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Fusarium stalk rot (FSR), caused by Fusarium verticilliodes, is a serious disease in

maize. Resistance to FSR is complexly inherited. Thus, an investigation was

carried out to predict and validate the genomic estimated breeding values

(GEBVs) for FSR resistance. Three doubled haploid (DH) populations induced

from F1 and F2 of the cross VL1043 × CM212 and F2 of the cross VL121096 ×

CM202 were used in the current study. Six different parametric models

(Genomic-Best Linear Unbiased Predictors (GBLUP), BayesA, BayesB, BayesC,

Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayesian

Ridge Regression (BRR)) were employed to estimate the prediction accuracy.

Further, the accuracy of predicted genomic estimated breeding value (GEBV) for

FSR resistance was assessed using five-fold cross-validation and independent

validation. The training population (TP) size and marker density were optimized

by considering different proportions of training set (TS) and validation set (VS) and

varying marker density from 40 to 100%. The estimates of descriptive statistics

and genetic variability parameters, which include mean, standardized range,

genetic variance, phenotypic and genotypic coefficients of variations, broad

sense heritability, and genetic advance as per cent mean (GAM), were relatively

higher in DH F2s than those in DH F1s. Prediction accuracies displayed an

increasing trend with an increase in the proportion of training set size and

marker density in all three DH populations. The TS:VS proportion of 75:25 in

DH F1 (VL1043 × CM212) and DH F2 (VL121096 × CM202), and 80:20 in DH F2 of

VL1043 × CM212 resulted in greater prediction accuracy than other TS:VS

proportions. Study of linkage disequilibrium (LD) decay pattern across all the

populations indicated that the number of markers employed were sufficient to

conduct a genomic prediction (GP) study in two DH F2 populations of crosses

VL1043 × CM212 and VL121096 × CM202. Prediction accuracies of 0.24 and 0.17

were recorded for FSR resistance in independent validation when DH F2 of cross

VL121096 × CM202 was used for validation and DH F1 and DH F2s from the cross
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VL1043 × CM212 as training sets. A significant positive correlation of FSR

resistance between the DHs selected based on their GEBVs and those selected

based on test cross performance indicated the efficiency of genomic

prediction models.
KEYWORDS

maize, fusarium stalk rot (FSR), doubled haploids, GEBVS, genomic prediction,
genomic selection
1 Introduction

Maize (Zea mays L.) is considered vital to the world’s

agriculture and is a treasured resource that provides food, fodder,

and industrial raw materials (Agrawal et al., 2018). The annual

growth rate of maize production (1.6%) in the current climate

change years is insufficient to meet the global demands projected for

2050 (Ray et al., 2013; Erenstein et al., 2022). Maize is affected by as

many as 130 pests and about 110 diseases globally (Ray et al., 2013).

The diseases of maize include seedling blights, foliar diseases,

downy mildews, fusarium stalk rots, wilts, rusts, smuts, and ear

rots. Among all maize diseases, post-flowering stalk rot (PFSR) is

considered the world’s most destructive disease in recent years and

is widely distributed in all maize agro-ecologies (Showkath Babu

et al., 2020). PFSR is a complex disease caused by many fungi

involved in decaying the pith, resulting in pre-mature wilting of the

plants. Pathogens such as Fusarium verticilloides (Fusarium stalk

rot), Macrophomina phaseolina (Charcoal rot) and Harpophora

maydis (Late wilt) are commonly associated with PFSR. Fusarium

stalk rot (FSR) caused by the pathogen Fusarium verticilioides

(Saccardo) Nirenberg (formerly called Fusarium moniliforme)

(Seifert et al., 2003) is considered to be a serious threat to maize

cultivation in the world including India. In India, the disease is

prevalent in most maize-growing areas, where water stress occurs

after the flowering stage (Singh et al., 2012). The incidence of FSR

after the flowering stage and before physiological maturity results in

reduced yields as affected plants die prematurely, producing light-

weight ears with poorly filled kernels. Plants infected with stalk rot

lodge easily, which makes harvesting difficult and ears are left in the

field while harvesting. The disease incidence ranges from 10 to 42%

(Desai et al., 1992; Kumar et al., 1998; Harlapur et al., 2002) in

major maize-growing areas. Additionally, the FSR can cause a

reduction of 18.70% in cob weight and 11.20% in 100 grain

weight in the infected plants (Cook, 1978).

Among the various strategies for managing FSR disease in

maize, breeding for resistance is the most practical, cost-effective

and eco-friendly approach (Jeevan et al., 2020; Showkath Babu et al.,

2020). The quantitative nature of FSR resistance (Szoke et al., 2007;

Khokhar et al., 2014; Archana et al., 2019; Showkath Babu et al.,

2020, 2024) has resulted in a rather slow and limited genetic gain

per unit of time through conventional plant breeding (Enrico Pè
02
et al., 1993; Yang et al., 2004; Mir et al., 2018). The difficulties of

conventional breeding favoured the development and utilization of

genomic tools in breeding complex traits like FSR resistance.

Marker assisted selection has proved effective to improve only

traits controlled by one or a few large-effect loci. However, the FSR

resistance is controlled by both large and small effect quantitative trait

loci (QTLs) (Rashid et al., 2022; Showkath Babu et al., 2024). Thus,

capturing both large and small effect QTLs is crucial for developing

improved maize hybrids with enhanced FSR resistance (Dekkers and

Hospital, 2002). At this juncture, the genomic selection (GS) was

proposed to capture both small and large effect QTLs (Meuwissen

et al., 2001; Bernardo and Yu, 2007; Mayor and Bernardo, 2009).

Genomic selection is defined as the selection of genotyped-only

breeding population (BP) individuals based on their GEBVs

predicted using marker effects estimated by fitting statistical models

calibrated in both genotyped and phenotyped training population

(TP) (Meuwissen et al., 2001). Genomic selectionmodels work well in

terms of high prediction accuracy if the individuals of the training

and breeding population are related. A diverse training population,

including both related and unrelated genotypes, can lead to more

broadly applicable prediction models. Individuals from the same

family or biparental cross can also be used as both the training and

breeding populations although population structure significantly

impacts genomic prediction accuracy (Riedelsheimer et al., 2013;

Zhang et al., 2015, 2017; Schopp et al., 2017; Brauner et al., 2020).

Genomic prediction in biparental populations, has been proved to be

a very effective scheme for identifying superior lines in plant breeding

programs. This approach powers the strong genetic relationship

between the training and prediction sets, which maximizes linkage

disequilibrium between markers and quantitative trait loci (QTL). It

allows for accurate prediction of traits even with limited marker

density and relatively small training populations (Riedelsheimer et al.,

2013). To perform GS, TP is used to train or calibrate a statistical

model to estimate the marker effects. The calibrated/trained statistical

model is then used to predict GEBVs of non-phenotyped but

genotyped-only BP individuals. The GEBVs of individuals of the

breeding population are predicted as the sum of the effects associated

with all marker alleles irrespective of whether they are linked or

unlinked to QTLs controlling target traits. Thus, the GS is described

as MAS without QTL mapping (Bernardo and Yu, 2007; Mayor and

Bernardo, 2009).
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The effectiveness of GS depends on the accuracy of predicted

GEBVs, which in turn depends on the training population (TP)

composition and its size as well as its genetic relatedness with the BP

(Wang et al., 2017). Other factors influencing the accuracy of GEBV

are the statistical model used for prediction, the density of markers

and the heritability of target traits (Bernardo and Yu, 2007;

Bernardo, 2009; Goddard and Meuwissen, 2010; Massman et al.,

2013; Song et al., 2018).

The use of genomic tools in combination with doubled haploids

(DH) technology, which results in the completely homozygous lines

in the quickest possible time has been suggested to enhance the

genetic gain per breeding cycle and unit time. The DH offer

several advantages over mapping populations, through the

fastest attainment of complete homozygosity, lack of residual

heterozygosity and accurate phenotyping compared to families in

early segregating generations (F3 or F4) (Yan et al., 2009). High

genetic variance in DH lines is directly proportional to response to

selection (Stich et al., 2005; Bordes et al., 2007; Mayor and

Bernardo, 2009). The DH lines also offer opportunities for

improving selection gain and increasing the precision and

accuracy of quantification of genetic × environment interactions

for identifying the genomic regions for key traits (Mansur et al.,

1996). DH lines can be induced from F1 or F2 as base populations,

which depends upon various factors including time needed to create

DH populations, amount of recombination and ability to select

superior plants before haploid induction (Bernardo, 2009;

Showkath Babu et al., 2023).

The use of the most appropriate filial generations (F1/F2) to

induce DH and optimized parameters of genomic prediction is

expected to result in rapid and greater genetic gain for target traits.

Thus, the current investigation was framed to predict and validate

the GEBVs for FSR resistance in DH populations induced from F1
and F2 populations and to optimize the size of the training

population and marker density to be used to attain the highest

prediction accuracy.
2 Materials and methods

2.1 Phenotypic data

2.1.1 Basic genetic material
The primary material for the study consisted of two highly

susceptible inbreds namely VL1043 (CLQRCYQ59-B*4) and

VL121096 (NEI9008-B*12) and two moderately resistant inbreds

CM212 (USA/ACC No.2132 (Alm)-3-2-f-#-13-#-⊗-bulk) and

CM202 (C121, Early). These inbred lines were procured from the

International Maize and Wheat Improvement Center (CIMMYT),

Asia Centre for Maize, Hyderabad. The inbred lines were selected

based on the previous year’s disease reaction from artificial disease

screening data against FSR (Archana et al., 2021.
2.1.2 Development of DH lines
The methodology for material development was described in

the earlier study by Showkath Babu et al. (2023). The 336 DHF1
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lines derived from the cross VL1043 × CM212 along with parents as

checks were screened for their response to FSR by artificial

inoculation during the winter season of 2018-19, the rainy season

of 2019 and the winter season of 2019 - 20. Similarly, the DH lines

(280 and 94) derived from F2 plants of the crosses VL1043 × CM212

and VL121096 × CM202 were phenotyped during the rainy season

of 2019 and winter season of 2019-20. Each DH line was planted in

a row of 2 m in length with an inter-row spacing of 0.6 m and inter-

plant spacing of 0.2 m at the College of Agriculture, V.C. Farm,

Mandya (Latitude: 12°31’21.94” N; Longitude: 76°54’24.16” E;

Altitude: 729 meters above mean sea level), in an augmented

design (Federer, 1961) with checks replicated twice within

each block.

2.1.3 Phenotyping DH lines for responses to FSR
The procedure for isolation and multiplication of Fusarium

verticilloides pathogen was followed as given by Hooda et al. (2018)

and Showkath Babu et al. (2023). To all the plants, established in the

field 2 ml of the inoculum containing 1×106 spores/ml was injected

diagonally using the syringe after pricking and making a 2 cm hole

with the help of a jabber to the second internode from the base at 65

and 75 days after sowing to ensure effective and uniform disease

incidence. After inoculation, irrigation was withheld for four days to

enable proper uptake of inoculum by the plants and all the

recommended production practices were followed except the

spray of fungicides to maintain the plants after inoculation.

Disease screening was carried out following the procedure

developed by Hooda et al. (2018).

2.1.4 Sampling and data recording
For disease phenotyping, the stalks were split open before

drying, i.e., 30 days after inoculation. Disease severity and

intensity were recorded on individual plants of each line using a 1

– 9 rating disease scale (Table 1) in all the seasons (Supplementary

Tables 1a-c). The scoring pattern was based on the spread of

discoloration inside the maize stalks from the point of inoculation

(Payak and Sharma, 1983). Higher extent of discoloration implies

higher rating of FSR incidence.

2.1.5 Phenotypic data analysis
The disease score obtained on 336 DHF1s and 280 DHF2s derived

from the cross VL1043 × CM212, and 94 DHF2s from the cross

VL121096 × CM202 for individual seasons were subjected statistical

analyses using Augmented design. Each block within a season

contained unreplicated test entries and a set of replicated checks.

This structure was used to efficiently evaluate the large number of DH

lines with limited replication. Given the distinct replication structure

and analytical objectives of the test entries and the checks, two

complementary statistical approaches were employed.

2.1.5.1 Analysis of variance

Disease scores of each of the DH lines in individual seasons

were analysed using augmentedRCBD package (Aravind et al.,

2023) of ‘R’ software version 4.3.1. Further, pooled augmented

analysis was done to account for the variability and environmental
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influence, the linear model for the same is given below (Merrick and

Carter, 2021) in Equation 1.

Yijkl   = m     +   Blocki   +  Checkj     +   Envl +   Blocki

� Envl   +  Checkj   � Envl   +eijk (1)

Where,

Yij - phenotypic value of the ith block and jth check in the

kth environment

m- overall mean

Blocki- random effect of the ith block with the distribution Block

∼N (0, s2
Block)

Checkj  - fixed effect of the jth replicated check cultivar

Envl - random effect of the lth environment with the distribution

Env ∼N (0, s2
Env) and

eijk- residual errors with a random normal distribution of e∼N
(0, s 2

e )

2.1.5.2 Estimation of genetic variability parameters

Phenotypic coefficient of variability (PCV), Genotypic co-

efficient of variability (GCV), heritability (broad sense) and

genetic advance and genetic advance as per cent of mean were

estimated as follows,

2.1.5.2.1 Phenotypic coefficient of variation (PCV)

The formula for computation of PCV is given in Equation 2.

PCV(% ) =

ffiffiffiffiffiffi
s2
p

q
�x

 �   100 (2)
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Where,

s2
p- Phenotypic variance

X - Overall mean

2.1.5.2.2 Genotypic coefficient of variation (GCV)

The formula for computation of GCV is given in Equation 3.

GCV(% ) =

ffiffiffiffiffiffi
s2
g

q
�x

 �   100 (3)

Where, s2
g- Genotypic variance

X - Overall mean

PCV and GCV were classified as low, moderate and high as

suggested by Robinson et al. (1949).

Broad sense heritability (H) was estimated using the following

formula given by Hanson et al. (1956) as given in Equation 4.

H(% ) =
s 2
g

s 2
p
� 100 (4)

Where, s 2
g = Genotypic variance

s 2
p = Phenotypic variance

Expected Genetic advance (GA) was figured by the following

formula given by Johnson et al. (1955) as given in Equation 5.

GA = k  �   h2b �  
ffiffiffiffiffiffi
s 2
p

q
(5)

Where, k = selection differential (2.06) at 5% selection intensity

and √s 2
p = phenotypic standard deviation

The expected genetic advance as a per cent of the mean was

estimated as given in Equation 6.

GAM =
GA
m

� 100 (6)

Where GA is the genetic advance and m is the general mean.
2.1.5.3 BLUEs and BLUPs calculation
2.1.5.3.1 BLUEs estimation

The best linear unbiased estimates (BLUEs) for the unreplicated

DHF1 and DHF2 populations were obtained using a mixed linear

model present in lme4 package (Bates et al., 2015) in R software

version 4.4.1. the genotypes and seasons were treated as fixed effects

and blocks nested within season was modeled as random effect to

account for the environmental variation. The genotype × season

interaction was also included in the model as a fixed effect to

account for the differential genotypic responses across seasons. The

model used for the BLUEs estimation is given below in Equation 7..

Yijk   = m   +   Si   +  Bj   (i)   +  Gk +   (Gk � Si)   +   eijk (7)

Where, Yijk is the disease score, m   is the overall mean (fixed), Si
is the fixed effect of season i, Bj(i) is the random effect of block j

within season i, Gk is the fixed effect of genotype k, Gk � Si is the

fixed effect of genotype by season interaction, and eijk is the

residual error.
TABLE 1 Disease rating scale for Fusarium stalk rot (Payak and
Sharma 1983).

Disease
score

Symptoms
Disease
reaction

1
Healthy or slight discolouration at the site
of inoculation

Highly
resistant

2
Up to 50% of the inoculated internode
is discoloured

Resistant

3
51-75% of the inoculated internode
is discoloured

Moderately
resistant

4
76-100% of the inoculated internode
is discoloured

Moderately
susceptible

5
Less than 50% discolouration of the
adjacent internode

Susceptible

6
More than 50% discolouration of the
adjacent internode

Highly
susceptible

7 Discolouration of three internodes
Highly

susceptible

8 Discolouration of four internodes
Highly

susceptible

9
Discolouration of five or more internodes and
premature death of plant

Highly
susceptible
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2.1.5.3.2 BLUPs estimation

For the unreplicated DHF1 and DHF2s, best linear unbiased

predictors (BLUPs) were estimated across seasons using a linear

model implemented in the package lme4 (Bates et al., 2015) of R

version 4.4.1. BLUPs maximize the correlation between the

predicted and true genetic values and account for the variance

components and interaction effects, improving accuracy (Beavis

and Mahama, 2023).

The linear model used for across seasons BLUPs estimation is

given below in Equation 8.

Yijk   = m   +   Si   +  Bj   (i)   +  Gk +   (Gk � Si)   +   eijk (8)

Where, Yijk is the disease score, m   is the overall mean, Si is the

fixed effect of season i, Bj(i) is the random effect of block j within

season i, Gk is the random effect of genotype k, Gk � Si is the

random effect of genotype by season interaction, and eijk is the

residual error.

BLUPs estimate both fixed and random effects, whereas BLUEs

estimate only fixed effects and do not shrink estimates toward the

mean. This lack of shrinkage can lead to overestimation,

particularly in unbalanced datasets or those with small sample

sizes (Henderson, 1975). However, the correlation between

BLUEs and BLUPs was high (>0.90) across all three DH

populations, and genotype rankings remained largely unchanged.

Therefore, BLUP-based genomic prediction was carried out in

this study.

The choice to implement two separate statistical approaches

was based on the design structure and analytical objectives. The

replicated check cultivars allowed the use of traditional ANOVA to

evaluate standard genotype performance and environmental

variability. In contrast, the unreplicated DH lines required a

mixed model to accurately predict genotypic values while

accounting for random effects and genotype × season interaction.

2.1.5.4 Genotyping of doubled haploid lines

Seeds of three DH populations, i.e. F1 and F2 induced (VL1043

× CM212) and F2 induced (VL121096 × CM202) were subjected to

genotyping using Corteva AgriScience Proprietary-Single

Nucleotide Polymorphisms (SNPs) markers through Illumina

Infinium XT assay. Polymorphic markers between parents were

chosen for genotyping the DH progenies. From the 2000 Corteva

proprietary markers, a total of 198, 199 and 193 SNPs

(Supplementary Tables 2a–c) remained after filtering for call rate

of > 0.90, minor allelic frequency (MAF) > 0.05 and heterozygosity

of > 0.1, in DHF1, DHF2 and DHF2 progenies of the crosses VL1043

× CM212 and VL121096 × CM202, respectively were used in the

current study.

2.1.5.5 Prediction and validation of genomic estimated
breeding values (GEBVs) for FSR resistance

2.2 Prediction models

The material consisted of 336 DHF1s and 280 DHF2s derived

from cross VL1043 × CM212 and 94 DHF2 lines from the cross

VL121096 × CM202. Adjusted average FSR disease scores from
Frontiers in Plant Science 05
individual seasons were considered and pooled to get the disease

scores across the seasons and this phenotypic data along with the

genotypic data were used in all the prediction studies. Six

parametric models that include Genomic BLUP (VanRaden,

2008), BayesA (Meuwissen et al., 2001), BayesB (Spiegelhalter

et al., 2002), BayesC (Spiegelhalter et al., 2002), Bayesian ridge

regression (BRR) (Shi et al., 2016) and Bayesian LASSO (Park and

Casella, 2008) models (Perez et al., 2010) were used to estimate the

marker effects using BGLR () function with 1,00,000 iterations and

20,000 burnins in each fold of a five fold cross validation in BGLR

package (Perez and de Los Campos, 2014) of ‘R’ software

version 4.3.1.

2.2.1 GBLUP
It is the technique that utilizes the genomic relationship among

individuals to estimate the genetic merit of an individual. It is based

on mixed model equations (MME) and best linear unbiased

predictors (BLUPs). This model assumes additive genetic effects

follow a normal distribution. The GBLUP model when all the

markers are considered random is represented as in Equation 9.

y   =  m1n   +  Zg   +   e (9)

Where y is the value of the trait, m is the overall mean, g is a

vector of additive genetic effects estimated using markers

considered random, Z is the design matrix associating g with

response variables, g is the genomic relationship matrix, and e is

a residual effect, with the following distributions. The G matrix was

computed by following VanRaden’s (2008) method. The formula

for the same is given in Equation 10.

G   =  
zz0

2opj(1  −pj)
(10)

Where, G is the genomic relationship matrix, zz0 measures the

genomic covariance between the individuals and pj is the allelic

frequency.

G∼N(0,  Gs2
g),

e∼N(0,  Rs2
e ),

This model works best for polygenic traits with small individual

marker effects.

2.2.2 Bayesian alphabet models
These methods involve two major steps, i) estimating marker

effects using the genotypic and phenotypic data of the training set

utilizing different models and ii) using the estimated marker effects

to get the GEBVs of the individuals in the validating set or breeding

population. All these Bayesian statistical models differ in their prior

assumptions of marker effects. The statistical representation of

BayesA, BayesB, BayesC, BLASSO, and Bayesian Ridge Regression

(BRR) considering all the marker effects as fixed is, given in the

Equation 11, below.

y   =  m1n   +  Xb +   e (11)
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Where, y = value of the trait, m = overall mean, X = genotypic

matrix containing values 0, 1, and 2, b = random vector of marker

effects and e = random vector of residuals with e ~ N (0, In s2e).

The Bayesian alphabets differ in their prior distributions of

variances of marker effects (b). BRR, and BLASSO assume a normal

distribution, while BayesA, BayesB, and BayesC assume a scaled t-

student distribution, spike-lab with the scaled t-student and spike-

lab with the normal distribution for the variances of marker

effects, respectively.

Further, the GEBVs were calculated using the formula, as given

in Equation 12, below.

ĝ i   =on
i Zij   m̂ i   (12)

Where, ‘m’ is the vector of random marker effects, ‘Z ‘ is the

incidence matrix m, ‘i’ is the specific allele of the ith SNP marker on

individual ‘j’ and it denotes the allele or genotype score for a given

SNP in an individual and ‘n’ is the total number of markers.

The predicted GEBVs were cross-validated using five-fold

cross-validation, wherein the entire population was divided into

five folds. The prediction accuracy was estimated by considering

1,00,000 iterations and 20,000 burnins in each fold of a five-fold

cross-validation.

2.2.2.1 Computation of prediction error

Random mean of squared errors (RMSE) was computed to

estimate the prediction error between the observed and estimated

prediction abilities after each round. RMSE is a commonly employed

metric to summarize the error (Hastie et al., 2009). It gives a single

measure that reflects the average magnitude of the prediction errors

across the folds, penalizing larger errors more heavily. It is mainly

used in comparing the predictive performance of different models.

The formula for estimating the predictive error is given in

Equation 13.

RMSE =

ffiffiffiffi
1
n

r
on

i=1(yi − ŷ i)
2 (13)
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Where yi is the observed value, ŷ i is the predicted value, and n is

the total number of observations across all the folds. Lower RMSE

values indicate better predictive accuracy.
2.3 Evaluation of the accuracy of predicted
GEBVs of individuals of VS

The GS effectiveness depends on the accuracy of predicted GEBVs

and it is quantified as the correlation (rĝ g) between predicted GEBVs

(ĝ ) and true breeding values (g). As true breeding values are not known

a prior, correlation (rŷ y) between predicted GEBVs (ŷ ) and observed

phenotype values (y) is the estimated predictive ability (PA). The

GEBVs prediction accuracy is then estimated as the ratio of PA to the

square root of heritability (h) (Dekkers, 2007). Thus, the accuracy of

predicted GEBVs was computed as in the Equation 14, given below.

rĝ g   =
rŷ y
h

(14)
2.4 Comparing strategies of training
population size and marker density

The effect of marker density on the accuracy of GEBVs was

assessed through five-fold cross-validation. Various proportions of

training and validation set size are used for optimization keeping

marker density constant (100%) as given in Figure 1. This

procedure was carried out with 1,00,000 iterations such that

GEBVs of all individuals of TP were predicted for each tested

proportion of training and validation sets.
2.5 Estimation of LD decay

Pattern of LD decay in all the three populations was estimated

using TASSEL v 5.2.95 (Bradbury et al., 2007) and fitted the LOESS
FIGURE 1

Optimization of training population size and marker density on prediction accuracy.
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curve using the ggplot2 package (Wickham, 2016) available in R

software version 4.4.3. LD decay was estimated by keeping a

threshold value of r2 value of 0.2 as it is considered biologically

meaningful but not due to background noise (Flint-Garcia et al.,

2003; Remington et al., 2001).
2.6 Independent validation strategy

The marker effects estimated from the prediction models and

pooled disease score data from the DHF1 and DHF2 populations of

the cross VL1043 × CM212 using six parametric models were used

to predict the FSR disease resistance of individuals of the DHF2
population of the cross VL121096 × CM202 (Supplementary

Figure 1). To further assess the accuracy of the prediction model

based on BRR as the estimated prediction accuracy was relatively
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higher for this model across the populations, 63 random DH lines

from all the disease response classes (5 resistant, 34 moderately

resistant, 19 moderately susceptible and 5 susceptible) were test

crossed with the testers (MAI105 and SKV50) (Supplementary

Figure 2). The test cross progenies along with the inbreds were

evaluated for their disease response. Correspondence between the

mean disease score of the test cross progenies with the estimated

genomic assisted breeding values of the inbreds was assessed by

Pearson’s correlation coefficient.
3 Results

3.1 Phenotypic variations

3.1.1 Analysis of variance
The FSR response of DH lines (DHF1 and DHF2) in the

individual seasons were subjected to ANOVA (Tables 2A, 2B).

The sum of squares due to genotypes was significant in all the

seasons in all the DH populations, except in the rainy season of

2019 in DHF1 of VL1043 × CM212. Pooled ANOVA across all

seasons for all the three DH populations is given in Table 3. Non-

significance of the mean sum of squares attributable to check with

season interactions indicated the absence of GEI (Genotype by

Environment Interactions). Thus, average adjusted means across

the seasons were considered for calculating pooled mean and it was

considered for further analysis.

3.1.2 Descriptive statistics, genetic variability
parameters and comparison of DH lines derived
from F1 and F2 populations

The descriptive statistics and genetic variability parameters for

the response to FSR in DHF1 (VL1043 × CM212) and DHF2s

[(VL1043 × CM212) and (VL121096 × CM202)] are presented in

Table 4 and Figure 2.
TABLE 2A Analysis of variance of mean FSR disease scores of DH lines
induced from F1 of the cross VL1043 × CM212 in individual seasons.

Source
of variation

Mean sum of squares

Degrees
of freedom

S1 S2 S3

Genotype
(ignoring blocks)

337 1.70** 1.40 1.47**

Genotype: Check 1 235.49** 297.01** 303.60**

Genotype: Test 335 0.99** 0.41 0.50*

Genotype:
Test vs. Check

1 5.64** 38.25** 22.07**

Blocks
(eliminating
genotypes)

16 0.35 1.25 0.34

Residuals 16 0.16 1.07 0.20
S1, Winter season of 2018-19; S2, Rainy season of 2019; S3, Winter season of 2019-20.
* and ** indicate significance at 5 and 1 per cent, respectively.
TABLE 2B Analysis of variance of mean FSR disease scores of DH lines induced from F2 of the cross VL1043 × CM212 and VL121096 × CM202 in
individual seasons.

Source of variation

Mean sum of squares

DHF2 of VL1043 × CM212 DHF2 of VL121096 × CM202

Degrees
of freedom

S1 S2
Degrees

of freedom
S1 S2

Genotypes
(ignoring blocks)

281 1.44** 1.42** 95 2.21** 2.28**

Genotypes: Check 1 190.01** 208.19** 1 132.95** 120.54**

Genotypes: Test 279 0.63** 0.58** 93 0.62* 0.88**

Genotypes: Test vs. Check 1 37.40** 29.77** 1 19.80** 14.33**

Blocks
(eliminating Genotypes)

13 0.19 0.10 8 0.21 0.09

Residuals 13 0.08 0.18 8 0.16 0.15
S1, Rainy season of 2019; S2, Winter season of 2019-20
* and ** indicate significance at 5 and 1 per cent, respectively.
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The average standardized range for FSR disease response in

DHF1 of VL1043 × CM212 across three cropping seasons was 1.18

while that of DHF2 of VL1043 × CM212 and VL121096 × CM202

was 1.32. Further, the average genetic variance (Vg) across the

seasons in DHF1 and DHF2 of VL1043 × CM212 were 0.44 and

0.48, respectively. However, DHF2 of VL121096 × CM202, the

recorded average genetic variance was 0.49.

The estimated genetic parameters viz., phenotypic (PCV) and

genotypic coefficient of variations (GCV) were moderate in all three

DH populations across seasons. The average PCV across seasons in

DHF1 and DHF2 of VL1043 × CM212 were 15.77 and 17.47%,

respectively. Whereas, in DHF2 of VL121096 × CM202 average

PCV was 18.78%. Similarly, the average GCV estimates were 14.04,

15.42 and 16.97% in DHF1 and DHF2 of VL1043 × CM212 and

DHF2 of VL121096 × CM202, respectively. Broad sense heritability

estimates were high in all three DH populations, with values being

70.0, 72.0 and 75.0% in DHF1 and DHF2 of VL1043 × CM212 and

DHF2 of VL121096 × CM202, respectively. Whereas the genetic

advance as a per cent mean was moderate (in DHF1 of VL1043 ×
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CM212 during the winter season of 2019 - 20) to high across the

seasons (Table 4).
3.2 Prediction accuracy for FSR resistance
using five-fold cross validation

Genomic prediction analysis was performed employing BLUP

values for fusarium stalk rot disease response. The BLUEs and

BLUPs estimates for DH individuals across all three DH

populations is given in Supplementary Tables 3a–c.
3.3 Effect of training population size on
prediction accuracy in cross VL1043 ×
CM212

The DHF1 from the cross VL1043 × CM212 consisted of 336

individuals. Prediction accuracies obtained for various proportions
TABLE 3 Pooled ANOVA across seasons for the DHF1 and DHF2 of the cross (VL1043 × CM212) and DHF2 of the cross (VL121096 × CM202).

SV
Mean sum of squares

Df DHF1 (VL1043 × CM212) Df DHF2 (VL1043 × CM212) Df DHF2 (VL121096 × CM202)

Blocks 16 1.52 13 2.93* 8 1.57

Checks 1 58.74*** 1 92.75** 1 34.16**

Seasons 2 27.13*** 2 1.13 1 0.13

Block × season 32 17.34 26 0.14 8 0.23

Check × Season 2 7.37 2 0.36 1 0.20

Residual 1056 1483.99 879 1.21 204 1.87
Df, Degrees of freedom.
* and ** indicate significance at 5 and 1 per cent, respectively.
TABLE 4 Descriptive statistics and estimates of genetic components in maize doubled haploids induced from F1 and F2 of VL1043 × CM212 cross and
F2 of VL121096 × CM202 for FSR.

Genetic parameters
DHF1 (VL1043 × CM212)

DHF2 (VL1043
× CM212)

DHF2 (VL121096
× CM202)

S1 S2 S3 S2 S3 S2 S3

Mean 4.37 4.43 4.46 4.38 4.52 4.44 4.52

Range 2.84 - 7.03 2.50 - 7.59 2.32 – 8.50 3.15 - 8.75 2.75 - 8.90 2.35 - 7.52 2.10 - 8.69

SR 1.04 1.14 1.38 1.27 1.36 1.16 1.45

CV (%) 8.04 12.90 9.88 6.45 9.17 8.64 8.34

Vg 0.53 0.48 0.30 0.55 0.40 0.46 0.53

PCV (%) 16.99 14.44 15.89 18.17 16.77 17.72 19.85

GCV (%) 15.28 14.13 12.31 16.93 13.92 15.28 18.86

H2 (%) 70.0 71.0 69.0 71.0 73.0 74.0 76.0

GAM (%) 34.49 21.56 19.68 32.54 23.83 27.17 35.41
S1, Winter season of 2018-19; S2, Rainy season of 2019; S3, Winter season of 2019-20
SR, Standardized range; CV, Coefficient of variation; PCV, Phenotypic Coefficient of variation; GCV, Genotypic Coefficient of variation; H2, Broad sense Heritability; GAM, Genetic Advance as
percent mean.
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of training and validation sets are given in Figure 3a. At a 60 TS:40

VS proportion, prediction accuracies estimated from BayesA and

GBLUP were similar; however, the estimates were marginally lower

in other models. Whereas, at a 65 TS:35 VS proportion, BRR and

BayesB models recorded a relatively higher prediction accuracy

than in BLASSO, BayesC, and GBLUP. Almost similar magnitudes

of prediction accuracies were recorded by all six parametric models

at a 70:30 training and validation set proportions. At the 75 TS:25

VS proportion, the highest prediction accuracy was documented by

BayesA, followed by BayesC, BRR, GBLUP, BayesB, and BLASSO.

The training and validation set proportion of 80:20, recorded

comparatively higher prediction accuracy for the BayesB, BayesC

and BRR models while the prediction accuracies from the rest

models were marginally lower.

The 75:25 proportion of the training and validation set

exhibited the highest average prediction accuracy of 0.25 across

different TS: VS proportions and the BRR model recorded the

highest average prediction accuracy of 0.24.

DHF2 from the cross VL1043 × CM212 consisted of 280

individuals. The prediction accuracies recorded for 60:40

proportion of training and validation sets was relatively higher for

BayesB followed by BayesC and BLASSO while prediction

accuracies from the remaining models were less (Figure 3b). The

estimated prediction accuracies for the 65:35 proportion were

almost similar across all the six prediction models. Whereas, at

70:30 proportions of training and validation sets, the highest

prediction accuracy was documented by BayesC and the lowest

was by BLASSO. At 75 TS:25 VS proportions, the estimated

prediction accuracies were higher in BayesA, BayesB, BayesC, and

relatively lower in BLASSO, BRR, and GBLUP.

However, at 80:20 proportions of training and validation sets

the average prediction accuracy recorded across all the six models

was the highest (0.25). The highest prediction accuracy was

recorded by BRR, followed by GBLUP, BLASSO and prediction

accuracies in the remaining models was relatively lower. Across

varying proportions of TS: VS sets in this cross, GBLUP recorded a

higher prediction accuracy of 0.20.

The RMSE error bars around each bar indicate the uncertainty

in the prediction. Shorter RMSE error bars indicate consistent and

stable performance in prediction across cross-validation folds.
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Across DHF1 and DHF2 from the cross VL1043 × CM212,

prediction error reduced greatly with increasing training

population proportions, suggesting the importance of a larger

training population size for effective genomic prediction. The

prediction models, BayesB and GBLUP, consistently recorded

lower RMSE values, particularly at 75:25 and 80:20 proportions of

the training and validation sets. Whereas, the models, BayesA and

BLASSO, occasionally documented higher RMSE, indicating greater

variability depending upon training population size and population

structure (Figures 3a, b).
3.4 Effect of training population size on
prediction accuracy in cross VL121096 ×
CM202

The DHF2 of the cross VL121096 × CM202 consisted of 94

individuals. Prediction accuracies estimated for 60:40 proportion

across six different parametric models, were relatively higher and

lower in BLASSO and BayesA, respectively. The higher magnitude

of prediction accuracy was documented by BLASSO, BayesA,

BayesC, BRR and GBLUP while lower magnitude of prediction

accuracy was recorded by BayesB for the proportion of 65 TS:35 VS.

For the training and validation set proportion of 70:30, the highest

prediction accuracy was recorded by BayesA, and the lowest by

BRR. For the training and validation set proportions of 75:25, the

estimated prediction accuracies were almost similar across all the

six models. At 80 TS: 20 VS proportion, the highest prediction

accuracy was recorded by BLASSO and the lowest by BayesA

(Figure 3c). The highest average prediction accuracy was recorded

by the prediction model BLASSO (0.19) and the 75:25 proportion of

training and validation set (0.25).

Among all the considered models, GBLUP and BayesB

displayed relatively higher prediction accuracy, coupled with

lower RMSE, especially at 75:25 and 80:20 proportions of training

and validation sets. Whereas, for 60:40 and 65:35 proportions of

training and validation sets, most of the models recorded noticeably

larger prediction errors. DHF2 from VL121096 × CM202 seemed to

respond well to an increase in training population size, which is

evident through sharp improvement in prediction accuracy and a
FIGURE 2

Box whisker plots representing mean disease scores for Fusarium stalk rot reaction of DH populations [(A) DH derived from F1 of VL1043 × CM212,
(B) DH derived from F2 of VL1043 × CM212 and (C) DH derived from F2 of VL121096 × CM202].
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reduction in the magnitude of prediction error. The variation in

prediction accuracy estimated across five folds for different

proportions of training and validation sets is given in the box

plots (Figure 4).
3.5 Effect of marker density on the
prediction accuracy

The estimated prediction accuracies in six different parametric

models using five-fold cross validation are given in Figure 5.
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The average prediction accuracies across six different parametric

models viz., GBLUP, BayesA, BayesB, BayesC, BLASSO and BRR

using five-fold cross-validation in DHF1 of VL1043 × CM212

displayed an increasing trend from 0.06 to 0.31 with an increase

in marker density from 80 (40%) to 198 (100%) (Figure 5a).

A similar pattern of the increasing trend in prediction accuracy

with an increase in marker density was observed for DHF2 of the

cross VL1043 × CM212 [0.04 (41%) to 0.28 (100%)] (Figure 5b) and

0.10 to 0.30 for the DHF2 of the cross VL121096 × CM202 for an

increase in marker density from 81 (42%) to 173 (89.63%)

(Figure 5c). Further, no significant increase in the prediction
FIGURE 3

Effect of training population set on estimation of prediction accuracy in three different DH populations [(a) DHF1 (VL1043 × CM212), (b) DHF2
(VL1043 × CM212), (c) DHF2 (VL121096 × CM202].
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accuracy was recorded when the 100% marker density was

employed to predict the prediction accuracy in DHF2 of

VL121096 × CM202.

Higher prediction accuracy was recorded when 100% of the marker

density was employed in DHF1 and DHF2 of VL1043 × CM212.

However, in the DHF2 of cross VL121096 × CM202, the highest

prediction accuracy was recorded for 89.63% (173 markers) marker

density and no further improvement in prediction accuracy was noted.

Estimated prediction errors across models and marker densities

revealed that at lower marker densities, most of the models
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exhibited higher prediction error (RMSE), indicating greater

prediction variability. It was observed that with an increase in

marker density, the RMSE decreased substantially, particularly in

models like GBLUP and BayesB, which consistently produced a

stable prediction value with minimal errors. Reduction in RMSE

with an increase in marker density underlined the importance of

using adequate genome coverage markers for minimizing the

prediction error in genomic prediction studies. The box plot

showing variation in prediction accuracy across five-fold for

various tested marker densities is given in Figure 6.
FIGURE 4

Box plot depicting the variation of prediction abilities across different training and validation set proportions (a) DHF1 (VL1043 × CM212), (b) DHF2
(VL1043 × CM212), (c) DHF2 (VL121096 × CM202).
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3.6 LD decay and its effect on marker
density

The LD decay patterns across all the three populations were

estimated at a threshold r2 value of 0.2 (Supplementary Figure 3).

LD decay distance of 7, 13 and 31cM were obtained for DHF1 from

VL1043 × CM212, DHF2 from VL1043 × CM212 and VL121096 ×

CM202, respectively.
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Optimum number of markers to be used for effective capturing of

all the genetic variation was estimated using the information on LD

decay (dividing the genetic map length by the LD decay value). The

results found that approximately 286, 154 and 65 SNPs were sufficient

for effective estimation of prediction accuracy. It was evident from the

estimated prediction accuracies across different proportions of marker

densities tested, the highest prediction accuracy was recorded for the

marker density of 85–100 per cent across all the DH populations.
FIGURE 5

Effect of marker density on the prediction accuracy in three DH populations [(a) DHF1 of VL1043 × CM212, (b) DHF2 of VL1043 × CM212 and (c)
DHF2 of VL121096 × CM202.
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3.7 Independent validation of the GS
model

The prediction accuracies estimated for FSR resistance in

independent validation when the DHF2 of the cross VL121096 ×

CM202 was used as a validation set and the DHF1 and DHF2 of the

cross VL1043 × CM212 were used as training sets. The average

prediction accuracy estimate of 0.24 was documented in the

independent validation of DHF2 of the cross VL121096 × CM202

using DHF1 of the cross VL1043 × CM212 as the training set. The

prediction accuracies in five-fold cross validation using six different

parametric models were 0.22, 0.25, 0.21, 0.26, 0.26 and 0.25 in GBLUP,
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BayesA, BayesB, BayesC, BLASSO and BRR, respectively (Figure 7a).

The average prediction accuracy of 0.17 was recorded when DHF2 of

the cross VL1043 × CM212 was used to train the model. Prediction

accuracies estimated in five-fold cross validation across six parametric

models viz., GBLUP, BayesA, BayesB, BayesC, BLASSO and BRR were

0.16, 0.19, 0.16, 0.18, 0.16 and 0.18 (Figure 7b).
3.8 Evaluation of test cross progenies

A total of 63 DH lines from all disease response class were

chosen randomly and crossed with two testers namely MAI105 and
FIGURE 6

Box plot depicting the variation of prediction abilities across different marker density proportions (a) DHF1 (VL1043 × CM212), (b) DHF2 (VL1043 ×
CM212), (c) DHF2 (VL121096 × CM202).
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SKV50 to derive the test cross progenies and their disease response

was assessed phenotypically.

A significant positive correlation was documented between

GEBV’s with the phenotype (0.57) of the selected DH lines,

GEBV’s with the test cross progenies derived by crossing with the

testers MAI105 (0.48) and SKV50 (0.52) was documented. The

estimated Pearson’s correlation coefficient between the disease

expression of selected lines with the test cross progenies derived

by crossing the selected lines with two testers MAI105 and SKV50

were 0.58 and 0.66, respectively (Figure 8).
4 Discussion

Doubled haploid (DH) technology has emerged as an efficient

strategy to shorten breeding cycles significantly and increase genetic

gain (Chaikam et al., 2019). The application of genomic prediction

in conjunction with DH technology is known to accelerate the pace

of achieving targeted genetic gain (Fu et al., 2022). Identifying and

utilization of the lines displaying resistance to an important disease

like Fusarium stalk rot in maize is very crucial as this disease is

prevalent in most maize-growing areas.
4.1 Impact of genetic variations in DH lines
derived from F1 and F2 populations

The significance of the mean sum of squares due to genotypes in

the three DH populations indicated the presence of a substantial

amount of genetic variability in the material considered for the

study. Further, pooled ANOVA across seasons in the three DH
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populations indicated the non-significance of check × season

interactions indicating the absence of genotype by environment

interactions. Thus, average adjusted disease scores across seasons

were considered for calculating the pooled mean which was used for

further genomic selection analyses.

The mean and standardized range of FSR disease scores of

DHF2s were greater than the DHF1 in both crosses. The range was

relatively wider in DHF2s compared to DHF1s indicating the

presence of higher variability among DHF2s than DHF1. These

results were expected due to an additional round of recombination

in F2 which contributed to an increase in the genetic variability in

DHF2s (Chase, 1969; Chalyk, 1994; Rotarenco et al., 2007; Geiger

et al., 2013; Sleper and Bernardo, 2016; Couto et al., 2019).

Estimating genetic variance is important in predicting the

response to selection, understanding the gene action of quantitative

traits and for effective planning of the breeding procedure (Choo,

1980). The genetic variation between DH lines gives the estimates of

additive components of FSR resistance. Within the DHF1 and DHF2s

of the cross VL1043 × CM212 genetic variance was higher in DHF2
than in DHF1. However, the genetic variance (Vg) in DHF2 of

VL121096 × CM202 cross, was higher than both DHF1 and DHF2
s of the cross VL1043× CM212. The differences in genotypic

variances between DHF1 and DHF2 could be attributed to an

additional round of recombination. Further, linkage causes the Vg

to differ between DHF1 and DHF2 lines. Coupling phase linkage leads

to larger Vg among DHF1 lines than among DHF2 lines, and it is

apparent by a decrease in the proportion of extreme types, a situation

characteristic of the breaking of coupling phase linkages. Whereas,

the repulsion linkage leads to a larger Vg among DHF2 lines than

among DHF1 lines regardless of the type of gene action and the

hidden genetic variance that is released upon the disruption of
FIGURE 7

Prediction accuracy for independent validation of DHF2 of VL121096 × CM202 using (a) DHF1 of VL1043 × CM212 and (b) DHF2 of VL1043 × CM212
as training sets.
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repulsion linkages, and this reflects higher proportions of extreme

genotypes in the DHF2s at both ends of phenotypic distribution in

that cross. A relatively higher magnitude of Vg in the DHF2s than in

DHF1 indicates the presence of repulsion linkages in the genetic

control of FSR resistance (Weir et al., 1980; Sleper and Bernardo,

2016). Generally, the F2 generation is the superior segregating

population to initiate DH production. Extrapolation of these results

to other elite line crosses should be cautioned since conclusions

drawn are specific to the germplasm used. Future studies using other

elite inbred lines should provide evidence for trends regarding the

superior type of segregating population employed in DH production.

The genotypic coefficient of variation and phenotypic coefficient

of variation are standardized estimates of variability at genotypic

and phenotypic levels, respectively. Both GCV and PCV estimates

owing to their unit independence, facilitate the better comparison of

variability. The estimates of PCV and GCV were lower in DHF1
compared to DHF2s. The higher variation of DHF2 compared to

DHF1 was probably due to the additional round of recombination

later than the prior (Snape and Simpson, 1981). Further, the close

correspondence between GCV and PCV indicated the lesser

influence of the environment on the expression of FSR disease

reaction, and selection based on the phenotype performance would

be effective (Chacko et al., 2023). All three populations recorded a

higher estimated broad sense heritability coupled with moderate to

higher genetic advance as per cent mean implying reward to

selection practiced.
4.2 Estimation of genomic estimated
breeding values and prediction accuracies

4.2.1 Effect of TP size on the accuracy of
predicted GEBVs

General consensus does not exist in the literature regarding the

optimum size of the TP to achieve high accuracy of predicted

GEBVs. However, acceptable GEBV prediction accuracy was

achieved in maize bi-parental populations using as few as 60

(Schaeffer, 2006) and 84 (Riedelsheimer et al., 2013) individuals.

Thus, the use of a DH population consisting of 336, 280 individuals

in F1 and F2 induced DHs of the cross VL1043 × CM212 and 94

individuals in F2 induced DHs of the cross VL121096 × CM202 in

the present study for predicting and validating GEBVs for FSR

resistance is justified.

Further, DH populations are frequently used for selection in

predominantly cross-pollinating crops like maize. Assessing the

accuracy of predicted GEBVs in such populations will directly affect

the efficiency of maize breeding. Population structure is of no

concern if DH populations are used for predicting and validating

GEBVs since all the individuals are true to type and completely

homozygous (Lorenzana and Bernardo, 2009). Hence, all three

crosses were used as TP, to understand the effect of TP size on

the accuracy of predicted GEBVs.

In the present study, the TP was progressively increased by

dividing the TP into a training and validation set in different
Frontiers in Plant Science 15
proportions, such as 60:40, 65:35, 70:30, 75:25 and 80:20 in

favour of TS and VS, respectively, keeping the marker density at

100% for optimizing the composition of training population size.

In DHF1 and DHF2 from the crosses VL1043 × CM212 and

VL121096 × CM202, the highest prediction accuracy was obtained

for the training and validation set proportion of 75:25. Whereas, in

DHF2 of the cross VL1043 × CM212 the highest prediction

accuracy was recorded for 80:20 proportion of training and

validation sets. Thus, the highest prediction accuracy was

recorded when nearly 75 - 80% of the individuals were used for

training the models in both the populations in five-fold cross

validation. Increasing trend of prediction accuracy was observed

for fusarium stalk rot resistance with increase in proportion of

training population from 20 to 80% (Song et al., 2024). Larger sizes

of training sets reduce the bias and reduce the variance of marker

effect estimates, thereby increasing the prediction accuracy. A small

training set size leads to overfitting, wherein the marker effects are

fitted to noise rather than true genetic signals, whereas the use of

larger training sets provides a better signal-to-noise ratio and

captures wider genetic variability, thereby improving the model’s

generalizability to new individuals (de los Campos et al., 2013).

Further, optimization of the training population size by Islam et al.

(2020) in cotton revealed that prediction accuracy was highest for

the 90:10 proportion of training and validation sets. Further, Zhang

et al. (2017) studied the effect of marker density and training set size

on prediction accuracy for three different agronomic traits like plant

height, days to anthesis, and grain yield under well-watered and

water stressed conditions and also observed an increase in

prediction accuracy with an increase in training set size and

marker density. A similar study by Fan et al. (2024) on flowering

time related traits in an association mapping panel of 379 DH lines

showed the highest prediction accuracy when 70% of the population

was used for model training. The optimum size of the training

population needed for training the model depends upon the genetic

architecture of the trait (Gilmour, 2007).

GBLUP and BayesB models outperform other prediction

models in terms of higher prediction accuracy and lower RMSE,

while dealing with structured populations. High relatedness among

individuals of a DH population enhances the GBLUP’s ability to

capture additive genetic variance through the genomic relationship

matrix effectively (Habier et al., 2007). Whereas, BayesB model

assumes only a smaller proportion of markers have large effects

while rest of the markers have zero effect on target trait. This model

conducts variable selection which aids in noise reduction from non-

informative markers, thereby enhancing the model’s performance

(Meuwissen et al., 2001).

4.2.2 Effect of marker density on the accuracy of
predicted GEBVs

It is reported that marker density impacts GEBV’s prediction

accuracy in genomic selection (Bernardo and Yu, 2007; Nakaya and

Isobe, 2012; Crossa et al., 2014). Higher prediction accuracies were

recorded for 100% marker density in DHF1 and DHF2 of the cross

VL1043 × CM212. Whereas, in DHF2 of a cross VL121096 ×
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CM202, higher prediction accuracy was documented for 89.63%

(173 markers) marker density. The increasing trend of prediction

accuracy estimation with increasing marker density could be due to

the fact that with more markers, the probability of identifying the

causative loci influencing the trait will increase. Further, dense

marker panel lead to accurate estimation of relatedness, improves

the efficiency of GEBV estimation and reduces the bias in

estimation of marker effects (Daetwyler et al., 2008).

In maize (Vivek et al., 2017) and barley (Lorenzana and

Bernardo, 2009) it was demonstrated that GEBV prediction

accuracy increased with increasing the number of markers in DH

populations. However, the increase was large only at low marker

densities. For example, the accuracy of predicted GEBVs for grain

protein content increased significantly with the number of markers

from 64 to 128; however, the accuracy did not change from 128 to

223 markers. Further, a study by Cao et al. (2021) showed that

higher marker density slightly improved prediction accuracy for tar

spot complex disease in maize; however, the increase was not

substantial. This suggests that a moderate number of well-

distributed markers may be sufficient for effective genomic

selection. However, as reported by several researchers in different

crops, the possibility of increasing the accuracy needs to be explored

by using large sizes of the TP. The marker density threshold might

be determined by the extent of linkage disequilibrium (LD) between

the markers and the QTL in the genome (Wang et al., 2017).

Strong LD between marker alleles and causal QTL in DH

populations allow localization of QTL to large intervals (10–20

cM) in the genome. Each marker allele is potentially in LD, with at

least one causal QTL controlling the target trait (Morgante et al.,

2018). Theoretically, the extent of LD in a population is a function

of effective population size (Syed, 1971; Wientjes et al., 2013). At a

low effective population size, the number of independent genome

segments is expected to be small; hence, fewer markers are sufficient

to mark all the genome segments (Goddard and Meuwissen, 2010;

Poland et al., 2012). The magnitude of prediction accuracy obtained

for FSR resistance in the present study was comparable to that

reported in the literature for northern corn leaf blight resistance

(0.11 – 0.29) in a cross validation (Technow et al., 2013).
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In the present study, the population size of the F2-derived DHs

of VL121096 × CM202 was relatively small. Since DHs are full-sib

progenies, it is possible that large segments share similar genome

sequences such that they share marker alleles identical by descent

(Poland et al., 2012), leading to marker redundancy as the number

of markers increases (Peixoto et al., 2016). Several studies have

demonstrated high GEBV prediction accuracy for many traits like

northern corn leaf blight resistance (Lohithaswa et al., 2024), grain

yield, plant height, and flowering time (Spindel et al., 2015) using

fewer markers. However, much research is required to optimize the

number of markers to realize maximum prediction accuracy and

genetic gain using GS in different training populations, their

composition and size, and prediction models.

Though the estimated heritabilities for FSR disease response

were high, prediction accuracies were low to moderate that could be

due to strong relatedness among the individuals (Liu et al., 2017),

smaller training population sizes (Crossa et al., 2025; Vieira et al.,

2025) and complexity of genetic architecture (Crossa et al., 2017;

Zhang et al., 2015). The trait with high heritability might be

influenced by rare alleles or alleles with non- additive genetic

effects, which are not well captured by the models that assume

additive genetic effects such as GBLUP (Jiang et al., 2018). Along

with that, relatedness between the training and breeding

population, marker density and genome coverage, genetic

diversity within the training population, linkage disequilibrium,

choice of prediction models, inclusion of genotype by environment

interactions and type of marker used also influence the prediction

accuracy (Crossa et al., 2017, 2014). Further, the training population

was derived by crossing only two complementary parents, genetic

variability for the target trait may not be effectively captured. It is

noted that diversifying the training population will increase the

robustness of GEBVs prediction thereby increasing the prediction

accuracy in genomic selection studies (Burstin et al., 2015). Lan

et al. (2020) found that, even for the traits with high heritability, the

accuracy of prediction depends mainly on whether the marker set

contains sufficient QTLs to contribute to the total variation of the

phenotypes, or whether all the related QTLs have been identified

from the marker set. Lozada et al. (2019), observed that the low
FIGURE 8

Correlation coefficients between phenotypic values of testcross progenies with selected inbred line's phenotypic values and GEBVs. ** and ***
indicate significance at 1 and 0.1 per cent, respectively.
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prediction accuracy was recorded even if the trait has recorded high

heritability when the markers used might not have efficiently

captured the LD between markers and the QTLs.

Predictive accuracy and reliability of genomic selection models

are assessed by cross validation. Further, cross validation also

ensures that the model is not overfitting to the training data and

it can be generalized to new set of genotypes. Efficiency of different

statistical models and machine learning approaches can be assessed

through cross validation. Along with this, size and composition of

training population can be optimized through cross validation

(Friedman et al., 2001). Five-fold cross validation was employed

to compare the efficiency of model performance under different

marker density and training population proportions. As the

number of individuals in the training population increases (less

folds) it reduces the variance at each fold. However, as the number

of folds increases, the variance of whole cross-validation estimate

reduces. However, among various k values in the k fold cross

validation, the five-fold and 10-fold cross validation schemes are

found to be more reasonable for estimating the marginal predictive

errors (Schrauf et al., 2021).

Prediction error RMSE displayed a declining trend with an

increase in marker density across all three DH populations,

highlighting the critical role of marker density on prediction

accuracy. At the lower marker densities, the prediction values

were less stable, as indicated by the larger RMSE values, likely

due to the insufficient capture of underlying genetic variance. As the

marker density increased above 70 per cent, RMSE estimates

decreased significantly in GBLUP and BayesB, indicating

improved stability and predictive ability with an increase in

marker density. The GBLUP model, which exploits the genomic

relationship matrix to model additive effects, is generally effective

when the population structure is more evident (Habier et al., 2007).

BayesB model’s sparse variable selection strategy can identify major

effect loci and ignore the non-informative markers, resulting in

enhanced robustness even under variable genomic marker densities

(Meuwissen et al., 2001). These findings are consistent with earlier

studies showing that both high marker coverage and appropriate

model choice are essential for achieving low prediction error and

high accuracy in genomic selection (Zhang et al., 2017).

Further, the average prediction accuracies obtained after

assessing the effect of training population size and marker density

differed greatly. The average prediction accuracy after optimizing

the marker density was relatively higher than that obtained for the

training population proportion. In a crop like maize with a high LD

decay, the margin of increase in prediction accuracy is higher for

marker density than the proportion of training population used

(Bellon et al., 2018; Moghaddam and Morrel, 2018; Crossa et al.,

2017). Further, for the polygenically controlled traits, especially in a

population with a low LD, increasing marker density has a positive

effect on prediction accuracy estimation (Habier et al., 2007).
4.3 LD decay and marker density

The effect of marker density on the accuracy of GS prediction is

the most researched element, and it is agreed that a higher number
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of markers typically produces higher accuracy up to a plateau

(Meuwissen et al., 2001; Habier et al., 2007; Daetwyler et al.,

2008; Zhang et al., 2015; Krishnappa et al., 2021). In the present

study, marker density employed was comparatively low, and hence,

linkage disequilibrium (LD) was considered to estimate the

optimum marker density, as it is known to play a crucial role in

determining the optimum marker density needed for genomic

selection. The relationship between the LD and marker density

directly impacts the accuracy of GEBVs and the efficiency of the

genomic prediction models (Liu et al., 2015). To address the effect of

LD decay on marker density, LD decay pattern of all the three DH

populations was carried out. According to the estimated LD decay

value, the marker density employed was sufficient for DHF2s from

the crosses VL1043× CM212 and VL121096 × CM202. The

optimum number of markers for effective estimation of prediction

accuracy was computed by dividing the average genetic map length

of these populations with their respective LD decay values (Kanaka

et al., 2023). The genetic map length of DHF2 of VL1043 × CM212

was 2156.36 cM and that of VL121096 × CM202 was 2100.18 cM

(Showkath Babu et al., 2024). Hence, the average genetic map length

of 2000 cM was considered to calculate the optimum number of

markers. It was evident that the estimated prediction accuracy of the

DH populations (DHF2s of VL1043 × CM212 and VL121096 ×

CM202) was the highest for the marker density of 85–100 per cent

indicating that the number of markers used in the present study was

sufficient. Whereas, the LD decay value of DHF1 from VL1043 ×

CM212 was very low, indicating the need for further increasing the

marker density. However, the prediction accuracy of this cross was

comparable with the prediction accuracy estimated for other

two populations.
4.4 Comparison of models’ performance

Across different marker densities, the Bayesian alphabets

(BayesC and BayesA) and Bayesian ridge regression (BRR) gave

comparatively higher prediction accuracies. Comparatively, better

performance of Bayesian models could be due to the basic

assumptions these models hold. Bayesian models effectively

distinguish between the truly important markers and background

noise (Gianola and de los Campos, 2008). The GBLUP model,

assumes that all markers have effect on trait variability, whereas the

Bayesian alphabets assume only a limited number of markers have

effect on trait variation. Common variance for all the markers was

considered by GBLUP, BayesC and BRR models however, other

Bayesian models namely BayesA, BayesB and BLASSO assume

specific variances for marker effects (Meher et al., 2022). The

comparative effectiveness of the genomic prediction models used

is largely influenced by the trait architecture as the models differ in

assumptions about the distribution of marker effects (Perez-

Rodriguez et al., 2012). It is proved that GBLUP performs well

for traits governed by many QTLs each with small effects. On the

other hand, the Bayesian alphabets perform well for traits governed

by few QTLs each of them having major effect on genetic variability.

Meher et al. (2022) proved that GBLUP model was the least biased
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in prediction accuracy estimation compared to various BLUP and

Bayesian model variants.
4.5 Independent validation of calibrated GS
model

The estimated prediction accuracy was highest in the

independent validation when DHF1 of the VL1043 × CM212 was

used as a training set (0.24). The prediction accuracy of 0.17 when

DHF2 of the VL1043 × CM212 was used as a training set. These

results are only indicative as they are based on fewer individuals in

TP and markers and five-fold cross-validation. Dependable results

could be obtained based on independent validation in a large

number of cross-populations (Osorio et al., 2021).
4.6 Evaluation of test cross progenies

Assessing the test cross progenies’ performance offers valuable

insights into the translation of genetic predictions into phenotypic

expressions, hence providing real-time validation of the practical

applicability of genomic selection models (Crossa et al., 2014).

Furthermore, for breeding programs to be successful, it is

imperative to consider the field performance of the lines selected

based on GEBVs.

A significant positive correlation of the GEBV’s with the

phenotype of the selected DH lines, and test cross progenies

derived by crossing with the testers MAI105 and SKV50 indicated

the effectiveness of genomic selection model in identifying the

potential lines with resistance to FSR disease. Correlation

coefficient can be used as a measure to assess efficiency and

robustness of the selection model (Heslot et al., 2012; Schopp

et al., 2017). However, in the small sample size random effects

can influence the observed correlation leading to over or

underestimation of prediction accuracy (Daetwyler et al., 2008).
5 Conclusion

The current investigation demonstrated the application and

feasibility of genomic selection for genetic improvement in maize

for fusarium stalk rot resistance. The training population size and

marker density were optimized by testing different proportions of

training and validation sets and different marker densities. The

estimated descriptive statistics and genetic variability parameters

were higher in DHF2s than in DHF1 populations. Higher prediction

accuracy was recorded for 75:25 proportions of training and

validation sets and 80 - 100% marker density. Further,

independent validation was performed to assess the robustness of

the developed models. We showed that it could be possible to get

good prediction accuracies with the optimum population size and

marker density, instead of the larger population. Further, the test

cross hybrids generated using the DH lines selected from different
Frontiers in Plant Science 18
disease response classes displayed a higher correlation coefficient

with the phenotypic response and GEBVs of selected lines.
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