) pose severe consequences to living 
organisms, primarily affecting human health. During the past two decades, 
researchers have focused on hyperaccumulator plant species to augment the 
cleanup efforts of contaminated soils. Plants are continually exposed to HMs in the 
environment since they are sessile organisms. Plants that do not hyperaccumulate 
metals are vulnerable to high metal concentrations. Their root vacuoles create 
complexes with metal ligands as a detoxifying approach. On the other hand, 
metal-hyperaccumulating plants have evolved internal regulatory systems that 
allow them to hyperaccumulate excess HMs in their above-ground tissues. Unlike 
metal non-hyperaccumulators, they have the unusual ability to successfully carry 
out regular physiological activities without displaying any evident stress signs. The 
capacity of hyperaccumulators to acquire extra metals is due to the overexpression 
of constitutive metal transporter and their translocation capacity. To accomplish 
this, plants respond to HMs stress by inducing specifying key genes and enzymes 
involved in HMs chelation and compartmentalization in plants, such as 
phytochelatin synthases (PCS), which synthesize phytochelatins for metal 
binding, and metallothionein’s (MTs), which also participate in metal 
detoxification. Additionally, transporters like ATP-binding cassette (ABC) 
transporters, natural resistance-associated macrophage proteins (NRAMPs), and 
heavy metal ATPases (HMAs) facilitate metal sequestration into vacuoles or 
apoplasts. Genes encoding these proteins (e.g., PCS1, MT1/2, HMA3/4, and 
NRAMP3/4) are often upregulated under heavy metal stress, enabling plants to 
mitigate toxicity through chelation and compartmentalization. The current review 
provides an updated overview of major hyperaccumulator plants, explores insights 
into metal ion transporters and their expression patterns, and discusses the 
possible molecular mechanisms underlying metal ion hyperaccumulation. In 
addition, the evolution of various metal ion transporters and their tissue-specific 
expression patterns have been documented. 
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GRAPHICAL ABSTRACT 
1 Introduction 

Environmental contamination by HMs and toxic pollutants is a 
growing global concern, posing severe risks to ecosystems, 
agriculture, and human health (Briffa et al., 2020; Hembrom et al., 
2020). Industrial activities, mining, improper waste disposal, and the 
excessive use of chemical fertilizers have led to the accumulation of 
hazardous substances such as cadmium, lead, arsenic, and mercury in 
soil and water. These contaminants disrupt soil fertility, reduce crop 
yields, and enter the food chain, leading to chronic diseases in 
humans and animals (Pirzadah et al., 2019; Dehkordi et al., 2024). 
Traditional remediation methods, such as chemical treatments and 
excavation, are often expensive, energy-intensive, and can further 
degrade the environment. As a result, there is an urgent need for 
sustainable and cost-effective solutions to detoxify polluted 
environments (Kuppan et al., 2024; Sangeetha and Jagtap, 2024). 
HMs are phytotoxic compounds of metals and metalloids, which may 
be toxic to plants even at low concentrations. While HMs are essential 
to plants, substantially, there are non-essential HMs like chromium 
(Cr), cadmium (Cd), lead (Pb), manganese (Mn), etc. induce 
devastating negative impacts on plant growth, culminating in poor 
crop production and toxicity to human health (Varma, 2021; Lone 
and Gaffar, 2021; Varma, 2021; Raza et al., 2022; Bhat et al., 2023). 
One of the major global concerns regarding animal health and 
environmental imbalances is the rapid accumulation of HMs to the 
extent of toxic levels. Substantial loss in crop production is due to the 
accumulation  of  heavy  metal  ions  by  select ive  plant  
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hyperaccumulators (Bharwana et al., 2013; Dar et al., 2020; Sharma 
and Kumar, 2021). Phytotoxic effects of HMs include damage to 
various physiological and metabolic networks at the cellular and 
molecular levels (Raza et al., 2022; Bhardwaj et al., 2023). Several 
metal ions act as potent carcinogens and toxins to animals, usually 
accumulated in food chains through anthropogenic activities (Arora 
and Chauhan, 2021; Priyadarshanee et al., 2022; Basu et al., 2023). 
These HMs in diverse soils may be emitted from coal mines, 
petrochemical spillages, metal disposals, industrial areas, animal 
manures, atmospheric depositions, and sewage-sludge treatment 
plants (Adeyemi, 2021; Oladoye et al., 2021; Tariq et al., 2023). 
Heavy metal ion toxicity is primarily due to their oxidation ability. In 
this state, they manifest heavy damage to plants through their 
negative impacts on physiology, biochemical network, and 
morpho-anatomy. In addition, HMs inactivate critical enzymes, 
proteins, and respiratory metabolism and mediate photosynthetic 
inhibition (Bharwana et al., 2013; Mushtaq et al., 2021b; Thakur et al., 
2021). The interaction between hyperaccumulator plants and their 
environment has far-reaching implications. On one hand, they can 
improve soil quality by removing toxic elements, making land safer 
for agriculture (Zhakypbek et al., 2024). On the other hand, their 
ability to concentrate HMs may affect neighboring plant growth, 
either by reducing competition (since few plants thrive in metal-rich 
soils) or by altering microbial communities in the rhizosphere (Barra 
Caracciolo and Terenzi, 2021; Solomon et al., 2024). For agriculture, 
hyperaccumulators can be strategically used in phytomining 
recovering valuable metals like nickel or zinc while also 
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rehabilitating contaminated fields for future crop production. 
Additionally, their integration into agroecological systems could 
reduce dependency on chemical remediation, promoting 
sustainable farming practices (Cao et al., 2025). Understanding 
these dynamics is essential  for optimizing phytoremediation 
strategies and ensuring their benefits extend to food security, 
ecosystem restoration, and human well-being. 

The hyperaccumulation of metal ions is a highly complex 
natural phenomenon, mainly due to the expression of unique 
traits, which are easy to assess. The flexibility of assessing these 
metal ions largely relies on simple analytical techniques. In 
addition, hyperaccumulators are of great interest as an alternate 
strategy to reduce the contamination of soils by toxic metal ions (Pp 
and Puthur, 2021; Rai et al., 2022; Tariq et al., 2022). Several studies 
paved the way for opening doors to evolving diverse processes, such 
as phytomining/bio-fortification, phytoremediation, etc., to 
improve the efficiency of crops in accumulating nutrients 
(Clemens et al., 2002; Pirzadah et al., 2015; Yan et al., 2020; Raza 
et al., 2021). At least 450 species of angiosperms have been 
identified as potential sinks to hyperaccumulate HMs viz. As, Cu, 
Cd, Co, Mn, Ni, Pb, Se, Sb, Ti, and Zn. The hyperaccumulation of 
metal ions is a potential defense against attacks by pathogens or 
herbivores (Dueli et al., 2021; Mushtaq et al., 2021a; Mir et al., 
2022). They employ at least four mechanisms to accumulate metal 
ions, viz. transport of metals through roots from the soil, radial 
metal ion transport in roots, root to shoot metal accumulation, and 
detoxification at storage sites (Clemens, 2001; Clemens et al., 2002; 
Mari and Lebrun, 2005; Merlot et al., 2018; Corso and de la Torre, 
2020). Almost all hyperaccumulators have genetically adapted to 
accumulate various metal ions and have been used in phytomining 
technologies for their extraction (van der Ent et al., 2015; Yaqoob 
et al., 2023; Bhat et al., 2024). Metal homeostasis and stress 
tolerance are linked to understanding the hyperaccumulation 
mechanism of hyperaccumulators. In addition, these plant species 
have evolved to possess adaptations for hypertolerance and 
detoxification of metal and metalloids (Angulo-Bejarano et al., 
2021; Peng et al., 2021; Rai et al., 2021). 

Adapting hyperaccumulators to survive under extreme metal 
ion concentration may further facilitate understanding molecular 
mechanisms to detoxify the soils. Unraveling the molecular basis of 
the hyperaccumulation mechanism helps develop proper 
phytoremediation and phytoextraction techniques. Higher 
biomass and enhanced growth of roots and shoots may further be 
augmented by employing ideal hyperaccumulators through 
phytoremediation (Malik et al., 2015; Quarshie et al., 2021; Ali 
et al., 2022; Ojuederie et al., 2022). In addition, targeting 
contaminated soils by specific hyperaccumulators will further 
enhance crop production and homeostasis of metal ions. The 
traits possessed by hyperaccumulators serve two essential aspects 
of the ecosystem: phytoremediation and the other is the 
biofortification of metal ions (Pirzadah et al., 2019; Jiang et al., 
2021; Yang et al., 2021; Pirzadah et al., 2022). In other words, 
hyperaccumulators accumulate a particular metal ion a hundred or 
thousand times more than the normal concentration accumulated 
by common plants. In addition, they also can detoxify these metal 
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ions to maintain their growth and metabolism. Only a few plant 
species accumulate large amounts of metalloids or transition metal 
ions like Zn, Cd, Ni, Se, As, Cu, Pb, Mn, Tl, Co, or Sb in their aerial 
part at higher concentrations as compared to other plant species. 
Reeves et al. (2018) reported several hyperaccumulators of metal 
ions, such as Ni (532 species), followed by Cd (07 species) and 
(05 species). 

This review summarizes the molecular mechanism behind the 
transport and sequestration of metal ions such as Ni, Cu, Zn, Cd, 
Mn, As, and Se through the intervention of hyperaccumulators. In 
addition, updated information regarding the expression pattern of 
transporter genes is provided. 
2 Heavy metal ion hyperaccumulators
an update 

Hyperaccumulators are plant species that accumulate metal 
ions at high concentrations from contaminated soils in xylem 
from roots to shoots through bulk flow. The prominent families 
of plants belonging to the hyperaccumulator category include 
families such as Asteraceae, Brassicaceae, Buxaceae, Cunoniaceae, 
Euphorbiaceae, Flacourtiaceae, Phyllanthaceae, Rubiaceae, 
Salicaceae, and  Violaceae (Reeves, 2000; Krämer, 2010; Reeves 
et al., 2018; Zhang et al., 2021). Numerous metal ion 
hyperaccumulators have been identified (Table 1), possessing 
great potential to be employed in phytoextraction and 
phytoremediation techniques. 

In addition, several plants, such as Brassicaceae, Noccaea 
caerulescens, Arabidopsis thaliana, Chicorium spinosum, and 
Sedum alfredii. Hance, and Silene vulgaris O. muralis, are studied 
in detail to have deep insights into understanding the mechanism of 
hyperaccumulation (Kaushal et al., 2021; Zhang et al., 2021). Several 
hyperaccumulators, such as Aesculus hippocastanum L., Betula 
pendula Roth, Elaeagnus angustifolia L., Fraxinus excelsior L., 
Platanus orientalis L., and Tilia tomentosa Moench, have been 
employed in biomonitoring of metal ions, such as Cd, Cr, Cu, Ca, 
Fe, Mg, Mn, Ni, Pb, and Zn (Turkyilmaz et al., 2018). It is reported 
that various populations of N. caerulescens vary in their 
hyperaccumulation of metal ions, such as; Zn, Ni, and Cd 
(Assunção et al., 2003; Manara et al., 2020; Sytar et al., 2020; 
Tariq et al., 2021). Studies reveal that transporter genes and 
proteins expressed by hyperaccumulators are highly efficient in 
contributing to metal tolerance and detoxification of HMs (Sharma 
et al., 2021b; Bhat et al., 2022b). Since, HMs have the least mobility 
in soils, plants must adopt diverse mechanisms to transport metal 
ions efficiently. The underlying molecular mechanisms of heavy 
metal ion hyperaccumulation are unraveled by employing 
molecular and genetic systems of hyperaccumulators. 

Furthermore, Arabidopsis CPx P1B-type ATPases such as 
HMA3 (engaged in lead storage) and HMA4 (involved in lead 
transport) translocate this metal across biological membranes in an 
energetically-driven process (Gupta et al., 2013). The fact that lead 
competes with calcium in this transport system explains why lead 
inhibits voltage-gated Ca-channels (Kumar et al., 2017). As a 
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TABLE 1 Major hyperaccumulators and metal ions transported. 

S. No. Species Name of metal 
ion transported 

References 

1. Arabidopsis 
halleri 

Zn, Cd and Fe (Hanikenne et al., 
2008; Assuncão 
et al., 2010) 

2. T. caerulescens Zn, Fe, Cd and Ni (Assuncão 
et al., 2010) 

3. T. goesingense Zn and Ni (Persans et al., 2001) 

4. Convolvulus 
arvensis L. 

Cu, Fe, Mn, and Zn (Massa et al., 2010) 

5. Ranunculus 
sceleratus L. 

Manganese (Mn) (Farahat and 
Galal, 2018) 

6. Taraxacum 
officinale 

Zn and Fe (Massa et al., 2010) 

7. Carduus 
nutans L. 

Cd (Cadmium) (Palutoglu 
et al., 2018) 

8. Lantana 
camara L. 

Cd (Cadmium) (Liu et al., 2019) 

9. S. 
plumbizincicola 

Cd (Cadmium) (Gendre et al., 2007) 

10. Sedum alfredii Cd (Cadmium), 
Zinc (Zn) 

(Deng et al., 2007) 

11. Phragmites 
australis 

Cu (Copper) (Ashraf et al., 2011) 

12. Typha 
latifolia L. 

Cu (Copper) (Anning and 
Akoto, 2018) 

13. N. nucifera Cu (Copper) (Ashraf et al., 2011) 

14. Stachys 
inflata Benth. 

Cu (Copper) (Mohsenzadeh and 
Mohammadzadeh, 
2018) 

15. Sedum 
alfredii Hance 

Zn (Zinc) (Deng et al., 2007; 
Krämer, 2010; 
Kozhevnikova 
et al., 2017) 

16. Brassica 
napus L. 

Zn (Zinc) (Belouchrani 
et al., 2016) 

17. Armeria 
maritima 
subsp. halleri 

Zn (Zinc) (Bothe, 2011) 

18. Viola lutea 
subsp. 
calaminaria 

Zn (Zinc) (Bothe, 2011) 

19. Salvinia 
molesta 
D. Mitch. 

Lead (Pb) (Ashraf et al., 2011) 

20. Noccaea 
caerulescens 

Cadmium (Cd) (Deng et al., 2007; 
Moameri et al., 2017) 

21. Malva 
pusilla Sm. 

Cadmium (Cd) (Wu et al., 2018) 

22. Lactuca 
orientalis Boiss. 

Chromium (Cr) (Antoniadis 
et al., 2017) 

(Continued) 
F
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TABLE 1 Continued 

S. No. Species Name of metal 
ion transported 

References 

23. Tragopogon 
collinus DC. 

Chromium (Cr) (Antoniadis 
et al., 2017) 

24. Brassica juncea 
(L.) Czern. 

Chromium (Cr) (Antoniadis 
et al., 2017) 

25. Cichorium 
spinosum L. 

Chromium (Cr) (Antoniadis 
et al., 2017) 

26. Stipa 
hohenackeriana 

Nickel (Ni) (Bani et al., 2015; 
Drozdova et al., 2017; 
Moameri et al., 2017) 

27. Odontarrhena 
muralis 

Nickel (Ni) (Bani et al., 2015; 
Drozdova et al., 2017; 
Moameri et al., 2017) 

28. Silene vulgaris Nickel (Ni) (Bani et al., 2015; 
Drozdova et al., 2017; 
Moameri et al., 2017) 

29. Arabidopsis 
thalianaL. 

Palladium (Pd) (Harumain 
et al., 2017) 

30. Scopelophila 
ligulata 

Iron (Fe) (de la Fuente et al., 
2017; Nakajima and 
Itoh, 2017) 

31. Cyperus 
rotundus L. 

Tin (Ashraf et al., 2011) 

32. Melastoma 
malabathricum 
L. 

Tin (Ashraf et al., 2011) 

33. Alternanthera 
bettzickiana 

Lead (Pb) (Tauqeer et al., 2016) 

34. Cortaderia 
hapalotricha 

Lead (Pb) (Bech et al., 2016) 

35. Thlaspi 
arvense L. 

Nickel (Ni) and 
Zinc (Zn) 

(Reeves and 
Brooks, 1983) 

36. Prunus 
cerasifera Ehrh. 

Cu and Ni (Turkyilmaz 
et al., 2018) 

37. Tilia 
tomentosa 
Moench 

Cr, Cd and Pb (Turkyilmaz 
et al., 2018) 

38. Salix schwerinii Chromium (Cr), Copper 
(Cu) and Zinc (Zn) 

(Salam et al., 2016) 

39. Elaeagnus 
angustifolia L. 

Cu, Ca, Cd, Cr, Fe, Mg, 
Mn, Ni, Pb, and Zn 

(Turkyilmaz 
et al., 2018) 

40. Pteris vittata L. Arsenic (As) and 
Lead (Pb) 

(Ashraf et al., 2011; 
Wan et al., 2017) 

41. Aesculus 
hippocastanum 
L. 

Cu, Ca, Cd, Cr, Fe, Mg, 
Mn, Ni, Pb, and 
Zinc (Zn) 

(Turkyilmaz 
et al., 2018) 

42. Betula 
pendula Roth 

Cu, Ca, Cd, Cr, Fe, Mg, 
Mn, Ni, Pb, and 
Zinc (Zn) 

(Turkyilmaz 
et al., 2018) 

43. Platanus 
orientalis L. 

Cu, Ca, Cd, Cr, Fe, Mg, 
Mn, Ni, Pb, and 
Zinc (Zn) 

(Turkyilmaz 
et al., 2018) 

(Continued) 
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defensive strategy, phytochelatin complexation sequesters lead into 
vacuoles via vascular flow, while the remaining lead is transferred 
through the xylem, and the apoplast is translocated to the leaf. 
 

2.1 Tissue-specific hyperaccumulation 

Metal ion hyperaccumulation is tissue/organ-specific 
depending on the type of species and the transporters (Pasricha 
et al., 2021; van der Ent et al., 2021). For example, in a comparative 
study, it was observed that A. maritima subsp. halleri accumulated 
88- and 20-times Cu and Pd in roots, respectively, compared to 
leaves. In addition, experiments also reveal that Pb, Cd, Zn, and Cu 
were found 3 to 8 times more in brown leaves than green leaves of 
A. maritima subsp. halleri (Dahmani-Muller et al., 2000). In A. 
halleri, differential accumulation of Zn (>20,000 mg kg-1) and Cd 
(>100 mg kg-1) was observed in leaves rather than in other aerial 
tissues (Dahmani-Muller et al., 2000). Lantana camara L., a native 
plant of America and Africa, accumulated>100 mg kg-1 of Cd in its 
shoots (Liu et al., 2019). Moameri et al. (2017) reported that Cd 
hyperaccumulated up to 68.47 mg kg-1 in Lactuca orientalis and up 
to 68.1 mg kg-1 in roots of T. collinus and 62 mg kg-1 in both shoots 
and roots of B. juncea (Moameri et al., 2017). Scanning and 
transmission electron microscopy coupled with energy-dispersive 
X-ray (SEM and  TEM with EDX),  histochemical  staining,
inductively coupled plasma mass spectrometry (ICP-MS), and 
optical microscopy (OM) revealed that Imperata cylindrica (L.) P. 
Beauv hyperaccumulates iron (Fe) in the intercellular spaces of 
aerial tissues (de la Fuente et al., 2017). Cadmium is accumulated in 
the edges of leaves, epidermal cells, cell walls, and metabolically less 
active parts of leaves in Noccaea caerulescens (Cosio et al., 2005). In 
Frontiers in Plant Science 05 
addition, Cd is also accumulated in mesophyll cells of leaves in 
A. halleri (Küpper and Kochian, 2010). 
2.2 Nickel hyperaccumulators 

Nickel (Ni) belongs to the essential category of metal ions, but 
its serious negative consequences appear when its concentration in 
plants exceeds 0.85 mM kg−1 plant dry biomass (Rosatto et al., 
2021). The Ni toxicity leads to inhibitory effects on the enzymes 
necessary for operating the Calvin cycle and chlorophyll 
biosynthesis. It may produce reactive oxygen species (ROS) 
(Sachan and Lal, 2017). Several plant species have adapted 
mechanisms for hyperaccumulation and detoxification to 
circumvent Ni toxicity. Global hyperaccumulator databases have 
documented 721 metal ion hyperaccumulators, among which Ni is 
hyperaccumulated by about 532 plant species (Reeves et al., 2018). 
Most hyperaccumulators (340 plant species) belong to only five 
families having 180 species to Phyllanthaceae, 87 species to 
Brassicaceae, 48 species  to  Cunoniaceae, and 42 species to 
Euphorbiaceae. Recent Ni hyperaccumulator additions include 
Senecio conrathii and Phyllanthus rufuschaneyi (Bouman et al., 
2018; Siebert et al., 2018). Ni hyperaccumulators are majorly 
found in serpentine soils, including Alyssum sibiricum and 
Senecio coronatus (Reeves and Adigüzel, 2004; Boyd et al., 2008) 
and C. bursa-pastoris (Seregin and Kozhevnikova, 2006). Ni 
hyperaccumulators outnumber among plant species viz.-a-viz. 
other metal ions (Krämer, 2010; Reeves et al., 2018). Numerous 
hyperaccumulators, such as Berkheya coddii Roessler, Echium 
amoenum Fisch. & C.A. Mey, Stipa hohenackeriana, Lens 
orientalis, and Taeniatherum crinitum (Schreb.) Nevski have also 
been identified for Ni accumulation (Robinson et al., 2003; 
Moameri et al., 2017). Several species of ferns, liverworts, and 
mosses hyperaccumulate Ni from their habitats (Seregin and 
Kozhevnikova, 2021). O. muralis has been identified as a 
hyperaccumulator of Ni using X-ray diffraction (XRD), 
gravimetric analysis, and inductively coupled plasma atomic 
emission spectroscopy (ICP-AES) (Zhang et al., 2016). In 
addition, the Brassicaceae family has been reported to accumulate 
three times more Zn and six times more Ni than other 
hyperaccumulators (Krämer, 2010). 

Angiosperms predominantly accumulate Ni, as evident in the 
reports of 140 species grown on the islands of New Caledonia and 
Cuba (Whiting et al., 2004; Jaffré et al., 2013). Hyperaccumulators 
like Alyssum bertolonii and Hybanthus floribundus were reported to 
hyperaccumulate Ni (Minguzzi, 1948; Severne and Brooks, 1972). 
The Pycnandra (previously Sebertia) acuminate accumulates 2 to 3 
orders of Ni in their shoots compared to non-accumulator plant 
species (Jaffré et al., 1976). Drozdova et al. (2017) also reported that 
O. muralis hyperaccumulates Ni in their aerial parts. Moreover, it is 
said that S. hohenackeriana hyperaccumulates Ni in roots up to 195 
mg kg-1 and shoots up to 119 mg kg-1 (Moameri et al., 2017). 
Differential hyperaccumulation rate of Ni was observed in plants; 
for example, E. amoenum accumulates up to 21 mg kg-1 of Ni in 
roots and 57 mg kg-1 in shoots, whereas, L. orientalis accumulates 
TABLE 1 Continued 

S. No. Species Name of metal 
ion transported 

References 

44. Eleocharis 
acicularis (L.) 

Ag, Cu, Cd, Pb, and Zn (Ha et al., 2011) 

45. Imperata 
cylindrica 

Lead (Pb), Copper 
(Cu), Tin 

(Ashraf et al., 2011) 

46. Conium 
maculatum L. 

Lead (Pb) and Zinc (Zn) (Mohsenzadeh and 
Mohammadzadeh, 
2018) 

47. Molinia 
caerulea (L.) 

Cadmium (Cd), Lead 
(Pb) and Zinc (Zn) 

(Pietrzykowski 
et al., 2018) 

48. Salix 
viminalis L. 

Lead (Pb) and Zinc (Zn) (Mleczek et al., 2018) 

49. Arabidopsis 
halleri 

Zinc (Zn) and 
Cd (Cadmium) 

(Hanikenne 
et al., 2008) 

50. Arabidopsis 
lyrata 

Zinc (Zn) and 
Cd (Cadmium) 

(Hanikenne 
et al., 2008) 

51. Justicia 
procumbens 

Zinc (Zn) 
(Reeves et al., 2018) 

52. N. caerulescens Zinc (Zn) and 
Cadmium (Cd) 

(Papoyan et al., 2007; 
Halimaa et al., 2019) 
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up to 32 mg kg-1 Ni in roots and 36 mg kg-1 in shoots (Moameri 
et al., 2017). The results of almost similar accumulation rates are 
displayed by T. crinitum, with an accumulation rate of 40 mg kg-1 of 
Ni in roots and 34 mg kg-1 in shoots (Moameri et al., 2017). 
Likewise, S. hohenackeriana hyperaccumulates up to 54 mg kg-1 of 
Ni in shoots and 59 mg kg-1 in roots (Moameri et al., 2017). The 
available hyperaccumulator database may serve as the baseline for 
employing the remediation measures to decontaminate Ni toxicity 
from agricultural soils. 
 

2.3 Zinc hyperaccumulators 

In general, zinc (Zn) is classified as an essential micronutrient 
due to its direct physiological and metabolic significance in plants. 
However, when present in concentrations exceeding the threshold 
level (>10,000 mg/kg), zinc becomes toxic, leading to impaired 
growth, disrupted physiological functions, and even plant death. At 
such elevated levels, zinc exerts several inhibitory effects, 
particularly on the photosynthetic metabolism and overall growth 
processes of crops (Ali et al., 2020; Bhat et al., 2020; Angulo-
Bejarano et al., 2021; Kaur and Garg, 2021). Many plant species 
accumulate Zn at concentrations of up to 1% of the dry weight of 
plant biomass (Noulas et al., 2018; Sytar et al., 2021). At least nine 
species of Zn hyperaccumulators belong to the Brassicaceae family, 
most of which have been found in contaminated soils. Zn is also 
hyperaccumulated by L. ruderale, C. bursa-pastoris, and A. halleri 
(Küpper et al., 2000; Kozhevnikova et al., 2017; Raza et al., 2020). 
Interestingly, numerous species belonging to the family 
Brassicaceae accumulate multiple heavy metal ion (Dar et al., 
2018). Ni is accumulated at 1000–30000 mg g-1 of dry mass basis, 
whereas Zn up to 1000 mg g-1 of dry mass basis) Thlaspi species 
belonging to Cruciferae (mustard family) were collected from 
Europe (Reeves and Brooks, 1983). Few populations of N. 
caerulescens show minor symptoms upon accumulating Cd up to 
4000 mg kg-1 dry weight and 30,000–40,000 mg kg-1 dry weight of 
Zn (Shen et al., 1997; Ebbs et al., 2002; Natasha et al., 2022). Zn is 
hyper-accumulated by A. halleri compared to facultative 
accumulation of Pb and Cd (Bert et al., 2000; Küpper et al., 2000; 
Bert et al., 2002; Pauwels et al., 2006; Stein et al., 2017). In addition, 
A. halleri shows species-wide Zn and Cd hypertolerance, with 
significant variation among its various populations (Pauwels 
et al., 2006; Meyer et al., 2010; Corso et al., 2018). It is evident 
from the above findings that a more significant amount of metal 
ions is accumulated in aerial parts of the hyperaccumulators. Zn 
and Cd are hyperaccumulated by almost all the subspecies and 
populations of Arabidopsis halleri found in the soils of both 
contaminated and non-contaminated habitats (Bert et al., 2002). 
Few populations of N. caerulescens found in southern France

accumulate up to 2908 mg g−1 of Cd in their leaves (Reeves et al., 
2001).  In  addition,  many  N.  caerulescens  populations  
hyperaccumulate Ni and Zn from ultramafic soils (Reeves et al., 
2001). Significant variation in Cd, Ni, and Zn accumulation has 
been reported in different populations of N. caerulescens (Lloyd-
Thomas, 1995; Reeves et al., 2001). Hydroponic experiments reveal 
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that varying concentrations of Cd and Zn are hyperaccumulated by 
three species of Sedum alfredii (Deng et al., 2007; Li et al., 2007). 
These reports will pave the way to understanding the physiological 
process modulated by the Zn accumulation in cellular 
compartments and tissues in a specific crop. In addition, one can 
employ newer technology like genome editing to understand the 
mechanism of heavy metal ion transport and sequestration in plants 
(Riyazuddin et al., 2022; Venegas-Rioseco et al., 2022). 
2.4 Mercury hyperaccumulators 

In plants, does not play any physiological role (Rascio and 
Navari-Izzo, 2011). It is adsorbed from the soil as a soluble 
complex and precipitated as phosphate, carbonate, sulphide, and 
hydroxide (Tangahu et al., 2011). Phytotoxic effects of high mercury 
levels on plants are possible (Azevedo and Rodriguez, 2012; Rocha 
et al., 2019). It affects oxidative metabolism and photosynthesis by 
interfering with the electron transport mechanism in mitochondria 
and chloroplast. This induces cell disruption by causing the creation 
of ROS. Hg is also responsible for limiting aquaporin activity and 
lowering plant water absorption. The permeability of cell membranes 
and the number of palisades may be reduced in the presence of Hg, 
resulting in the buildup of Fe and the loss of essential elements like 
Mgand K (Shiyab et al., 2009; Tangahu et al., 2011; Azevedo and 
Rodriguez, 2012). Hg interaction with thiol (SH) groups in tissues 
rich in SH ligands, such as seed and embryo, results in the 
development of an S-Hg-S bridge, which disrupts the group’s 
stability. Seed germination and embryo development are both 
affected by this binding. Hg also affects the antioxidant defense 
system by altering enzymatic and non-enzymatic antioxidants and 
disrupting cells (Azevedo and Rodriguez, 2012), negatively affecting 
light and dark photosynthetic responses. Photosynthesis is disrupted 
when Hg replaces the central Mg atom in chlorophyll (Muddarisna 
et al., 2013; Zhao et al., 2014). Although it is mostly stored in roots, it 
can accumulate in tiny amounts in shoots by translocating soluble 
forms or directly absorbing the vapor form (Ranieri et al., 2021). The 
plant absorbs ionic, methyl, and phenyl forms of mercury from the 
soil. The phenyl form is used for absorption, whereas the methyl form 
is used for sequestration. The change of phenyl mercury to methyl 
mercury is high in apical regions, whereas the transformation of 
phenyl mercury to ionic mercury is strong in subtending internode 
regions (Gay and Butler, 1977). 
2.5 Cadmium hyperaccumulators 

Cadmium (Cd) is another metal ion imparting high toxicity with 
high transport mobility to the plant. It is found to cause extensive 
damage to metabolic networks (Liao et al., 2015; Liu et al., 2022). Cd is 
hyperaccumulated by A. halleri, A. halleri ssp. Gemmifera, and  A. lyrata 
(Huguet et al., 2012; Isaure et al., 2015; Fukuda et al., 2020). Cd is a 
non-essential element usually found in hyperaccumulators’ roots and 
aerial organs (Conn and Gilliham, 2010; Imperiale et al., 2022). Several 
hyperaccumulator species have accumulated Cd, including A. halleri, B. 
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juncea, Lactuca orientalis Boiss., N. caerulescens, Tragopogon collinus 
DC., and S. hohenackeriana (Cosio et al., 2005; Küpper and Kochian, 
2010; Moameri et al., 2017). Hydroponics-based experiments reveal 
that Noccaea caerulescens was more tolerant to Cd grown under high 
zinc concentration and accumulated higher concentrations of Cd/Zn 
(Papoyan et al., 2007). Through biomonitoring analysis of (HMs), it 
was observed that Ni and Cu were hyperaccumulated by Prunus 
cerasifera Ehrh., whereas Pb and Cd were effectively accumulated by 
T. tomentose (Turkyilmaz et al., 2018). Analysis based on Atomic 
Absorption Spectroscopy (AAS) showed that T. latifolia 
hyperaccumulated Cu and Cd, while E. crassipes accumulated Pb 
when  grown in wetlands supplied with effluents (Sukumaran, 2013). 
It has been reported that Iron (Fe) was hyperaccumulated by 
Scopelophila ligulata (Spruce) 10 to 61 times more than normal 
mosses (Nakajima and Itoh, 2017). The hyperaccumulators Lactuca 
orientalis, T. collinus, and  B. juncea accumulates Cd in roots and shoots 
(Moameri et al., 2017). Cd hyperaccumulation and tolerance are 
modulated by overexpression of NRAMPs transporters in N. 
caerulescens (Oomen et al., 2009; Wei et al., 2009; Takahashi et al., 
2011). Efficient remediation of Cd from the agricultural and urban soils 
is critical for sustainable agriculture development in current food 
insecurity trends. An update on mechanism of hyperaccumulators to 
initiate phytoremediation of Cd provides efficient ways to restore the 
polluted habitats to healthy state since it is evident from the existing 
literature that Cd has negative impacts on the metabolic and 
physiological networks of plants. 
 

 

2.6 Manganese hyperaccumulators 

Manganese (Mn) is an essential category of micronutrients, 
although in certain climatic-cum-edaphic conditions, primarily in 
acidic soils, it is toxic to crops (Rashed et al., 2019). It is believed that 
Mn adversely affects photosynthetic metabolism and enhances ROS 
generation (Cui et al., 2021). Numerous Mn hyperaccumulator plant 
species belonging to various families such as Araliaceae, Apocynaceae, 
Celastraceae, Clusiaceae, Myrtaceae, Polygonaceae, Proteaceae, and
Theaceae have been identified (Fernando et al., 2013). The deposition 
of higher concentrations of Mn in the vacuoles of photosynthetic cells 
of the upper epidermis was reported in Maytenus fournieri L 
(Doncheva et al., 2009; Fernando et al., 2012). In addition, in 
Gossia. Amplexicaulis L. Mn was deposited in entire leaves, whereas 
in Trapa natans L and  Gossia hillii L., Mn was hyperaccumulated in 
the floating lamina and photosynthetic tissues, respectively 
(Fernando et al., 2012, 2013). Moreover, trichomes of Alyssum 
murale L. and Helianthus annus L. also hyperaccumulate Mn 
(Blamey et al., 1986; Broadhurst et al., 2004). 
2.7 Lead hyperaccumulators 

Lead (Pb) is a non-essential heavy metal with little 
understanding of its biological use in plants due to its high 
toxicity. Pb poses significant health threats even at low doses, 
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particularly in child brain development and renal failure (Gaur 
et al., 2014; Kumar et al., 2017). Lead phytotoxicity inhibits 
metabolic processes by interfering with enzymes, affecting root 
elongation, seed germination, and plant development. A high 
quantity of lead affects chlorophyll and ATP synthesis, cell 
membrane permeability, water, nutrient intake, seedling growth, 
and biomass output. Lead poisoning causes oxidative stress-
mediated by ROS, which causes protein oxidation, lipid, nucleic 
acid peroxidation, and eventually death (Nagajyoti et al., 2010; 
Dewanjee et al., 2015; Li et al., 2016). This is supported by the fact 
that lead poisoning increases the catalytic activity of antioxidant 
enzymes (Li et al., 2016). Due to its sorption with soil, lead is not 
readily accessible in biological systems and has a limited solubility at 
normal pH, making it unavailable for plant absorption even by 
hyperaccumulators (Chen et al., 2004; Bahraminia et al., 2016). 
Some recognized lead hyperaccumulators, such as Brassica napus 
and Euphorbia cheiradenia, have been shown to collect more than 
1000 mg kg-1 of lead in dry weight (Major, 2010; Ali et al., 2013). 
The apoplastic route or Ca2+ channels are both involved in 
absorbing lead by roots. Alternative mechanisms for lead 
absorption by roots include cyclic nucleotide-gated ion channels 
and cation transporters. Lead follows the apoplastic route after 
absorption by roots, although its transport beyond endodermis is 
limited by the Casparian strip owing to phytochelatin binding. 
Sequestration in root vacuoles after complex formation, 
accumulation in plasma membranes, and complexation with 
phytochelatins, glutathions, and amino acids like proline all limit 
lead translocation. By establishing a metal-ligand combination, lead 
immobilisztion can also occur in the form of phosphates, resulting in 
reduced negative effects and greater phytoextraction (Kumar et al., 
2017). Ethylenediamine tetraacetic acid (EDTA), nitrilotriacetic acid 
(NTA), and malate are chelating chemicals that can be used to 
immobilize HM ions (Tangahu et al., 2011; Gaur et al., 2014). 
Rhizofiltration is when the lead is absorbed and deposited in the 
roots, with only a small quantity being translocated to the aerial 
sections of plants like Typha domingensis (Bindu et al., 2010). 
2.8 Selenium hyperaccumulators 

Selenium (Se) is another potentially toxic heavy metal ion 
distributed in trace amounts in the earth’s crust in the form of 
metalloids (Lima et al., 2018; Reynolds et al., 2020). Toxicity 
mediated by Se above threshold level exhibits several pathological 
conditions in plants, such as stunted  growth, withering, drying of

leaves, reduced protein synthesis, and chlorosis (Mengel and Kirkby, 
1987; Van Hoewyk, 2013; Gupta et al., 2022). Several plant species such 
as Xylohiza and Conopis hyperaccumulate Se >1000 mg Se kg-1 dry 
weight if grown in Se-rich soils. Two important hyperaccumulators of 
Se identified are Astragalus bisulcatus (Hook.) A. Gray and Stanleya 
pinnata (Pursh) Britton, accumulating Se in reproductive organs and 
young growing leaves (Freeman et al., 2006). On a side note, 
(Antoniadis et al., 2017), identified C. spinosum, a wild edible 
vegetable, as a hyperaccumulator of chromium (Cr). 
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2.9 Arsenic hyperaccumulators 

Arsenic (As) is a non-essential heavy metal ion highly toxic to 
crops. It is transported to its roots through specific transporters 
(Sytar et al., 2021). Hyperaccumulators accumulate about 2% of As 
in aerial tissues of plants (Chen et al., 2021). More than 21 
hyperaccumulators of Arsenic (As) have been identified, and 
most of them belong to the genus Pteridaceae (Xie et al., 2009). 
Pteris vittata (Chinese Brake fern) was identified as a potential 
hyperaccumulator of As grown at four mining sites in Hunan 
Province of China (Wan et al., 2017). In addition, Pteris vittata 
(Chinese Brake fern) used phytate, a root exudate, to enhance the 
uptake of As and increase plant growth and development (Liu et al., 
2017). Similarly, two species of Brassicaceae also hyperaccumulate 
arsenic (As) (Karimi et al., 2009). In submerged plants, Callitriche 
stagnalis and Myriophyllum propinquum, As is accumulated at 1000 
mg kg–1 dry weight (Robinson et al., 2006). Eriophorum 
angustifolium hyperaccumulates As in root  tissues,  while in

Wolffia globose, up to 400 mg kg–1 of As is accumulated (Stoltz 
and Greger, 2002; Zhang et al., 2009). Certain gymnosperms, such 
as Pseudotsuga menziesie, hyperaccumulate As in needles and stems 
(Haug et al., 2004). 
3 Hyperaccumulators as a prelude to 
solving the heavy metal toxicity: an 
overview 

The molecular mechanism of hyperaccumulation has been 
primarily based on physiological adaptations by hyperaccumulators, 
such as increased metal ion uptake, loading in the xylem, and 
detoxification in aerial parts of the plant (Pasricha et al., 2021). 
Hyperaccumulators display variable mechanisms to accumulate the 
metal ions from the contaminated and normal soils. The uptake of 
excess accumulated metal ions is modified or stored to tolerate their ill 
effects on the growth and metabolism of hyperaccumulators (Pasricha 
et al., 2021; Sytar et al., 2021). Moreover, bacteria and fungi generally 
occur in bound form and are converted into a simple form. In addition, 
several chelating agents secreted in the rhizosphere further help in the 
absorption of metal ions by several plasma-bound proteins and for 
specific metal, ion reductases to facilitate their transportation into aerial 
parts of plants through xylem (Dotaniya et al., 2015). Several plant 
species are hyperaccumulators of economically essential metal ions and 
display considerable tolerance to specific classes of metal ions (Pasricha 
et al., 2021; Sytar et al., 2021; Tariq et al., 2022). 

Elevated expression of genes coding for transporters and 
proteins for chelation plays a critical role in hypertoleranace and 
hyper-accumulation in several plant hyperaccumulators. Several 
studies have reported the foliar heavy metal concentration in 
hyperaccumulators (Krämer, 2010; Goolsby and Mason, 2015; 
Bhat et al., 2022a). The Alyssum bertolonii/Brassicaceae 
(Minguzzi, 1948) was  first reported to hyperaccumulate Ni, 
whereas, Noccaea caerulescens (formerly, Thlaspi caerulescens)/ 
Brassicaceae was reported to hyperaccumulate Zn (Sachs, 1865; 
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Baumann, 1885; Reeves, 2000). These reports attracted scientific 
communities in the early 1990s to employ hyperaccumulators as 
alternative strategies to circumvent HM toxicity issues. These plant 
species evolved our mechanistic understanding of molecular 
mechanisms associated with hyperaccumulation and strategy to 
detoxify the metal ions. At least tree Quantitative trait locus (QTLs) 
possibly belonging to hypertolerance of Cd and Zn have been 
mapped (Courbot et al., 2007; Willems et al., 2007). Moreover, an 
overlapping QTL identified in the AhHMA4 (Heavy Metal ATPase 
4) gene in Arabidopsis halleri, a hyperaccumulator of Cd and Zn, is 
also screened (Courbot et al., 2007; Willems et al., 2007) (Figure 1). 
3.1 Expression pattern of metal ion 
transporters 

Insights into the metal hyperaccumulation mechanism are 
deepened by conducting a comparative transcriptome analysis of 
many genes encoding metal ion transporters and detoxifying 
proteins (Wu et al., 2021). The hyperaccumulation and 
hypertoleranace traits are independent of genetic control and are 
not species-specific. Many reports depict that transporter genes are 
overexpressed by hyperaccumulators depending on the 
concentration of metal ions in diverse soil types (Table 2, Figure 2). 

The copy number expansion of transporter genes within the 
genome and the strong promoter are usually activated by cis-
regulatory elements resulting in the hyperexpression of genes. 
The central mechanism of metal ion hyperaccumulation involves 
many genes expressed for metal ion transporters. Therefore, it is 
necessary to understand the mechanism behind the transport of 
metal ions and trace the expression of genes to devise strategies for 
developing transgenic plants for heavy metal hyperaccumulation. A 
comparative expression analysis reported that later genomic 
evolution was displayed by the enhanced copy number of 
transporters such as; HMA4 to 3 and MTP1 to 5 in Arabidopsis 
halleri compared to single-copy found in wild-type A. thaliana 
(Hanikenne et al., 2008; Shahzad et al., 2010). Similar types of 
enhancement in expression were due to a five times more copy 
number of TcHMA3 transporter to accumulate Cd in ecotypes of N. 
caerulescens (Ueno et al., 2011). Upon expression profiling of two 
hyperaccumulators, overexpression of genes occurred, which are 
involved in Zn/Cd uptake, their loading to xylem, transport, and 
chelation (Balafrej et al., 2020; Sharma et al., 2021a). In addition, it 
was observed that a higher copy number resulted in over-expression 
of TcHMA3 gene encoding Cd transporters in Saint- Laurent-le-
Minier (Ganges) population compared to the Prayon population of 
N. caerulescens (Ueno et al., 2011). In A. halleri, the AhMTP1 gene 
encodes vacuolar membrane Zn/H+ antiporter, expressed 20-folds 
higher due to high copy number in leaves than A. thaliana (Becher 
et al., 2004; Dräger et al., 2004). Due to the higher copy number of 
MTP1, a Zn transporter is highly expressed in A. halleri to mediate 
hypertolerance (Dräger et al., 2004). 

Microarray-based transcriptome analysis has led to the 
identification of several genes responsible for metal ion transport 
and their chelation in model organisms like A. halleri or N. 
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TABLE 2 Overexpression of transporter genes reported in common hyperaccumulators. 

Species Name of transporters References 

Arabidopsis halleri HMA1(heavy metal ATPase 1), HMA2, HMA3, HMA4 HMA5, 
AhHMA4, ZIP6, MATE Family-FDR3 and ZIP9, MTP1, MTP2, 
MTP3, MTP4, MTP5, AhMTP1, IRT3, IRT1, ZIP3, ZIP4, ZIP6 

(Courbot et al., 2007; Willems et al., 2007; Hanikenne et al., 
2008; Assuncão et al., 2010); (Lasat et al., 2000; Assuncão et al., 
2001; Becher et al., 2004; Dräger et al., 2004; Krämer et al., 
2007; Gustin et al., 2009; Verbruggen et al., 2009b; Hanikenne 
and Nouet, 2011; Liu et al., 2017; Mishra et al., 2017) (Halimaa 
et al., 2014; Corso et al., 2018; Halimaa et al., 2019; Corso and 
de la Torre, 2020) (Guerinot, 2000; Schvartzman et al., 2018) 

T. caerulescens HMA3, HMA4, YSL (yellow stripe-like) family- TcYSL3, 
TcYSL5 and YSL7, ZIP (zinc-regulated transporter, iron-
regulated transporter-related protein), ZTN1and ZTN2, MATE 
Family-FDR3, NRAMPs, MTP1 

(Dräger et al., 2004; Gustin et al., 2009; Assuncão et al., 2010; 
Liu et al., 2017; Mishra et al., 2017) 

T. goesingense MTPs (metal transport proteins)-MTP1 (Persans et al., 2001) 

Convolvulus arvensis L PIMs (Massa et al., 2010) 

S. plumbizincicola SpHMA1, HMA3 (Gendre et al., 2007; Liu et al., 2017; Mishra et al., 2017) 

Sedum alfredii SaZIP4 (Deng et al., 2007) 

Thlaspi arvense L. ZNT1 (Reeves and Brooks, 1983) 

Pteris vittata L. NIP (Nodulin 26-like Intrinsic Proteins) subfamily, AtMTP11, 
CsMTP8, OsMTP8.1, ShMTP1 

(Ashraf et al., 2011; Wan et al., 2017) 

Arabidopsis lyrata AhHMA4 transporter (Merlot et al., 2018) 

N. caerulescens MTP1, TcYSL3, TcHMA3, TcYSL5, TcYSL7, IRT3, IRT, ZNT1, 
ZNT2, NcZNT1, NcZNT2, NcZNT5 

(Pence et al., 2000; Assuncão et al., 2001; Papoyan et al., 2007; 
Küpper and Kochian, 2010; Ueno et al., 2011; Milner et al., 
2012; Halimaa et al., 2019) 

Pteris vittata L. NIP (Nodulin 26-like Intrinsic Proteins) subfamily, AtMTP11, 
CsMTP8, OsMTP8.1, ShMTP1 

(Ashraf et al., 2011) 

(Continued) 
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caerulescens (Becher et al., 2004; Chiang et al., 2006; Filatov et al., 2006; 
Hammond et al., 2006; Talke et al., 2006; van de Mortel et al., 2006; 
Weber et al., 2006). Hyperaccumulators result in overexpression of 
transporters such as AhHMA4, in xylem parenchyma and pericycle of 
the root, and in A. halleri shoot tissues viz., cambium and xylem 
parenchyma (Hanikenne et al., 2008). Moreover, MTP1 was 
overexpressed in A. halleri and N. caerulescens to transport Zn and 
Cd (Dräger et al., 2004; Gustin et al., 2009). Transport of Cd was 
mediated by overexpression of HMA3 in leaf epidermal cells of Sedum 
plumbizincicola. At the same time, HMA3 was predominantly 
expressed in bundle sheath and mesophyll cells in A. halleri and N. 
caerulescens (Liu et al., 2017: Mishra et al., 2017). The transformation 
of TgMTP1 in A. thaliana resulted in enhanced accumulation of Zn 
into vacuoles, attributing to Zn tolerance (Gustin et al., 2009). Several 
transporters were overexpressed, such as SpHMA1 in S. 
plumbizincicola, SaZIP4 in Sedum alfredii, and  TcYSL3, TcHMA3, 
TcYSL5, and  TcYSL7 in N. caerulescens plants for transport of metal 
ions (Gendre et al., 2007; Ueno et al., 2011; Zhao et al., 2019). It is 
pertinent to mention that the expression of transporter genes very 
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often varies concerning metal ion supply, tissue, organ, and 
populations of hyperaccumulators (Krämer et al., 2007; Verbruggen 
et al., 2009b; Küpper and Kochian, 2010; Visioli et al., 2014). Under 
sufficient Zn supply, N. caerulescens and A. halleri overexpress several 
transporter genes, such as IRT3, IRT1, and  ZIP genes, for higher 
accumulation of metal ions (Assuncão et al., 2001; Becher et al., 2004; 
Krämer et al., 2007; Verbruggen et al., 2009b; Hanikenne and Nouet, 
2011; Halimaa et al., 2014; Corso et al., 2018; Schvartzman et al., 2018; 
Halimaa et al., 2019; Corso and de la Torre, 2020). In contrast, during 
the low availability of Zn, ZNT1 and ZNT2 genes encoding 
transporters were overexpressed in N. caerulescens (Pence et al., 
2000; Assuncão et al., 2001). Differential expressions of NcZNT1 
and NcZNT2 transporter genes were reported in the roots and 
shoots of N. caerulescens. Moreover, tissue-specific expression was 
identified for expression of NcZNT1 in stellar parenchyma cells, 
pericycle, and very low expression in cortex and rhizodermis in N. 
caerulescens (Milner et al., 2012). 

Upon exposure to Zn deficient soil, a tissue-specific expression 
pattern of NcZNT1 was observed in N. caerulescens (Milner et al., 
FIGURE 2 

Diagrammatic representation of cellular response to heavy metal stress through the expression of genes coding for transporters and other related 
proteins. 
TABLE 2 Continued 

Species Name of transporters References 

Merwilla plumbea OsNRAMP5, OsNRAMP1, TcZNT1/TcZIP4 (Lux et al., 2011) 

N. goesingensis MTP1 (Gustin et al., 2009) 
frontiersin.org 

https://doi.org/10.3389/fpls.2025.1631378
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bhat et al. 10.3389/fpls.2025.1631378 
̧

̧

2012). In addition, it is reported that NcZNT1 was differentially 
expressed in shoot apical meristem and mesophyll, bundle sheath, 
and stomatal guard cells. On the contrary, NcZNT5 expression was 
limited to young leaves, especially its epidermal cells (Küpper and 
Kochian, 2010; Milner et al., 2012). Expression of the HMA4 gene 
occurs in roots as well as shoots of A. halleri and N. caerulescens to 
load and unload Cd and Zn into the xylem (Bernard et al., 2004; 
Papoyan and Kochian, 2004; Talke et al., 2006; van de Mortel et al., 
2006; Craciun et al., 2012; Visioli et al., 2014; Mishra et al., 2017). 
Moreover, it is reported that HMA4 encoding Cd and Zn metal ion 
transporter is overexpressed in the roots and shoots of both A. 
halleri and T. caerulescens metal ion hyperaccumulators (Bernard 
et al., 2004; van de Mortel et al., 2006; Courbot et al., 2007). The 
NcZNT5 overexpression was observed in epidermal cells instead of 
in guard and subsidiary cells in young leaves of N. caerulescens 
(Küpper and Kochian, 2010). In contrast, an opposite expression 
pattern was observed in mature leaves, wherein, NcZNT5 was 
overexpressed in guard cells rather than epidermal cells (Küpper 
and Kochian, 2010). Both these findings back up the adaptation of 
plants to hyperaccumulation of metal ions in correlation with the 
developmental stage of plants. Further, the RNA interference 
technique showed that higher expression of AhHMA4 was 
responsible for hypertolerance to Cd and Zn metal ions in 
Arabidopsis halleri (Papoyan and Kochian, 2004). In addition, the 
RNAi technique showed higher transcription of NcZNT1 (Zn 
Transporter 1) genes encoding a transporter of Cd and Zn in N. 
caerulescens (Pence et al., 2000). Under higher concentration of Zn, 
several genes of the ZIP family have been highly expressed in A. 
halleri and N. caerulescens (Assuncão et al., 2001; Becher et al., 2004; 
Weber et al., 2004; Talke et al., 2006; van de Mortel et al., 2006; Lin 
et al., 2009). In A. halleri, several transporter genes, such as ZIP 
family members viz. ZIP3, ZIP4, and ZIP6 are responsible for the 
influx of metal ions from the rhizosphere to roots and are highly 
expressed due to high copy numbers (Guerinot, 2000). In addition, 
overexpression of several ZIP family member transporters has been 
reported in A. halleri and T. caerulescens to hyperaccumulate Zn 
metal ions (Becher et al., 2004; Weber et al., 2004; Filatov et al., 
2006; Hammond et al., 2006; Talke et al., 2006; Krämer et al., 2007). 
Expression analysis and RNAi-produced lines identified tissue-
specific expression of NgMTP1encoding MTP1 to accumulate Zn 
in shoots of hyperaccumulators (Desbrosses-Fonrouge et al., 2005). 

Comparative analysis showed that ZNT1 was overexpressed in 
roots of T. caerulescens in comparison to non-accumulator T. arvense 
(Pence et al., 2000). The overexpression of ZNT1 was further 
confirmed by microarray analysis (Hammond et al., 2006; van de 
Mortel et al., 2006). Another transporter, ZTP1, a homolog of 
AtMTP1, was highly expressed in T. caerulescens to accumulate 
metal ions in vacuoles (Assuncão et al., 2001). Two populations of 
T. caerulescens were found to differentially express two ABC (ATP
binding cassette) transporters in their shoots to hyperaccumulate Zn 
(Hassinen et al., 2007). Zn compartmentation and transport is 
efficiently mediated by overexpression of HMA3 gene coding P1B
ATPase T. caerulescens and A. halleri (Craciun et al., 2006; van de 
Mortel et al., 2008). In addition, CAX gene encoding cation exchange 
mediates enhanced Cd sequestration (Craciun et al., 2006; van de 
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Mortel et al., 2008). FDR3 is another transporter belonging to the 
MATE (Multidrug and Toxin Efflux) gene family of transporters 
overexpressed in the root pericycle of A. halleri and T. caerulescens to 
hyperaccumulate Fe (Talke et al., 2006; van de Mortel et al., 2006). In 
T. caerulescens three genes viz. TcYSL3, TcYSL5, and  YSL7 are over-
expressed to mediate vascular loading and transport of Ni and Fe in 
the form of Nicotinamide-Ni complex and Nicotainmide-Fe complex 
(Gendre et al., 2007). The overexpression of NIP genes might be 
responsible for transporting As from roots to the xylem vessels in 
Pteris vitata (Zhao et al., 2009). The comparative RNA-seq analysis 
reported that Ni transport is highly regulated by overexpression of the 
ZIP family in S. coronatus. Moreover, the expression pattern of IRT1 
and ZIP10 varied between various populations of N. caerulescens 
(Corso and de la Torre, 2020). The overexpression of Ni transporter 
genes through high copy number and changing dynamics of 
promoter activity helps decode Ni’s transport mechanism 
by hyperaccumulators. 
̧

3.2 Heavy metal transporters 

The transport of metal ions occurs through the active 
accumulation of metal ions, usually generated through the air or 
deposited metalloids on the leaves of plants (Jogawat et al., 2021; 
Yang et al., 2021). In addition, inactive accumulation of metals 
occurs from the soil through roots and their transport through the 
xylem to the aerial parts of plants, such as stems, leaves, and other 
parts of shoots, by diverse classes of metal ion transporters (Feki 
et al., 2021; Jamla et al., 2021). Coefficient bioaccumulation of metal 
ions needs transport through pumps against the concentration 
gradient. Consequently, the transport of HMs from roots to aerial 
parts involves active transporters found in the plasma membrane 
and vacuolar membrane, these transporters require energy, usually 
in form of ATP to concentrate metal ions into storage organelles, 
such as vacuoles (Figure 3). It must be noted that vacuoles of 
epidermal cells store higher concentrations of metal ions as 
compared to other cellular organelles due presence of enzymes 
like proteinases, phosphatases and lipases (Feki et al., 2021). 

On average, up to 200 times more metal ion accumulation is 
mediated by transporter genes overexpressed by hyperaccumulator 
species compared to non-hyperaccumulators (Pence et al., 2000; 
Assuncão et al., 2001; Becher et al., 2004; Hanikenne et al., 2008; 
Verbruggen et al., 2009b). Transcriptome analysis identified several 
metal ion transporter hyperaccumulators in Brassicaceae. A great 
deal of metal ion transport has been explored through studies on 
ZIP transporters, as they are involved mainly in the uptake of metal 
ions (Krämer et al., 2007; Andresen et al., 2018). The 
hyperaccumulation of metal ions is directly related to a higher 
number of ZIP transporters in the plasma membrane of leaf 
epidermal cells and transpiration termination in these cells 
(Küpper et al., 2009; Schneider et al., 2013). In addition, (Pence 
et al., 2000) reported that the ZNT1 transporter, a homolog of 
AtZIP4, transports Zn with higher affinity and Cd uptake with low 
affinity. The CDF (cation diffusion facilitators) family of the 
transporter are involved in the transport of metal ions such as Fe2+, 
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Co2+, Zn2+, Mn2+, and Cd2+ from the cytoplasm to organelles like 
vacuoles, endoplasmic reticulum, etc. (Figure 4) (Peiter et al., 2007). 
Moreover, metal ion transport into vacuoles occurs through CDF 
(cation diffusion facilitator), MTP (metal tolerance protein), and 
P1B type ATPase HMA3 (Krämer et al., 2007; Verbruggen et al., 
2009b; Andresen et al., 2018). Many studies have reported on two 
Zn/Cd hyperaccumulator models, T. caerulescens and A. halleri 
(Frérot et al., 2010; Krämer, 2010). These findings strongly 
suggested that the differential expression and regulation of 
common genes rather than a novel gene set was mainly involved 
in the metal hyperaccumulation mechanisms (Verbruggen et al., 
2009a). The cation transporters belonging to the ZIP family (zinc
regulated and iron-regulated transporter proteins) are primarily 
located at the plasma membrane of roots in both Cd/Zn hyper and 
non-hyperaccumulators. The constitutive overexpression of ZIPs 
genes in T. caerulescens (ZTN1 and ZTN2) and A. halleri (ZIP1 and 
ZIP6) led to enhanced uptake of Zn irrespective of the exterior Zn 
concentration (Assuncão et al., 2010; Lira-Morales et al., 2019). 
While in Cd/Zn non-hyperaccumulator plants, the expression of 
ZIPs was detected only under Zn-deficient conditions, suggesting a 
Zn-mediated regulation unlike the constitutive expression observed 
in the hyperaccumulator counterpart (Weber et al., 2004; Yan et al., 
2020). Although Zn transporters mediate the uptake of Cd in A. 
halleri and most ecotypes of T. caerulescens, Zn is preferably being 
transported over Cd (Zhao et al., 2002). Interestingly, (Lombi et al., 
2001) reported that the Ganges ecotype of T. caerulescens could 
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accumulate a very high level of Cd in their aerial parts. Cd uptake is 
not influenced by Zn concentration, indicating the presence of an 
efficient cadmium-specific transport system in the roots of 
this ecotype. 

ZIP family of selective cation transporters catalyzes the 
transport of Ni. This family of transporters encodes ZRT (zinc
regulated transporter)/IRT (iron-regulated transporter) proteins 
consisting of 8 transmembrane domains and a metal-binding 
domain in the extracellular loop of the transporter (Guerinot, 
2000; Kochian, 2000; Rogers et al., 2000; Potocki et al., 2013). The 
IRT1 transporter uptakes metal ions via plasma membrane and 
through the trans-Golgi network, where they are found 
predominantly (Barberon et al., 2011). Even though the specificity 
of IRT1 varies among species, it is versatile for the transport of a 
wide range of metal ions such as Co, Cd, Ni, Fe, Zn, and Mn (Rogers 
et al., 2000; Schaaf et al., 2006; Halimaa et al., 2014, 2019). Vert et al. 
(2002) reported that IRT1 depends on the availability of the metal 
ion; for example, on the scarce availability of Fe, other metal ions 
are transported to IRT1 found in rhizodermal root cells. The uptake 
of metal ions occurs through cellular metal ion transporters such as 
ZIP4 for Cd, Cu, Zn, ZIP6 for transport of Zn and Mn, and only Zn 
by ZIP10/11 (Krämer et al., 2007; Corso and de la Torre, 2020). 
Other transporters help accumulate metal ions; for example, Cu 
influx occurs via ATPase HMA5I, and transport from apoplast to 
the cytosol occurs via NRAMP1 transporter. The long-distance 
transport of metal ions is regulated by several transporters, such 
FIGURE 3 

Mechanisms of transportation of heavy metals from contaminated soils through metal ion transporters by active transport. 
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as HMA4 (heavy metal ATPase 4), the YSL (yellow stripe-like) 
family, and ZIP (zinc-regulated transporter, iron-regulated 
transporter-related protein) family members (Verbruggen et al., 
2009b). Moreover, other transporters involved in long-distance 
metal transport include TcYSL3 and TcYSL7 (Gendre et al., 2007). 
It is also reported that vacuolar sequestration of metal ions occurs 
through NRAMPs (natural resistance-associated macrophages), 
HMA3, and MTPs (metal transport proteins) (Verbruggen et al., 
2009b). The AhHMA4 encodes P-type ATPases found on the 
plasma membrane of hyperaccumulators and is responsible for 
pumping metal ions such as Zn and Cd to confer their tolerance 
(Talke et al., 2006; Courbot et al., 2007). 

Expression analysis identified the AhHMA4 transporter 
(Hanikenne et al., 2008) to mediate the xylem loading of metal 
ions in roots and leaves. In addition, the transport of Zn from roots 
and shoots was reported to be mediated by SaZIP4 transporter S. 
alfredii (Yang et al., 2018). It was further validated by deploying 
RNA interference studies that Zn and Cd were highly transported 
by AhHMA4 transporter (Hanikenne et al., 2008). Accumulation 
and sequestration of Zn metal ions was subjected to the 
overexpression of Zn2+/H+ transporter-MTP1 on the vacuolar 
membranes (Desbrosses-Fonrouge et al., 2005; Gustin et al., 2009) 
as the MTP1 found in epidermal, and mesophyll cells have been 
reported to be involved in the influx of Cd, Ni and Zn in the 
vacuoles (Küpper and Kochian, 2010; Schneider et al., 2013). 

Notably, transporters differ in their mechanism of metal ion 
transport, such as sequestration of Cd by TcHMA3 transporter onto 
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foliar vacuoles and decreasing the effect of Cd on photosynthesis 
SpHMA1chloroplast Cd exporters (Ueno et al., 2011; Zhao et al., 
2019). Puig (2014) reported that copper hyperaccumulation occurs 
through a COPT1 transporter belonging to the Ctrs family on the 
plasma membrane. The primary expression sites of this transporter 
include embryos, cotyledons, root tips, trichomes, pollen grains, and 
guard cells (Sancenón et  al., 2004). CDF transporters predominantly 
mediate the transport of metal ions into the vacuole and Golgi 
complex. Metal ions modulated these transporters to induce 
conformational changes and transport specific metal  ions  (Andresen 
et al., 2018). MTP1 is the versatile transporter identified in the vacuolar 
membranes to transport Zn, in some instances Co, Cd, Fe (II), and Ni 
(Krämer et al., 2007; Krämer, 2010; Hanikenne and Nouet, 2011; 
Sharma et al., 2016). Both A. halleri and N. goesingensis possess 
tolerance to Zn due to the presence of MTP1 transporter on 
vacuolar membranes of shoot cells (Dräger et al., 2004; Gustin et al., 
2009; Meyer et al., 2010; Shahzad et al., 2010). Cd is primarily 
accumulated through plant roots by transporters such as 
AtNRAMP6, OsNRAMP5, OsNRAMP1, AtIRT1 and TcZNT1/TcZIP4 
(Lux et al., 2011; Sasaki et al., 2012). These transporters are involved in 
several hyperaccumulators metal ion uptake, transport, and 
detoxification. The aqua glyceroporins of the NIP (Nodulin 26-like 
Intrinsic Proteins) are reported as probable transporter proteins of 
arsenic (As) in plants such as P. vitata (Ma et al., 2008; Kamiya et al., 
2009). In addition, transporters, such as AtMTP11, CsMTP8, 
OsMTP8.1, and  ShMTP1, are  identified to help transport manganese 
into vacuoles (Chen et al., 2013; Migocka et al., 2014). Besides, plant-
FIGURE 4 

A model demonstrating the mechanism of transportation of heavy metals ions from roots to the aerial parts of plants. 
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microbe interactions significantly enhance hyperaccumulation and 
metal tolerance by facilitating metal mobilization, uptake, 
and detoxification. Beneficial microbes, such as rhizobacteria and 
mycorrhizal fungi, produce siderophores, organic acids, and 
phytohormones that solubilize metals, making them more 
bioavailable for plant uptake, while also improving root growth and 
nutrient acquisition. Additionally, endophytic and rhizospheric 
microbes can sequester metals within their cells or bind them 
extracellularly, reducing toxicity to the plant. These interactions 
further induce plant stress responses, such as the upregulation of 
metal transporters (e.g., ZIP, NRAMP) and phytochelatin synthesis, 
enhancing metal accumulation and tolerance. Thus, symbiotic 
microbial communities play a crucial role in optimizing 
hyperaccumulator efficiency for phytoremediation. 
3.3 Hyperaccumulators in 
phytoremediation: promise, pitfalls, and 
the path forward 

Hyperaccumulators have garnered significant attention for their 
potential in phytoremediation due to their ability to absorb and tolerate 
high concentrations of HMs and other pollutants (Yang et al., 2022). 
However, an overly optimistic focus on their capabilities often 
overlooks critical limitations that hinder their practical application. 
One major constraint is their typically low biomass production, which 
limits the total quantity of contaminants that can be extracted from the 
soil within a given timeframe (Yang et al., 2022; Deng et al., 2024). 
Additionally, many hyperaccumulator species exhibit slow growth 
rates, further reducing their efficiency in large-scale remediation 
projects. These biological constraints are compounded by 
environmental factors, such as soil composition and climate 
conditions, which may restrict their adaptability to diverse 
contaminated sites (Sánchez-Castro et al., 2023; Aryal, 2024). 
Moreover, the exclusive focus on hyperaccumulation tends to 
disregard potential trade-offs, such as; reduced competitive ability in 
natural ecosystems or increased susceptibility to pests and diseases. 
Without addressing these limitations, the feasibility of deploying 
hyperaccumulators in real-world remediation scenarios remains 
uncertain. A more balanced assessment that acknowledges both their 
potential and their shortcomings is necessary to develop realistic 
strategies for effective phytoremediation (Skuza et al., 2022). Future 
research should prioritize overcoming these challenges through genetic 
engineering, agronomic practices, or complementary technologies to 
enhance their practicality and scalability. 
4 Conclusion and future research 
gaps in understanding transport 
regulations and metal specificity 

Heavy metal pollution is a global problem worsened by different 
anthropogenic activities. The latter reason has pushed the scientific 
communities to intensify research on dealing with the phytotoxicity 
meditated by heavy metal ions. The metal ion toxicity can be 
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significantly dealt with by the intervention of metal ion 
hyperaccumulators, which can accumulate metal ions 100-folds 
more than non-accumulators. Hyperaccumulator plants, the 
versatile plant species employed for enhancing phytoextraction, 
phytomining, and metal ion detoxification, are great reservoirs of 
genes utilized to circumvent the metal ion toxicity and remediation of 
contaminated soils. Many hyperaccumulators have been documented, 
which reduce the concentration of metal ions and detoxify them to 
the optimum level. In conjunction with physiological and adaptive 
mechanisms, their molecular studies have provided deep insights into 
understanding the importance of hyperaccumulators as a potential 
remedy for obtaining contamination-free soils. For example, 
physiological studies carried out in different populations of T. 
caerulescens revealed differential affinities to metal ions and the 
mechanism of hyperaccumulation (Zhao et al., 2002; Assuncão 
et al., 2008). High copy number and gene duplication of transporter 
genes such as ZIP4/ZNT1-2 and IRT1 in T. caerulescens and HMA4, 
MTP1, ZIP3, and  ZIP9 in A. halleri have primarily contributed to the 
attribute of hyperaccumulation (Hanikenne et al., 2008). Expression 
analysis revealed hyperaccumulators differentially express transporter 
genes against the metal ion concentration in contaminated soils. They 
respond to the higher concentration of metal ions in elevating the 
expression of many genes, as mentioned in the above sections of this 
review. Most of these genes encode transport proteins for long-
distance transport and transport with cells via plasma membrane 
and cellular organelles for accumulation and detoxification. 
Consequently, it is evident from the reviewed literature that further 
quest is required to unravel the physiological and molecular 
mechanism adapted by metal ion hyperaccumulators to withstand 
and hyperaccumulate toxic metals from diverse soils. In addition, 
insight into understanding metal ion homeostasis and regulation of 
the metal ion concentration in cells is of prime interest. 

It must be realized that there is a lack of systematic identification 
and screening of plants and potential hyperaccumulators (Reeves 
et al., 2018). The unavailability of novel molecular approaches to 
decipher the exact mechanism of metal ion hyperaccumulation 
hinders the fruitful utilization of hyperaccumulators. Unfortunately, 
significantly little literature has been generated on the importance of 
microbiomes found in the rhizosphere of hyperaccumulators 
augmenting the accumulation of metal ions through roots. In 
addition, it must be of prime interest to the scientific community  to  
further investigate energy allocation to hyperaccumulate metal ions. 
Understanding genomic evolution in correlation with ecological 
genomics may further pave the way to broaden our understanding 
of the mechanism of hyperaccumulation. Strategies including a rise in 
biomass or the ability to absorb and sequester (HMs) are additional 
major areas that demand study. However, the introduction of 
genetically modified plants may threaten the biodiversity of a 
region through the formation of superweeds, mixing and 
outcompeting with native species, cross-pollination with other 
plants, and altering the environment and the sustainable conditions 
for biological control agents. Before their actual deployment, 
therefore, substantial research measuring their influence on native 
biodiversity and the environment should be conducted. The 
employment of rhizospheric bacteria to drive root proliferation, 
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boost plant development, and increase heavy metal tolerance and 
plant fitness may also offer feasible alternatives. Knowledge of the 
exact pathways by which each heavy metal is taken up, translocated, 
and sequestered in plants, identification and understanding of the role 
of each component of the pathway, the effect/use of the metal in the 
metabolic processes, and the long-term effects of large-scale 
phytoremediation will aid in the design of ideal plant species for 
hyperaccumulat ion  by  genetic  engineering  and  other  
mentioned methods. 

Future research should focus on genetic engineering and breeding 
strategies to enhance hyper-accumulation traits in high-biomass plants, 
leveraging CRISPR-Cas9 and omics technologies to optimize metal 
transporter expression and detoxification pathways (Oubohssaine and 
Dahmani, 2024). Additionally, integrating phytoremediation with 
bioenergy production (e.g., using Miscanthus or Helianthus annuus) 
could improve economic viability (Shackirea et al., 2022). Exploring 
synthetic biology to design novel chelators or hyper-accumulation 
pathways may further revolutionize HM remediation (Rafeeq et al., 
2023). Field-scale studies, long-term ecological monitoring, and policy 
frameworks for phytoremediation adoption are essential to translate 
laboratory successes into real-world applications (Tripathi et al., 2020). 
Ultimately, interdisciplinary approaches combining plant physiology, 
microbiology, and biotechnology will be crucial in addressing global 
HM contamination sustainably. Achieving sustainability in 
phytoremediation requires a multifaceted approach to minimize 
phytotoxicity caused by HMs while enhancing plant efficiency 
(Ashkanani et al., 2024). One promising strategy is the use of soil 
amendments, such as; biochar, compost, and chelating agents (e.g., 
EDTA), which can reduce HM bioavailability and mitigate plant stress 
(Yin et al., 2024). Additionally, microbial-assisted phytoremediation, 
where plant growth-promoting rhizobacteria (PGPR) and mycorrhizal 
fungi enhance metal uptake and tolerance, has shown significant 
potential (Bhat et al., 2022b). Genetic engineering and breeding of 
hyperaccumulator plants to improve their metal accumulation capacity 
and stress resilience could further optimize phytoremediation 
(Nurrahma et al., 2024). The circular economy approach can be 
integrated by utilizing hyperaccumulator biomass in metal recovery 
(phytomining) or bioenergy production, reducing waste and creating 
economic value (Mandal et al., 2024). However, careful management is 
needed to prevent secondary contamination from harvested biomass. 
Furthermore, intercropping hyperaccumulators with cash crops could 
provide dual benefits soil remediation and agricultural productivity 
while minimizing land-use conflicts (Deng et al., 2024). Besides, 
understanding epigenetics’s role in adapting hyperaccumulators in 
extreme environmental conditions needs extensive research. 

Despite significant advances, key gaps remain in understanding 
transporter regulation and metal specificity at the molecular level, 
particularly in elucidating the dynamic conformational changes that 
govern metal selectivity and transport efficiency. The precise 
mechanisms by which post-translational modifications, allosteric 
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effectors, and cellular signaling pathways modulate transporter 
activity are still unclear, as are the structural determinants that 
enable certain transporters to discriminate between chemically 
similar metal ions. Additionally, the interplay between metal 
availability, transporter expression, and cellular homeostasis in 
different physiological and pathological contexts requires further 
exploration.  High-resolut ion  structural  studies  under  
physiologically relevant conditions, combined with advanced 
computational and functional assays, are needed to uncover these 
complexities and provide a comprehensive understanding of 
transporter regulation and metal specificity. 
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Jaffré, T., Pillon, Y., Thomine, S., and Merlot, S. (2013). The metal 
hyperaccumulators from New Caledonia can broaden our understanding of nickel 
accumulation in plants. Front. Plant Sci. 4, 279. doi: 10.3389/fpls.2013.00279 

Jamla, M., Khare, T., Joshi, S., Patil, S., Penna, S., and Kumar, V. (2021). Omics 
approaches for understanding heavy metal responses and tolerance in plants. Curr. 
Plant Biol. 27, 100213. doi: 10.1016/j.cpb.2021.100213 

Jiang, H., Lin, W., Jiao, H., Liu, J., Chan, L., Liu, X., et al. (2021). Uptake, transport, 
and metabolism of selenium and its protective effects against toxic metals in plants: a 
review. Metallomics 13, mfab040. doi: 10.1093/mtomcs/mfab040 

Jogawat, A., Yadav, B., and Narayan, O. P. (2021). Metal transporters in organelles 
and their roles in heavy metal transportation and sequestration mechanisms in plants. 
Physiologia Plantarum. doi: 10.1111/ppl.13370 

Kamiya, T., Tanaka, M., Mitani, N., Ma, J. F., Maeshima, M., and Fujiwara, T. (2009). 
NIP1; 1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis 
thaliana. J. Biol. Chem. 284, 2114–2120. doi: 10.1074/jbc.M806881200 

Karimi, N., Ghaderian, S. M., Raab, A., Feldmann, J., and Meharg, A. A. (2009). An 
arsenic-accumulating, hypertolerant brassica, Isatis capadocica. New Phytol., 41–47. 
doi: 10.1111/j.1469-8137.2009.02982.x 

Kaur, H., and Garg, N. (2021). Zinc toxicity in plants: a review. Planta 253, 1–28. 
doi: 10.1007/s00425-021-03642-z 

Kaushal, J., Mahajan, P., and Kaur, N. (2021). A review on application of 
phytoremediation technique for eradication of synthetic dyes by using ornamental 
plants. Environ. Sci. pollut. Res., 1–20. doi: 10.1007/s11356-021-16672-7 

Kochian, L. V. (2000). Molecular physiology of mineral nutrient acquisition, 
transport, and utilization. Biochem. Mol. Biol. Plants, 1204–1249. 

Kozhevnikova, A. D., Seregin, I., Gosti, F., and Schat, H. (2017). Zinc accumulation 
and distribution over tissues in Noccaea сaerulescens in nature and in hydroponics: a 
comparison. Plant Soil 411, 5–16. doi: 10.1007/s11104-016-3116-6 

Krämer, U. (2010). Metal hyperaccumulation in plants. Annu. Rev. Plant Biol. 61, 
517–534. doi: 10.1146/annurev-arplant-042809-112156 

Krämer, U., Talke, I. N., and Hanikenne, M. (2007). Transition metal transport. FEBS 
Lett. 581, 2263–2272. doi: 10.1016/j.febslet.2007.04.010 

Kumar, B., Smita, K., and Flores, L. C. (2017). Plant mediated detoxification of 
mercury and lead. Arabian J. Chem. 10, S2335–S2342. doi: 10.1016/j.arabjc.2013.08.010 

Kuppan, N.,  Padman, M.,  Mahadeva, M.,  Srinivasan, S.,  and Devarajan, R.  (2024).  A  
comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for 
waste and pollution management. Waste Manage. Bulletin. doi: 10.1016/j.wmb.2024.07.005 

Küpper, H., Götz, B., Mijovilovich, A., Küpper, F. C., and Meyer-Klaucke, W. (2009). 
Complexation and toxicity of copper in higher plants. I. Characterization of copper 
accumulation, speciation, and toxicity in Crassula helmsii as a new copper 
accumulator. Plant Physiol. 151, 702–714. doi: 10.1104/pp.109.139717 

Küpper, H., and Kochian, L. V. (2010). Transcriptional regulation of metal transport 
genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn 
Frontiers in Plant Science 18 
hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 185, 114– 
129. doi: 10.1111/j.1469-8137.2009.03051.x 

Küpper, H.,  Lombi,  E.,  Zhao,  F.-J.,  and Mcgrath, S.  P. (2000).  Cellular
compartmentation of cadmium and zinc in relation to other elements in the 
hyperaccumulator Arabidopsis halleri. Planta 212, 75–84. doi: 10.1007/s004250000366 

Lasat, M. M., Pence, N. S., Garvin, D. F., Ebbs, S. D., and Kochian, L. V. (2000). 
Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi 
caerulescens. J. Exp. Bot. 51, 71–79. doi: 10.1093/jxb/51.342.71 

Li, X., Cen, H., Chen, Y., Xu, S., Peng, L., Zhu, H., et al. (2016). Physiological analyses 
indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb 
tolerance in Eremochloa ophiuroides. Int. J. phytoremediation 18, 251–260. 
doi: 10.1080/15226514.2015.1084994 

Li, W. C., Ye, Z. H., and Wong, M. H. (2007). Effects of bacteria on enhanced metal 
uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J. Exp. Bot. 58, 4173– 
4182. doi: 10.1093/jxb/erm274 

Liao, Q. L., Liu, C., Wu, H. Y., Jin, Y., Hua, M., Zhu, B. W., et al. (2015). Association 
of soil cadmium contamination with ceramic industry: A case study in a Chinese town. 
Sci. Total Environ. 514, 26–32. doi: 10.1016/j.scitotenv.2015.01.084 

Lima, L. W., Pilon-Smits, E., and Schiavon, M. (2018). Mechanisms of selenium 
hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues. 
Biochim. Biophys. Acta (BBA)-General Subj. 1862, 2343–2353. doi: 10.1016/ 
j.bbagen.2018.03.028 

Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C. C., et al. (2009). 
Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron 
transporter. New Phytol. 182, 392–404. doi: 10.1111/j.1469-8137.2009.02766.x 
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