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Fusarium stalk rot (FSR), caused by Fusarium verticilliodes, is a serious disease in
maize. Resistance to FSR is complexly inherited. Thus, an investigation was
carried out to predict and validate the genomic estimated breeding values
(GEBVs) for FSR resistance. Three doubled haploid (DH) populations induced
from F; and F, of the cross VL1043 x CM212 and F, of the cross VL121096 x
CM202 were used in the current study. Six different parametric models
(Genomic-Best Linear Unbiased Predictors (GBLUP), BayesA, BayesB, BayesC,
Bayesian least absolute shrinkage and selection operator (BLASSO), and Bayesian
Ridge Regression (BRR)) were employed to estimate the prediction accuracy.
Further, the accuracy of predicted genomic estimated breeding value (GEBV) for
FSR resistance was assessed using five-fold cross-validation and independent
validation. The training population (TP) size and marker density were optimized
by considering different proportions of training set (TS) and validation set (VS) and
varying marker density from 40 to 100%. The estimates of descriptive statistics
and genetic variability parameters, which include mean, standardized range,
genetic variance, phenotypic and genotypic coefficients of variations, broad
sense heritability, and genetic advance as per cent mean (GAM), were relatively
higher in DH F;s than those in DH Fjs. Prediction accuracies displayed an
increasing trend with an increase in the proportion of training set size and
marker density in all three DH populations. The TS:VS proportion of 75:25 in
DH F; (VL1043 x CM212) and DH F, (VL121096 x CM202), and 80:20 in DH F; of
VL1043 x CM212 resulted in greater prediction accuracy than other TS:VS
proportions. Study of linkage disequilibrium (LD) decay pattern across all the
populations indicated that the humber of markers employed were sufficient to
conduct a genomic prediction (GP) study in two DH F, populations of crosses
VL1043 x CM212 and VL121096 x CM202. Prediction accuracies of 0.24 and 0.17
were recorded for FSR resistance in independent validation when DH F, of cross
VL121096 x CM202 was used for validation and DH F; and DH F,s from the cross
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VL1043 x CM212 as training sets. A significant positive correlation of FSR
resistance between the DHs selected based on their GEBVs and those selected
based on test cross performance indicated the efficiency of genomic

prediction models.
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genomic selection

1 Introduction

Maize (Zea mays L.) is considered vital to the world’s
agriculture and is a treasured resource that provides food, fodder,
and industrial raw materials (Agrawal et al, 2018). The annual
growth rate of maize production (1.6%) in the current climate
change years is insufficient to meet the global demands projected for
2050 (Ray et al., 2013; Erenstein et al., 2022). Maize is affected by as
many as 130 pests and about 110 diseases globally (Ray et al., 2013).
The diseases of maize include seedling blights, foliar diseases,
downy mildews, fusarium stalk rots, wilts, rusts, smuts, and ear
rots. Among all maize diseases, post-flowering stalk rot (PFSR) is
considered the world’s most destructive disease in recent years and
is widely distributed in all maize agro-ecologies (Showkath Babu
et al., 2020). PFSR is a complex disease caused by many fungi
involved in decaying the pith, resulting in pre-mature wilting of the
plants. Pathogens such as Fusarium verticilloides (Fusarium stalk
rot), Macrophomina phaseolina (Charcoal rot) and Harpophora
maydis (Late wilt) are commonly associated with PFSR. Fusarium
stalk rot (FSR) caused by the pathogen Fusarium verticilioides
(Saccardo) Nirenberg (formerly called Fusarium moniliforme)
(Seifert et al.,, 2003) is considered to be a serious threat to maize
cultivation in the world including India. In India, the disease is
prevalent in most maize-growing areas, where water stress occurs
after the flowering stage (Singh et al., 2012). The incidence of FSR
after the flowering stage and before physiological maturity results in
reduced yields as affected plants die prematurely, producing light-
weight ears with poorly filled kernels. Plants infected with stalk rot
lodge easily, which makes harvesting difficult and ears are left in the
field while harvesting. The disease incidence ranges from 10 to 42%
(Desai et al.,, 1992; Kumar et al., 1998; Harlapur et al., 2002) in
major maize-growing areas. Additionally, the FSR can cause a
reduction of 18.70% in cob weight and 11.20% in 100 grain
weight in the infected plants (Cook, 1978).

Among the various strategies for managing FSR disease in
maize, breeding for resistance is the most practical, cost-effective
and eco-friendly approach (Jeevan et al., 2020; Showkath Babu et al.,
2020). The quantitative nature of FSR resistance (Szoke et al., 2007;
Khokhar et al., 2014; Archana et al., 2019; Showkath Babu et al.,
2020, 2024) has resulted in a rather slow and limited genetic gain
per unit of time through conventional plant breeding (Enrico Pe
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et al., 1993; Yang et al., 2004; Mir et al,, 2018). The difficulties of
conventional breeding favoured the development and utilization of
genomic tools in breeding complex traits like FSR resistance.

Marker assisted selection has proved effective to improve only
traits controlled by one or a few large-effect loci. However, the FSR
resistance is controlled by both large and small effect quantitative trait
loci (QTLs) (Rashid et al., 2022; Showkath Babu et al., 2024). Thus,
capturing both large and small effect QTLs is crucial for developing
improved maize hybrids with enhanced FSR resistance (Dekkers and
Hospital, 2002). At this juncture, the genomic selection (GS) was
proposed to capture both small and large effect QTLs (Meuwissen
et al,, 2001; Bernardo and Yu, 2007; Mayor and Bernardo, 2009).

Genomic selection is defined as the selection of genotyped-only
breeding population (BP) individuals based on their GEBVs
predicted using marker effects estimated by fitting statistical models
calibrated in both genotyped and phenotyped training population
(TP) (Meuwissen et al., 2001). Genomic selection models work well in
terms of high prediction accuracy if the individuals of the training
and breeding population are related. A diverse training population,
including both related and unrelated genotypes, can lead to more
broadly applicable prediction models. Individuals from the same
family or biparental cross can also be used as both the training and
breeding populations although population structure significantly
impacts genomic prediction accuracy (Riedelsheimer et al, 2013;
Zhang et al., 2015, 2017; Schopp et al., 2017; Brauner et al., 2020).
Genomic prediction in biparental populations, has been proved to be
a very effective scheme for identifying superior lines in plant breeding
programs. This approach powers the strong genetic relationship
between the training and prediction sets, which maximizes linkage
disequilibrium between markers and quantitative trait loci (QTL). It
allows for accurate prediction of traits even with limited marker
density and relatively small training populations (Riedelsheimer et al,,
2013). To perform GS, TP is used to train or calibrate a statistical
model to estimate the marker effects. The calibrated/trained statistical
model is then used to predict GEBVs of non-phenotyped but
genotyped-only BP individuals. The GEBVs of individuals of the
breeding population are predicted as the sum of the effects associated
with all marker alleles irrespective of whether they are linked or
unlinked to QTLs controlling target traits. Thus, the GS is described
as MAS without QTL mapping (Bernardo and Yu, 2007; Mayor and
Bernardo, 2009).
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The effectiveness of GS depends on the accuracy of predicted
GEBVs, which in turn depends on the training population (TP)
composition and its size as well as its genetic relatedness with the BP
(Wang et al., 2017). Other factors influencing the accuracy of GEBV
are the statistical model used for prediction, the density of markers
and the heritability of target traits (Bernardo and Yu, 2007;
Bernardo, 2009; Goddard and Meuwissen, 2010; Massman et al.,
2013; Song et al., 2018).

The use of genomic tools in combination with doubled haploids
(DH) technology, which results in the completely homozygous lines
in the quickest possible time has been suggested to enhance the
genetic gain per breeding cycle and unit time. The DH offer
several advantages over mapping populations, through the
fastest attainment of complete homozygosity, lack of residual
heterozygosity and accurate phenotyping compared to families in
early segregating generations (F; or F;) (Yan et al, 2009). High
genetic variance in DH lines is directly proportional to response to
selection (Stich et al.,, 2005; Bordes et al., 2007; Mayor and
Bernardo, 2009). The DH lines also offer opportunities for
improving selection gain and increasing the precision and
accuracy of quantification of genetic x environment interactions
for identifying the genomic regions for key traits (Mansur et al,
1996). DH lines can be induced from F, or F, as base populations,
which depends upon various factors including time needed to create
DH populations, amount of recombination and ability to select
superior plants before haploid induction (Bernardo, 2009;
Showkath Babu et al., 2023).

The use of the most appropriate filial generations (F,/F,) to
induce DH and optimized parameters of genomic prediction is
expected to result in rapid and greater genetic gain for target traits.
Thus, the current investigation was framed to predict and validate
the GEBVss for FSR resistance in DH populations induced from F,
and F, populations and to optimize the size of the training
population and marker density to be used to attain the highest
prediction accuracy.

2 Materials and methods
2.1 Phenotypic data

2.1.1 Basic genetic material

The primary material for the study consisted of two highly
susceptible inbreds namely VL1043 (CLQRCYQ59-B*4) and
VL121096 (NEI9008-B*12) and two moderately resistant inbreds
CM212 (USA/ACC No.2132 (Alm)-3-2-f-#-13-#-®-bulk) and
CM202 (C121, Early). These inbred lines were procured from the
International Maize and Wheat Improvement Center (CIMMYT),
Asia Centre for Maize, Hyderabad. The inbred lines were selected
based on the previous year’s disease reaction from artificial disease
screening data against FSR (Archana et al., 2021.

2.1.2 Development of DH lines
The methodology for material development was described in
the earlier study by Showkath Babu et al. (2023). The 336 DHF,
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lines derived from the cross VL1043 x CM212 along with parents as
checks were screened for their response to FSR by artificial
inoculation during the winter season of 2018-19, the rainy season
of 2019 and the winter season of 2019 - 20. Similarly, the DH lines
(280 and 94) derived from F, plants of the crosses VL1043 x CM212
and VL121096 x CM202 were phenotyped during the rainy season
of 2019 and winter season of 2019-20. Each DH line was planted in
arow of 2 m in length with an inter-row spacing of 0.6 m and inter-
plant spacing of 0.2 m at the College of Agriculture, V.C. Farm,
Mandya (Latitude: 12°31'21.94” N; Longitude: 76°54'24.16” E;
Altitude: 729 meters above mean sea level), in an augmented
design (Federer, 1961) with checks replicated twice within
each block.

2.1.3 Phenotyping DH lines for responses to FSR

The procedure for isolation and multiplication of Fusarium
verticilloides pathogen was followed as given by Hooda et al. (2018)
and Showkath Babu et al. (2023). To all the plants, established in the
field 2 ml of the inoculum containing 1x10° spores/ml was injected
diagonally using the syringe after pricking and making a 2 cm hole
with the help of a jabber to the second internode from the base at 65
and 75 days after sowing to ensure effective and uniform disease
incidence. After inoculation, irrigation was withheld for four days to
enable proper uptake of inoculum by the plants and all the
recommended production practices were followed except the
spray of fungicides to maintain the plants after inoculation.
Disease screening was carried out following the procedure
developed by Hooda et al. (2018).

2.1.4 Sampling and data recording

For disease phenotyping, the stalks were split open before
drying, i.e., 30 days after inoculation. Disease severity and
intensity were recorded on individual plants of each line using a 1
- 9 rating disease scale (Table 1) in all the seasons (Supplementary
Tables la-c). The scoring pattern was based on the spread of
discoloration inside the maize stalks from the point of inoculation
(Payak and Sharma, 1983). Higher extent of discoloration implies
higher rating of FSR incidence.

2.1.5 Phenotypic data analysis

The disease score obtained on 336 DHF;s and 280 DHF,s derived
from the cross VL1043 x CM212, and 94 DHF,s from the cross
VL121096 x CM202 for individual seasons were subjected statistical
analyses using Augmented design. Each block within a season
contained unreplicated test entries and a set of replicated checks.
This structure was used to efficiently evaluate the large number of DH
lines with limited replication. Given the distinct replication structure
and analytical objectives of the test entries and the checks, two
complementary statistical approaches were employed.

2.1.5.1 Analysis of variance

Disease scores of each of the DH lines in individual seasons
were analysed using augmentedRCBD package (Aravind et al,
2023) of ‘R’ software version 4.3.1. Further, pooled augmented
analysis was done to account for the variability and environmental
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TABLE 1 Disease rating scale for Fusarium stalk rot (Payak and
Sharma 1983).

Disease Disease
Symptoms :
score reaction
1 Healthy or slight discolouration at the site Highly
of inoculation resistant
Up to 50% of the inoculated internode .
2 Lo Resistant
is discoloured
5 51-75% of the inoculated internode Moderately
is discoloured resistant
4 76-100% of the inoculated internode Moderately
is discoloured susceptible

Less than 50% discolouration of the i
5 K K Susceptible
adjacent internode

6 More than 50% discolouration of the Highly
adjacent internode susceptible
Highl
7 Discolouration of three internodes '8 'y
susceptible
Highl:
8 Discolouration of four internodes '8 Y
susceptible
9 Discolouration of five or more internodes and Highly

premature death of plant susceptible

influence, the linear model for the same is given below (Merrick and
Carter, 2021) in Equation 1.

Yijw =u + Block; + Check; + Env;+ Block;

X Env; + Check; x Env; +&j (1)

Where,

Y; - phenotypic value of the i block and j* check in the
k™ environment

u- overall mean

Block;- random effect of the i block with the distribution Block
~N (0’ G%Slock)

Check; - fixed effect of the " replicated check cultivar

1" environment with the distribution

Env; - random effect of the
Env ~N (0, 6%,,) and

&;j- residual errors with a random normal distribution of e~N
0, 67)

2.1.5.2 Estimation of genetic variability parameters

Phenotypic coefficient of variability (PCV), Genotypic co-
efficient of variability (GCV), heritability (broad sense) and
genetic advance and genetic advance as per cent of mean were
estimated as follows,

2.1.5.2.1 Phenotypic coefficient of variation (PCV)
The formula for computation of PCV is given in Equation 2.

VO
PCV(%) ==

x 100 )
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Where,
Gj’_ Phenotypic variance
X - Overall mean

2.1.5.2.2 Genotypic coefficient of variation (GCV)
The formula for computation of GCV is given in Equation 3.

Jor
GCV(%) = x 100 (3)

Where, (5;— Genotypic variance

X - Overall mean

PCV and GCV were classified as low, moderate and high as
suggested by Robinson et al. (1949).

Broad sense heritability (H) was estimated using the following
formula given by Hanson et al. (1956) as given in Equation 4.

0.2
H(%):ngxloo (4)
p

Where, G; = Genotypic variance

0, = Phenotypic variance

Expected Genetic advance (GA) was figured by the following
formula given by Johnson et al. (1955) as given in Equation 5.

GA=k x hyx ,/o} (5)

Where, k = selection differential (2.06) at 5% selection intensity
and 0"3 = phenotypic standard deviation

The expected genetic advance as a per cent of the mean was
estimated as given in Equation 6.

A
GAM = GT % 100 (6)

Where GA is the genetic advance and u is the general mean.

2.1.5.3 BLUEs and BLUPs calculation
2.1.5.3.1 BLUEs estimation

The best linear unbiased estimates (BLUEs) for the unreplicated
DHF, and DHF, populations were obtained using a mixed linear
model present in Ime4 package (Bates et al, 2015) in R software
version 4.4.1. the genotypes and seasons were treated as fixed effects
and blocks nested within season was modeled as random effect to
account for the environmental variation. The genotype x season
interaction was also included in the model as a fixed effect to
account for the differential genotypic responses across seasons. The
model used for the BLUEs estimation is given below in Equation 7..

Yijk =u + Si + Bj @ * Gk+ (kasi) + 'gijk (7)

Where, Yj; is the disease score, f1 is the overall mean (fixed), S;
is the fixed effect of season i, Bj(i) is the random effect of block j
within season i, Gy is the fixed effect of genotype k, Gy x §; is the
fixed effect of genotype by season interaction, and g; is the
residual error.
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2.1.5.3.2 BLUPs estimation

For the unreplicated DHF; and DHF,s, best linear unbiased
predictors (BLUPs) were estimated across seasons using a linear
model implemented in the package Ime4 (Bates et al., 2015) of R
version 4.4.1. BLUPs maximize the correlation between the
predicted and true genetic values and account for the variance
components and interaction effects, improving accuracy (Beavis
and Mahama, 2023).

The linear model used for across seasons BLUPs estimation is
given below in Equation 8.

Yig = + 8 + By + G+ (G xS) + & (8)

Where, Yijk is the disease score, it is the overall mean, §; is the
fixed effect of season i, Bj(,-) is the random effect of block j within
season i, Gy is the random effect of genotype k, Gy x S; is the
random effect of genotype by season interaction, and & is the
residual error.

BLUPs estimate both fixed and random effects, whereas BLUEs
estimate only fixed effects and do not shrink estimates toward the
mean. This lack of shrinkage can lead to overestimation,
particularly in unbalanced datasets or those with small sample
sizes (Henderson, 1975). However, the correlation between
BLUEs and BLUPs was high (>0.90) across all three DH
populations, and genotype rankings remained largely unchanged.
Therefore, BLUP-based genomic prediction was carried out in
this study.

The choice to implement two separate statistical approaches
was based on the design structure and analytical objectives. The
replicated check cultivars allowed the use of traditional ANOVA to
evaluate standard genotype performance and environmental
variability. In contrast, the unreplicated DH lines required a
mixed model to accurately predict genotypic values while
accounting for random effects and genotype x season interaction.

2.1.5.4 Genotyping of doubled haploid lines

Seeds of three DH populations, i.e. F; and F, induced (VL1043
x CM212) and F, induced (VL121096 x CM202) were subjected to
genotyping using Corteva AgriScience Proprietary-Single
Nucleotide Polymorphisms (SNPs) markers through Illumina
Infinium XT assay. Polymorphic markers between parents were
chosen for genotyping the DH progenies. From the 2000 Corteva
proprietary markers, a total of 198, 199 and 193 SNPs
(Supplementary Tables 2a-c) remained after filtering for call rate
of > 0.90, minor allelic frequency (MAF) > 0.05 and heterozygosity
of > 0.1, in DHF;, DHF, and DHF, progenies of the crosses VL1043
x CM212 and VL121096 x CM202, respectively were used in the
current study.

2.1.5.5 Prediction and validation of genomic estimated
breeding values (GEBVs) for FSR resistance
2.2 Prediction models

The material consisted of 336 DHF;s and 280 DHF,s derived

from cross VL1043 x CM212 and 94 DHF, lines from the cross
VL121096 x CM202. Adjusted average FSR disease scores from
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individual seasons were considered and pooled to get the disease
scores across the seasons and this phenotypic data along with the
genotypic data were used in all the prediction studies. Six
parametric models that include Genomic BLUP (VanRaden,
2008), BayesA (Meuwissen et al, 2001), BayesB (Spiegelhalter
et al,, 2002), BayesC (Spiegelhalter et al., 2002), Bayesian ridge
regression (BRR) (Shi et al., 2016) and Bayesian LASSO (Park and
Casella, 2008) models (Perez et al., 2010) were used to estimate the
marker effects using BGLR () function with 1,00,000 iterations and
20,000 burnins in each fold of a five fold cross validation in BGLR
package (Perez and de Los Campos, 2014) of ‘R’ software
version 4.3.1.

2.2.1 GBLUP

It is the technique that utilizes the genomic relationship among
individuals to estimate the genetic merit of an individual. It is based
on mixed model equations (MME) and best linear unbiased
predictors (BLUPs). This model assumes additive genetic effects
follow a normal distribution. The GBLUP model when all the

markers are considered random is represented as in Equation 9.

y = ul, + Zg + e 9)

Where y is the value of the trait, i is the overall mean, g is a
vector of additive genetic effects estimated using markers
considered random, Z is the design matrix associating g with
response variables, g is the genomic relationship matrix, and e is
a residual effect, with the following distributions. The G matrix was
computed by following VanRaden’s (2008) method. The formula
for the same is given in Equation 10.

zZ

G = (10)

2>pi(1 =p))
Where, G is the genomic relationship matrix, zz' measures the
genomic covariance between the individuals and p; is the allelic

frequency.

G~N(0, Goy),

e~N(0, Ro?),

This model works best for polygenic traits with small individual
marker effects.

2.2.2 Bayesian alphabet models

These methods involve two major steps, i) estimating marker
effects using the genotypic and phenotypic data of the training set
utilizing different models and ii) using the estimated marker effects
to get the GEBVSs of the individuals in the validating set or breeding
population. All these Bayesian statistical models differ in their prior
assumptions of marker effects. The statistical representation of
BayesA, BayesB, BayesC, BLASSO, and Bayesian Ridge Regression
(BRR) considering all the marker effects as fixed is, given in the
Equation 11, below.

y = ul, + XB+ e (11
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Where, y = value of the trait, i = overall mean, X = genotypic
matrix containing values 0, 1, and 2, B = random vector of marker
effects and e = random vector of residuals with e ~ N (0, I,, °).

The Bayesian alphabets differ in their prior distributions of
variances of marker effects (). BRR, and BLASSO assume a normal
distribution, while BayesA, BayesB, and BayesC assume a scaled t-
student distribution, spike-lab with the scaled t-student and spike-
lab with the normal distribution for the variances of marker
effects, respectively.

Further, the GEBV's were calculated using the formula, as given
in Equation 12, below.

gi =207Z; m; (12)

Where, ‘w1’ is the vector of random marker effects, Z © is the
incidence matrix m, 7’ is the specific allele of the i SN'P marker on
individual " and it denotes the allele or genotype score for a given
SNP in an individual and ‘%’ is the total number of markers.

The predicted GEBVs were cross-validated using five-fold
cross-validation, wherein the entire population was divided into
five folds. The prediction accuracy was estimated by considering
1,00,000 iterations and 20,000 burnins in each fold of a five-fold
cross-validation.

2.2.2.1 Computation of prediction error

Random mean of squared errors (RMSE) was computed to
estimate the prediction error between the observed and estimated
prediction abilities after each round. RMSE is a commonly employed
metric to summarize the error (Hastie et al., 2009). It gives a single
measure that reflects the average magnitude of the prediction errors
across the folds, penalizing larger errors more heavily. It is mainly
used in comparing the predictive performance of different models.

The formula for estimating the predictive error is given in
Equation 13.

RMSE = \/%Ele(yi -7 (13)
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Where y; is the observed value, y; is the predicted value, and n is
the total number of observations across all the folds. Lower RMSE
values indicate better predictive accuracy.

2.3 Evaluation of the accuracy of predicted
GEBVs of individuals of VS

The GS effectiveness depends on the accuracy of predicted GEBVs
and it is quantified as the correlation (¢ g) between predicted GEBV's
(¢) and true breeding values (g). As true breeding values are not known
a prior, correlation (ryy) between predicted GEBVs (y) and observed
phenotype values (y) is the estimated predictive ability (PA). The
GEBVss prediction accuracy is then estimated as the ratio of PA to the
square root of heritability (h) (Delkers, 2007). Thus, the accuracy of
predicted GEBVs was computed as in the Equation 14, given below.

”
reg = % (14)

2.4 Comparing strategies of training
population size and marker density

The effect of marker density on the accuracy of GEBVs was
assessed through five-fold cross-validation. Various proportions of
training and validation set size are used for optimization keeping
marker density constant (100%) as given in Figure 1. This
procedure was carried out with 1,00,000 iterations such that
GEBVs of all individuals of TP were predicted for each tested
proportion of training and validation sets.

2.5 Estimation of LD decay

Pattern of LD decay in all the three populations was estimated
using TASSEL v 5.2.95 (Bradbury et al., 2007) and fitted the LOESS
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TABLE 2A Analysis of variance of mean FSR disease scores of DH lines
induced from F; of the cross VL1043 x CM212 in individual seasons.

Mean sum of squares

Source
of variation Degrees s1 2
of freedom
 Genotype 337 170% 1.40 147
(ignoring blocks)
Genotype: Check 1 235497 | 297.01* | 303.60**
Genotype: Test 335 0.99%* 0.41 0.50*
Genotype: 1 S64% | 38257 | 22,07
Test vs. Check ' ’ ’
Blocks
(eliminating 16 0.35 1.25 0.34
genotypes)
Residuals 16 0.16 1.07 0.20

S1, Winter season of 2018-19; S2, Rainy season of 2019; S3, Winter season of 2019-20.
* and ** indicate significance at 5 and 1 per cent, respectively.

curve using the ggplot2 package (Wickham, 2016) available in R
software version 4.4.3. LD decay was estimated by keeping a
threshold value of r* value of 0.2 as it is considered biologically
meaningful but not due to background noise (Flint-Garcia et al.,
2003; Remington et al., 2001).

2.6 Independent validation strategy

The marker effects estimated from the prediction models and
pooled disease score data from the DHF, and DHF, populations of
the cross VL1043 x CM212 using six parametric models were used
to predict the FSR disease resistance of individuals of the DHF,
population of the cross VL121096 x CM202 (Supplementary
Figure 1). To further assess the accuracy of the prediction model
based on BRR as the estimated prediction accuracy was relatively

10.3389/fpls.2025.1631408

higher for this model across the populations, 63 random DH lines
from all the disease response classes (5 resistant, 34 moderately
resistant, 19 moderately susceptible and 5 susceptible) were test
crossed with the testers (MAI105 and SKV50) (Supplementary
Figure 2). The test cross progenies along with the inbreds were
evaluated for their disease response. Correspondence between the
mean disease score of the test cross progenies with the estimated
genomic assisted breeding values of the inbreds was assessed by
Pearson’s correlation coefficient.

3 Results
3.1 Phenotypic variations

3.1.1 Analysis of variance

The FSR response of DH lines (DHF; and DHEF,) in the
individual seasons were subjected to ANOVA (Tables 2A, 2B).
The sum of squares due to genotypes was significant in all the
seasons in all the DH populations, except in the rainy season of
2019 in DHF, of VL1043 x CM212. Pooled ANOVA across all
seasons for all the three DH populations is given in Table 3. Non-
significance of the mean sum of squares attributable to check with
season interactions indicated the absence of GEI (Genotype by
Environment Interactions). Thus, average adjusted means across
the seasons were considered for calculating pooled mean and it was
considered for further analysis.

3.1.2 Descriptive statistics, genetic variability
parameters and comparison of DH lines derived
from F, and F, populations

The descriptive statistics and genetic variability parameters for
the response to FSR in DHF; (VL1043 x CM212) and DHF,s
[(VL1043 x CM212) and (VL121096 x CM202)] are presented in
Table 4 and Figure 2.

TABLE 2B Analysis of variance of mean FSR disease scores of DH lines induced from F; of the cross VL1043 x CM212 and VL121096 x CM202 in

individual seasons.

Source of variation

DHF; of VL1043 x CM212

Mean sum of squares

DHF; of VL121096 x CM202

Degrees s1 Degrees s1
of freedom of freedom
Genotypes
. . 281 1.44%* 1.42%* 95 221 2.28%*
(ignoring blocks)
Genotypes: Check 1 190.01%* 208.19** 1 132.95%* 120.54**
Genotypes: Test 279 0.63** 0.58** 93 0.62* 0.88**
Genotypes: Test vs. Check 1 37.40%* 29.77%* 1 19.80%* 14.33**
Blocks
. 13 0.19 0.10 8 0.21 0.09
(eliminating Genotypes)
Residuals 13 0.08 0.18 8 0.16 0.15

S1, Rainy season of 2019; S2, Winter season of 2019-20
* and ** indicate significance at 5 and 1 per cent, respectively.
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TABLE 3 Pooled ANOVA across seasons for the DHF; and DHF; of the cross (VL1043 x CM212) and DHF; of the cross (VL121096 x CM202).

Mean sum of squares

DHF; (VL1043 x CM212) Df DHF; (VL1043 x CM212) DHF; (VL121096 x CM202)
Blocks 16 1.52 13 2.93* 8 1.57
Checks 1 58.740¢ 1 92.75%* 1 34.16%*
Seasons 2 27.13*%¢ 2 1.13 1 0.13
Block x season 32 17.34 26 0.14 8 0.23
Check x Season | 2 7.37 2 0.36 1 0.20
Residual 1056 1483.99 879 121 204 1.87

Df, Degrees of freedom.
* and ** indicate significance at 5 and 1 per cent, respectively.

The average standardized range for FSR disease response in
DHF, of VL1043 x CM212 across three cropping seasons was 1.18
while that of DHF, of VL1043 x CM212 and VL121096 x CM202
was 1.32. Further, the average genetic variance (Vg) across the
seasons in DHF,; and DHF, of VL1043 x CM212 were 0.44 and
0.48, respectively. However, DHF, of VLI21096 x CM202, the
recorded average genetic variance was 0.49.

The estimated genetic parameters viz., phenotypic (PCV) and
genotypic coefficient of variations (GCV) were moderate in all three
DH populations across seasons. The average PCV across seasons in
DHF, and DHF, of VL1043 x CM212 were 15.77 and 17.47%,
respectively. Whereas, in DHF, of VL121096 x CM202 average
PCV was 18.78%. Similarly, the average GCV estimates were 14.04,
15.42 and 16.97% in DHF; and DHF, of VL1043 x CM212 and
DHEF, of VL121096 x CM202, respectively. Broad sense heritability
estimates were high in all three DH populations, with values being
70.0, 72.0 and 75.0% in DHF, and DHF, of VL1043 x CM212 and
DHEF, of VL121096 x CM202, respectively. Whereas the genetic
advance as a per cent mean was moderate (in DHF; of VL1043 x

CM212 during the winter season of 2019 - 20) to high across the
seasons (Table 4).

3.2 Prediction accuracy for FSR resistance
using five-fold cross validation

Genomic prediction analysis was performed employing BLUP
values for fusarium stalk rot disease response. The BLUEs and
BLUPs estimates for DH individuals across all three DH
populations is given in Supplementary Tables 3a-c.

3.3 Effect of training population size on
prediction accuracy in cross VL1043 x
CM212

The DHF, from the cross VL1043 x CM212 consisted of 336
individuals. Prediction accuracies obtained for various proportions

TABLE 4 Descriptive statistics and estimates of genetic components in maize doubled haploids induced from F; and F, of VL1043 x CM212 cross and

F, of VL121096 x CM202 for FSR.

DHF; (VL1043 x CM212)

DHF; (VL1043

DHF, (VL121096

Genetic parameters x CM212) x CM202)
S2 S3

Mean 437 4.43 4.46 438 452 4.44 452
Range 2.84-7.03  250-759 232-850  3.15-875 275 - 8.90 235-7.52 2.10 - 8.69
SR 1.04 114 138 1.27 1.36 116 1.45
CV (%) 8.04 12.90 9.88 6.45 9.17 8.64 8.34
Vg 0.53 0.48 030 0.55 0.40 0.46 0.53
PCV (%) 16.99 14.44 15.89 18.17 16.77 17.72 19.85
GCV (%) 15.28 14.13 1231 16.93 13.92 15.28 18.86
H? (%) 70.0 71.0 69.0 71.0 73.0 74.0 76.0
GAM (%) 34.49 2156 19.68 3254 23.83 27.17 35.41

S1, Winter season of 2018-19; S2, Rainy season of 2019; S3, Winter season of 2019-20

SR, Standardized range; CV, Coefficient of variation; PCV, Phenotypic Coefficient of variation; GCV, Genotypic Coefficient of variation; H?, Broad sense Heritability; GAM, Genetic Advance as

percent mean.
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FIGURE 2

Box whisker plots representing mean disease scores for Fusarium stalk rot reaction of DH populations [(A) DH derived from F; of VL1043 x CM212,
(B) DH derived from F, of VL1043 x CM212 and (C) DH derived from F, of VL121096 x CM202].

of training and validation sets are given in Figure 3a. At a 60 TS:40
VS proportion, prediction accuracies estimated from BayesA and
GBLUP were similar; however, the estimates were marginally lower
in other models. Whereas, at a 65 TS:35 VS proportion, BRR and
BayesB models recorded a relatively higher prediction accuracy
than in BLASSO, BayesC, and GBLUP. Almost similar magnitudes
of prediction accuracies were recorded by all six parametric models
at a 70:30 training and validation set proportions. At the 75 TS:25
VS proportion, the highest prediction accuracy was documented by
BayesA, followed by BayesC, BRR, GBLUP, BayesB, and BLASSO.
The training and validation set proportion of 80:20, recorded
comparatively higher prediction accuracy for the BayesB, BayesC
and BRR models while the prediction accuracies from the rest
models were marginally lower.

The 75:25 proportion of the training and validation set
exhibited the highest average prediction accuracy of 0.25 across
different TS: VS proportions and the BRR model recorded the
highest average prediction accuracy of 0.24.

DHF, from the cross VL1043 x CM212 consisted of 280
individuals. The prediction accuracies recorded for 60:40
proportion of training and validation sets was relatively higher for
BayesB followed by BayesC and BLASSO while prediction
accuracies from the remaining models were less (Figure 3b). The
estimated prediction accuracies for the 65:35 proportion were
almost similar across all the six prediction models. Whereas, at
70:30 proportions of training and validation sets, the highest
prediction accuracy was documented by BayesC and the lowest
was by BLASSO. At 75 TS:25 VS proportions, the estimated
prediction accuracies were higher in BayesA, BayesB, BayesC, and
relatively lower in BLASSO, BRR, and GBLUP.

However, at 80:20 proportions of training and validation sets
the average prediction accuracy recorded across all the six models
was the highest (0.25). The highest prediction accuracy was
recorded by BRR, followed by GBLUP, BLASSO and prediction
accuracies in the remaining models was relatively lower. Across
varying proportions of TS: VS sets in this cross, GBLUP recorded a
higher prediction accuracy of 0.20.

The RMSE error bars around each bar indicate the uncertainty
in the prediction. Shorter RMSE error bars indicate consistent and
stable performance in prediction across cross-validation folds.
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Across DHF, and DHF, from the cross VL1043 x CM212,
prediction error reduced greatly with increasing training
population proportions, suggesting the importance of a larger
training population size for effective genomic prediction. The
prediction models, BayesB and GBLUP, consistently recorded
lower RMSE values, particularly at 75:25 and 80:20 proportions of
the training and validation sets. Whereas, the models, BayesA and
BLASSO, occasionally documented higher RMSE, indicating greater
variability depending upon training population size and population
structure (Figures 3a, b).

3.4 Effect of training population size on
prediction accuracy in cross VL121096 x
CM202

The DHF, of the cross VL121096 x CM202 consisted of 94
individuals. Prediction accuracies estimated for 60:40 proportion
across six different parametric models, were relatively higher and
lower in BLASSO and BayesA, respectively. The higher magnitude
of prediction accuracy was documented by BLASSO, BayesA,
BayesC, BRR and GBLUP while lower magnitude of prediction
accuracy was recorded by BayesB for the proportion of 65 TS:35 VS.
For the training and validation set proportion of 70:30, the highest
prediction accuracy was recorded by BayesA, and the lowest by
BRR. For the training and validation set proportions of 75:25, the
estimated prediction accuracies were almost similar across all the
six models. At 80 TS: 20 VS proportion, the highest prediction
accuracy was recorded by BLASSO and the lowest by BayesA
(Figure 3c). The highest average prediction accuracy was recorded
by the prediction model BLASSO (0.19) and the 75:25 proportion of
training and validation set (0.25).

Among all the considered models, GBLUP and BayesB
displayed relatively higher prediction accuracy, coupled with
lower RMSE, especially at 75:25 and 80:20 proportions of training
and validation sets. Whereas, for 60:40 and 65:35 proportions of
training and validation sets, most of the models recorded noticeably
larger prediction errors. DHF, from VL121096 x CM202 seemed to
respond well to an increase in training population size, which is
evident through sharp improvement in prediction accuracy and a
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FIGURE 3

Effect of training population set on estimation of prediction accuracy in three different DH populations [(a) DHF1 (VL1043 x CM212), (b) DHF2

(VL1043 x CM212), (c) DHF2 (VL121096 x CM202].

reduction in the magnitude of prediction error. The variation in
prediction accuracy estimated across five folds for different
proportions of training and validation sets is given in the box
plots (Figure 4).

3.5 Effect of marker density on the
prediction accuracy

The estimated prediction accuracies in six different parametric
models using five-fold cross validation are given in Figure 5.
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The average prediction accuracies across six different parametric
models viz., GBLUP, BayesA, BayesB, BayesC, BLASSO and BRR
using five-fold cross-validation in DHF; of VL1043 x CM212
displayed an increasing trend from 0.06 to 0.31 with an increase
in marker density from 80 (40%) to 198 (100%) (Figure 5a).

A similar pattern of the increasing trend in prediction accuracy
with an increase in marker density was observed for DHF, of the
cross VL1043 x CM212 [0.04 (41%) to 0.28 (100%)] (Figure 5b) and
0.10 to 0.30 for the DHF, of the cross VL121096 x CM202 for an
increase in marker density from 81 (42%) to 173 (89.63%)
(Figure 5c). Further, no significant increase in the prediction
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FIGURE 4

Box plot depicting the variation of prediction abilities across different training and validation set proportions (a) DHF1 (VL1043 x CM212), (b) DHF2

(VL1043 x CM212), (c) DHF2 (VL121096 x CM202).

accuracy was recorded when the 100% marker density was
employed to predict the prediction accuracy in DHF, of
VL121096 x CM202.

Higher prediction accuracy was recorded when 100% of the marker
density was employed in DHF; and DHF, of VL1043 x CM212.
However, in the DHF, of cross VLI21096 x CM202, the highest
prediction accuracy was recorded for 89.63% (173 markers) marker
density and no further improvement in prediction accuracy was noted.

Estimated prediction errors across models and marker densities
revealed that at lower marker densities, most of the models
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exhibited higher prediction error (RMSE), indicating greater
prediction variability. It was observed that with an increase in
marker density, the RMSE decreased substantially, particularly in
models like GBLUP and BayesB, which consistently produced a
stable prediction value with minimal errors. Reduction in RMSE
with an increase in marker density underlined the importance of
using adequate genome coverage markers for minimizing the
prediction error in genomic prediction studies. The box plot
showing variation in prediction accuracy across five-fold for
various tested marker densities is given in Figure 6.
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FIGURE 5

Effect of marker density on the prediction accuracy in three DH populations [(a) DHF; of VL1043 x CM212, (b) DHF, of VL1043 x CM212 and (c)

DHF, of VL121096 x CM202.

3.6 LD decay and its effect on marker
density

The LD decay patterns across all the three populations were
estimated at a threshold r* value of 0.2 (Supplementary Figure 3).
LD decay distance of 7, 13 and 31cM were obtained for DHF,; from
VL1043 x CM212, DHF, from VL1043 x CM212 and VL121096 x
CM202, respectively.
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Optimum number of markers to be used for effective capturing of
all the genetic variation was estimated using the information on LD
decay (dividing the genetic map length by the LD decay value). The
results found that approximately 286, 154 and 65 SNPs were sufficient
for effective estimation of prediction accuracy. It was evident from the
estimated prediction accuracies across different proportions of marker
densities tested, the highest prediction accuracy was recorded for the
marker density of 85-100 per cent across all the DH populations.
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Box plot depicting the variation of prediction abilities across different marker density proportions (a) DHF1 (VL1043 x CM212), (b) DHF2 (VL1043 x

CM212), (c) DHF2 (VL121096 x CM202).

3.7 Independent validation of the GS
model

The prediction accuracies estimated for FSR resistance in
independent validation when the DHF, of the cross VL121096 X
CM202 was used as a validation set and the DHF,; and DHF, of the
cross VL1043 x CM212 were used as training sets. The average
prediction accuracy estimate of 0.24 was documented in the
independent validation of DHF, of the cross VL121096 x CM202
using DHF; of the cross VL1043 x CM212 as the training set. The
prediction accuracies in five-fold cross validation using six different
parametric models were 0.22, 0.25, 0.21, 0.26, 0.26 and 0.25 in GBLUP,
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BayesA, BayesB, BayesC, BLASSO and BRR, respectively (Figure 7a).
The average prediction accuracy of 0.17 was recorded when DHF, of
the cross VL1043 x CM212 was used to train the model. Prediction
accuracies estimated in five-fold cross validation across six parametric
models viz., GBLUP, BayesA, BayesB, BayesC, BLASSO and BRR were
0.16, 0.19, 0.16, 0.18, 0.16 and 0.18 (Figure 7b).

3.8 Evaluation of test cross progenies

A total of 63 DH lines from all disease response class were
chosen randomly and crossed with two testers namely MAI105 and
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as training sets.

SKV50 to derive the test cross progenies and their disease response
was assessed phenotypically.

A significant positive correlation was documented between
GEBV’s with the phenotype (0.57) of the selected DH lines,
GEBV’s with the test cross progenies derived by crossing with the
testers MAI105 (0.48) and SKV50 (0.52) was documented. The
estimated Pearson’s correlation coefficient between the disease
expression of selected lines with the test cross progenies derived
by crossing the selected lines with two testers MAI105 and SKV50
were 0.58 and 0.66, respectively (Figure 8).

4 Discussion

Doubled haploid (DH) technology has emerged as an efficient
strategy to shorten breeding cycles significantly and increase genetic
gain (Chaikam et al., 2019). The application of genomic prediction
in conjunction with DH technology is known to accelerate the pace
of achieving targeted genetic gain (Fu et al., 2022). Identifying and
utilization of the lines displaying resistance to an important disease
like Fusarium stalk rot in maize is very crucial as this disease is

prevalent in most maize-growing areas.

4.1 Impact of genetic variations in DH lines
derived from F,; and F, populations

The significance of the mean sum of squares due to genotypes in
the three DH populations indicated the presence of a substantial
amount of genetic variability in the material considered for the
study. Further, pooled ANOVA across seasons in the three DH
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populations indicated the non-significance of check x season
interactions indicating the absence of genotype by environment
interactions. Thus, average adjusted disease scores across seasons
were considered for calculating the pooled mean which was used for
further genomic selection analyses.

The mean and standardized range of FSR disease scores of
DHF,s were greater than the DHF, in both crosses. The range was
relatively wider in DHF,s compared to DHF;s indicating the
presence of higher variability among DHF,s than DHF,. These
results were expected due to an additional round of recombination
in F, which contributed to an increase in the genetic variability in
DHF,s (Chase, 1969; Chalyk, 1994; Rotarenco et al., 2007; Geiger
et al., 2013; Sleper and Bernardo, 2016; Couto et al., 2019).

Estimating genetic variance is important in predicting the
response to selection, understanding the gene action of quantitative
traits and for effective planning of the breeding procedure (Choo,
1980). The genetic variation between DH lines gives the estimates of
additive components of FSR resistance. Within the DHF; and DHF,s
of the cross VL1043 x CM212 genetic variance was higher in DHF,
than in DHF,. However, the genetic variance (V) in DHF, of
VL121096 x CM202 cross, was higher than both DHF; and DHF,
s of the cross VL1043x CM212. The differences in genotypic
variances between DHF, and DHF, could be attributed to an
additional round of recombination. Further, linkage causes the Vg
to differ between DHF,; and DHF, lines. Coupling phase linkage leads
to larger Vg among DHF; lines than among DHF, lines, and it is
apparent by a decrease in the proportion of extreme types, a situation
characteristic of the breaking of coupling phase linkages. Whereas,
the repulsion linkage leads to a larger Vg among DHF, lines than
among DHF, lines regardless of the type of gene action and the
hidden genetic variance that is released upon the disruption of
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repulsion linkages, and this reflects higher proportions of extreme
genotypes in the DHF,s at both ends of phenotypic distribution in
that cross. A relatively higher magnitude of Vg in the DHF,s than in
DHF, indicates the presence of repulsion linkages in the genetic
control of FSR resistance (Weir et al., 1980; Sleper and Bernardo,
2016). Generally, the F, generation is the superior segregating
population to initiate DH production. Extrapolation of these results
to other elite line crosses should be cautioned since conclusions
drawn are specific to the germplasm used. Future studies using other
elite inbred lines should provide evidence for trends regarding the
superior type of segregating population employed in DH production.

The genotypic coefficient of variation and phenotypic coefficient
of variation are standardized estimates of variability at genotypic
and phenotypic levels, respectively. Both GCV and PCV estimates
owing to their unit independence, facilitate the better comparison of
variability. The estimates of PCV and GCV were lower in DHF,;
compared to DHF,s. The higher variation of DHF, compared to
DHEF, was probably due to the additional round of recombination
later than the prior (Snape and Simpson, 1981). Further, the close
correspondence between GCV and PCV indicated the lesser
influence of the environment on the expression of FSR disease
reaction, and selection based on the phenotype performance would
be effective (Chacko et al.,, 2023). All three populations recorded a
higher estimated broad sense heritability coupled with moderate to
higher genetic advance as per cent mean implying reward to
selection practiced.

4.2 Estimation of genomic estimated
breeding values and prediction accuracies

4.2.1 Effect of TP size on the accuracy of
predicted GEBVs

General consensus does not exist in the literature regarding the
optimum size of the TP to achieve high accuracy of predicted
GEBVs. However, acceptable GEBV prediction accuracy was
achieved in maize bi-parental populations using as few as 60
(Schaefter, 2006) and 84 (Riedelsheimer et al., 2013) individuals.
Thus, the use of a DH population consisting of 336, 280 individuals
in F, and F, induced DHs of the cross VL1043 x CM212 and 94
individuals in F, induced DHs of the cross VL121096 x CM202 in
the present study for predicting and validating GEBVs for FSR
resistance is justified.

Further, DH populations are frequently used for selection in
predominantly cross-pollinating crops like maize. Assessing the
accuracy of predicted GEBVs in such populations will directly affect
the efficiency of maize breeding. Population structure is of no
concern if DH populations are used for predicting and validating
GEBVs since all the individuals are true to type and completely
homozygous (Lorenzana and Bernardo, 2009). Hence, all three
crosses were used as TP, to understand the effect of TP size on
the accuracy of predicted GEBVs.

In the present study, the TP was progressively increased by
dividing the TP into a training and validation set in different
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proportions, such as 60:40, 65:35, 70:30, 75:25 and 80:20 in
favour of TS and VS, respectively, keeping the marker density at
100% for optimizing the composition of training population size.

In DHF, and DHF, from the crosses VL1043 x CM212 and
VL121096 x CM202, the highest prediction accuracy was obtained
for the training and validation set proportion of 75:25. Whereas, in
DHF, of the cross VL1043 x CM212 the highest prediction
accuracy was recorded for 80:20 proportion of training and
validation sets. Thus, the highest prediction accuracy was
recorded when nearly 75 - 80% of the individuals were used for
training the models in both the populations in five-fold cross
validation. Increasing trend of prediction accuracy was observed
for fusarium stalk rot resistance with increase in proportion of
training population from 20 to 80% (Song et al., 2024). Larger sizes
of training sets reduce the bias and reduce the variance of marker
effect estimates, thereby increasing the prediction accuracy. A small
training set size leads to overfitting, wherein the marker effects are
fitted to noise rather than true genetic signals, whereas the use of
larger training sets provides a better signal-to-noise ratio and
captures wider genetic variability, thereby improving the model’s
generalizability to new individuals (de los Campos et al,, 2013).
Further, optimization of the training population size by Islam et al.
(2020) in cotton revealed that prediction accuracy was highest for
the 90:10 proportion of training and validation sets. Further, Zhang
etal. (2017) studied the effect of marker density and training set size
on prediction accuracy for three different agronomic traits like plant
height, days to anthesis, and grain yield under well-watered and
water stressed conditions and also observed an increase in
prediction accuracy with an increase in training set size and
marker density. A similar study by Fan et al. (2024) on flowering
time related traits in an association mapping panel of 379 DH lines
showed the highest prediction accuracy when 70% of the population
was used for model training. The optimum size of the training
population needed for training the model depends upon the genetic
architecture of the trait (Gilmour, 2007).

GBLUP and BayesB models outperform other prediction
models in terms of higher prediction accuracy and lower RMSE,
while dealing with structured populations. High relatedness among
individuals of a DH population enhances the GBLUP’s ability to
capture additive genetic variance through the genomic relationship
matrix effectively (Habier et al, 2007). Whereas, BayesB model
assumes only a smaller proportion of markers have large effects
while rest of the markers have zero effect on target trait. This model
conducts variable selection which aids in noise reduction from non-
informative markers, thereby enhancing the model’s performance
(Meuwissen et al., 2001).

4.2.2 Effect of marker density on the accuracy of
predicted GEBVs

It is reported that marker density impacts GEBV’s prediction
accuracy in genomic selection (Bernardo and Yu, 2007; Nakaya and
Isobe, 2012; Crossa et al., 2014). Higher prediction accuracies were
recorded for 100% marker density in DHF; and DHF, of the cross
VL1043 x CM212. Whereas, in DHF, of a cross VL121096 x
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FIGURE 8

Correlation coefficients between phenotypic values of testcross progenies with selected inbred line's phenotypic values and GEBVs. ** and ***

indicate significance at 1 and 0.1 per cent, respectively.

CM202, higher prediction accuracy was documented for 89.63%
(173 markers) marker density. The increasing trend of prediction
accuracy estimation with increasing marker density could be due to
the fact that with more markers, the probability of identifying the
causative loci influencing the trait will increase. Further, dense
marker panel lead to accurate estimation of relatedness, improves
the efficiency of GEBV estimation and reduces the bias in
estimation of marker effects (Daetwyler et al., 2008).

In maize (Vivek et al, 2017) and barley (Lorenzana and
Bernardo, 2009) it was demonstrated that GEBV prediction
accuracy increased with increasing the number of markers in DH
populations. However, the increase was large only at low marker
densities. For example, the accuracy of predicted GEBVs for grain
protein content increased significantly with the number of markers
from 64 to 128; however, the accuracy did not change from 128 to
223 markers. Further, a study by Cao et al. (2021) showed that
higher marker density slightly improved prediction accuracy for tar
spot complex disease in maize; however, the increase was not
substantial. This suggests that a moderate number of well-
distributed markers may be sufficient for effective genomic
selection. However, as reported by several researchers in different
crops, the possibility of increasing the accuracy needs to be explored
by using large sizes of the TP. The marker density threshold might
be determined by the extent of linkage disequilibrium (LD) between
the markers and the QTL in the genome (Wang et al, 2017).
Strong LD between marker alleles and causal QTL in DH
populations allow localization of QTL to large intervals (10-20
cM) in the genome. Each marker allele is potentially in LD, with at
least one causal QTL controlling the target trait (Morgante et al,
2018). Theoretically, the extent of LD in a population is a function
of effective population size (Syed, 1971; Wientjes et al., 2013). At a
low effective population size, the number of independent genome
segments is expected to be small; hence, fewer markers are sufficient
to mark all the genome segments (Goddard and Meuwissen, 2010;
Poland et al., 2012). The magnitude of prediction accuracy obtained
for FSR resistance in the present study was comparable to that
reported in the literature for northern corn leaf blight resistance
(0.11 - 0.29) in a cross validation (Technow et al., 2013).
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In the present study, the population size of the F,-derived DHs
of VL121096 x CM202 was relatively small. Since DHs are full-sib
progenies, it is possible that large segments share similar genome
sequences such that they share marker alleles identical by descent
(Poland et al., 2012), leading to marker redundancy as the number
of markers increases (Peixoto et al., 2016). Several studies have
demonstrated high GEBV prediction accuracy for many traits like
northern corn leaf blight resistance (Lohithaswa et al., 2024), grain
yield, plant height, and flowering time (Spindel et al., 2015) using
fewer markers. However, much research is required to optimize the
number of markers to realize maximum prediction accuracy and
genetic gain using GS in different training populations, their
composition and size, and prediction models.

Though the estimated heritabilities for FSR disease response
were high, prediction accuracies were low to moderate that could be
due to strong relatedness among the individuals (Liu et al., 2017),
smaller training population sizes (Crossa et al., 2025; Vieira et al,
2025) and complexity of genetic architecture (Crossa et al., 2017;
Zhang et al,, 2015). The trait with high heritability might be
influenced by rare alleles or alleles with non- additive genetic
effects, which are not well captured by the models that assume
additive genetic effects such as GBLUP (Jiang et al., 2018). Along
with that, relatedness between the training and breeding
population, marker density and genome coverage, genetic
diversity within the training population, linkage disequilibrium,
choice of prediction models, inclusion of genotype by environment
interactions and type of marker used also influence the prediction
accuracy (Crossa et al., 2017, 2014). Further, the training population
was derived by crossing only two complementary parents, genetic
variability for the target trait may not be effectively captured. It is
noted that diversifying the training population will increase the
robustness of GEBVs prediction thereby increasing the prediction
accuracy in genomic selection studies (Burstin et al., 2015). Lan
etal. (2020) found that, even for the traits with high heritability, the
accuracy of prediction depends mainly on whether the marker set
contains sufficient QTLs to contribute to the total variation of the
phenotypes, or whether all the related QTLs have been identified
from the marker set. Lozada et al. (2019), observed that the low
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prediction accuracy was recorded even if the trait has recorded high
heritability when the markers used might not have efficiently
captured the LD between markers and the QTLs.

Predictive accuracy and reliability of genomic selection models
are assessed by cross validation. Further, cross validation also
ensures that the model is not overfitting to the training data and
it can be generalized to new set of genotypes. Efficiency of different
statistical models and machine learning approaches can be assessed
through cross validation. Along with this, size and composition of
training population can be optimized through cross validation
(Friedman et al., 2001). Five-fold cross validation was employed
to compare the efficiency of model performance under different
marker density and training population proportions. As the
number of individuals in the training population increases (less
folds) it reduces the variance at each fold. However, as the number
of folds increases, the variance of whole cross-validation estimate
reduces. However, among various k values in the k fold cross
validation, the five-fold and 10-fold cross validation schemes are
found to be more reasonable for estimating the marginal predictive
errors (Schrauf et al., 2021).

Prediction error RMSE displayed a declining trend with an
increase in marker density across all three DH populations,
highlighting the critical role of marker density on prediction
accuracy. At the lower marker densities, the prediction values
were less stable, as indicated by the larger RMSE values, likely
due to the insufficient capture of underlying genetic variance. As the
marker density increased above 70 per cent, RMSE estimates
decreased significantly in GBLUP and BayesB, indicating
improved stability and predictive ability with an increase in
marker density. The GBLUP model, which exploits the genomic
relationship matrix to model additive effects, is generally effective
when the population structure is more evident (Habier et al., 2007).
BayesB model’s sparse variable selection strategy can identify major
effect loci and ignore the non-informative markers, resulting in
enhanced robustness even under variable genomic marker densities
(Meuwissen et al., 2001). These findings are consistent with earlier
studies showing that both high marker coverage and appropriate
model choice are essential for achieving low prediction error and
high accuracy in genomic selection (Zhang et al., 2017).

Further, the average prediction accuracies obtained after
assessing the effect of training population size and marker density
differed greatly. The average prediction accuracy after optimizing
the marker density was relatively higher than that obtained for the
training population proportion. In a crop like maize with a high LD
decay, the margin of increase in prediction accuracy is higher for
marker density than the proportion of training population used
(Bellon et al.,, 2018; Moghaddam and Morrel, 2018; Crossa et al.,
2017). Further, for the polygenically controlled traits, especially in a
population with a low LD, increasing marker density has a positive
effect on prediction accuracy estimation (Habier et al., 2007).

4.3 LD decay and marker density

The effect of marker density on the accuracy of GS prediction is
the most researched element, and it is agreed that a higher number
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of markers typically produces higher accuracy up to a plateau
(Meuwissen et al, 2001; Habier et al., 2007; Daetwyler et al,
2008; Zhang et al., 2015; Krishnappa et al,, 2021). In the present
study, marker density employed was comparatively low, and hence,
linkage disequilibrium (LD) was considered to estimate the
optimum marker density, as it is known to play a crucial role in
determining the optimum marker density needed for genomic
selection. The relationship between the LD and marker density
directly impacts the accuracy of GEBVs and the efficiency of the
genomic prediction models (Liu et al., 2015). To address the effect of
LD decay on marker density, LD decay pattern of all the three DH
populations was carried out. According to the estimated LD decay
value, the marker density employed was sufficient for DHF,s from
the crosses VL1043x CM212 and VL121096 x CM202. The
optimum number of markers for effective estimation of prediction
accuracy was computed by dividing the average genetic map length
of these populations with their respective LD decay values (Kanaka
et al., 2023). The genetic map length of DHF, of VL1043 x CM212
was 2156.36 cM and that of VL121096 x CM202 was 2100.18 cM
(Showkath Babu et al., 2024). Hence, the average genetic map length
of 2000 cM was considered to calculate the optimum number of
markers. It was evident that the estimated prediction accuracy of the
DH populations (DHF,s of VL1043 x CM212 and VL121096 x
CM202) was the highest for the marker density of 85-100 per cent
indicating that the number of markers used in the present study was
sufficient. Whereas, the LD decay value of DHF,; from VL1043 x
CM212 was very low, indicating the need for further increasing the
marker density. However, the prediction accuracy of this cross was
comparable with the prediction accuracy estimated for other
two populations.

4.4 Comparison of models’ performance

Across different marker densities, the Bayesian alphabets
(BayesC and BayesA) and Bayesian ridge regression (BRR) gave
comparatively higher prediction accuracies. Comparatively, better
performance of Bayesian models could be due to the basic
assumptions these models hold. Bayesian models effectively
distinguish between the truly important markers and background
noise (Gianola and de los Campos, 2008). The GBLUP model,
assumes that all markers have effect on trait variability, whereas the
Bayesian alphabets assume only a limited number of markers have
effect on trait variation. Common variance for all the markers was
considered by GBLUP, BayesC and BRR models however, other
Bayesian models namely BayesA, BayesB and BLASSO assume
specific variances for marker effects (Meher et al, 2022). The
comparative effectiveness of the genomic prediction models used
is largely influenced by the trait architecture as the models differ in
assumptions about the distribution of marker effects (Perez-
Rodriguez et al, 2012). It is proved that GBLUP performs well
for traits governed by many QTLs each with small effects. On the
other hand, the Bayesian alphabets perform well for traits governed
by few QTLs each of them having major effect on genetic variability.
Meher et al. (2022) proved that GBLUP model was the least biased

frontiersin.org


https://doi.org/10.3389/fpls.2025.1631408
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Lohithaswa et al.

in prediction accuracy estimation compared to various BLUP and
Bayesian model variants.

4.5 Independent validation of calibrated GS
model

The estimated prediction accuracy was highest in the
independent validation when DHF; of the VL1043 x CM212 was
used as a training set (0.24). The prediction accuracy of 0.17 when
DHEF, of the VL1043 x CM212 was used as a training set. These
results are only indicative as they are based on fewer individuals in
TP and markers and five-fold cross-validation. Dependable results
could be obtained based on independent validation in a large
number of cross-populations (Osorio et al., 2021).

4.6 Evaluation of test cross progenies

Assessing the test cross progenies’ performance offers valuable
insights into the translation of genetic predictions into phenotypic
expressions, hence providing real-time validation of the practical
applicability of genomic selection models (Crossa et al, 2014).
Furthermore, for breeding programs to be successful, it is
imperative to consider the field performance of the lines selected
based on GEBVs.

A significant positive correlation of the GEBV’s with the
phenotype of the selected DH lines, and test cross progenies
derived by crossing with the testers MAI105 and SKV50 indicated
the effectiveness of genomic selection model in identifying the
potential lines with resistance to FSR disease. Correlation
coefficient can be used as a measure to assess efficiency and
robustness of the selection model (Heslot et al., 2012; Schopp
et al., 2017). However, in the small sample size random effects
can influence the observed correlation leading to over or
underestimation of prediction accuracy (Daetwyler et al., 2008).

5 Conclusion

The current investigation demonstrated the application and
feasibility of genomic selection for genetic improvement in maize
for fusarium stalk rot resistance. The training population size and
marker density were optimized by testing different proportions of
training and validation sets and different marker densities. The
estimated descriptive statistics and genetic variability parameters
were higher in DHF,s than in DHF,; populations. Higher prediction
accuracy was recorded for 75:25 proportions of training and
validation sets and 80 - 100% marker density. Further,
independent validation was performed to assess the robustness of
the developed models. We showed that it could be possible to get
good prediction accuracies with the optimum population size and
marker density, instead of the larger population. Further, the test
cross hybrids generated using the DH lines selected from different
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disease response classes displayed a higher correlation coefficient
with the phenotypic response and GEBVs of selected lines.
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