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MLVI-CNN: a hyperspectral
stress detection framework
using machine learning-
optimized indices and
deep learning for
precision agriculture
Poornima S and A. Shirly Edward*

Department of Electronics Communication Engineering, SRM Institute of Science and Technology,
Vadapalani Campus, Chennai, India
Introduction: Early and accurate detection of crop stress is vital for sustainable

agriculture and food security. Traditional vegetation indices such as NDVI and

NDWI often fail to detect early-stage water and structural stress due to their

limited spectral sensitivity.

Method: This study introduces two novel hyperspectral indices — Machine

Learning-Based Vegetation Index (MLVI) and Hyperspectral Vegetation Stress

Index (H_VSI)— which leverage critical spectral bands in the Near-Infrared (NIR),

Shortwave Infrared 1 (SWIR1), and Shortwave Infrared 2 (SWIR2) regions. These

indices are optimized using Recursive Feature Elimination (RFE) and serve as

inputs to a Convolutional Neural Network (CNN) model for stress classification.

Results: The proposed CNN model achieved a classification accuracy of 83.40%,

effectively distinguishing six levels of crop stress severity. Compared to

conventional indices, MLVI and H_VSI enable detection of stress 10–15 days

earlier and exhibit a strong correlation with ground-truth stress markers (r = 0.98).

Discussion: This framework is suitable for deployment with UAVs, satellite

platforms, and precision agriculture systems.
KEYWORDS

hyperspectral imaging, vegetation index, machine learning, crop stress, early detection,
remote sensing
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1 Introduction

Sustainable crop production is increasingly challenged by

abiotic stresses such as drought, nutrient deficiency, and heat.

These stresses often lead to significant yield losses if not detected

and mitigated early (Koh et al., 2022). Traditional monitoring

techniques, including normalized difference vegetation index

(NDVI) and normalized difference water index (NDWI), focus

primarily on chlorophyll content and have limited capability in

detecting early-stage or non-chlorophyll-related stress responses

(Sun et al., 2017; Lu et al., 2020). The authors (Varghese et al., 2021)

reviewed the capabilities of Sentinel-2 for drought detection,

reinforcing the need to advance beyond traditional multispectral

sensors toward hyperspectral solutions for early stress detection

(Pertiwi et al., 2024). Hence, there is a strong need for more

sensitive and accurate detection tools.

Hyperspectral imaging (HSI) has emerged as a transformative

technology in remote sensing, offering high spectral resolution that

can detect subtle physiological changes in crops. With hundreds of

contiguous spectral bands, HSI captures detailed reflectance

patterns sensitive to plant water status, canopy structure (Lutz

et al., 2024), and stress-related biochemical properties (Okyere

et al., 2024). These spectral signatures, especially in the Near-

Infrared (NIR) and Shortwave Infrared (SWIR) regions, are

particularly useful for monitoring crop stress (You et al., 2024).

Integrating machine learning (ML) and deep learning (DL)

techniques with HSI has further enhanced its potential, enabling

automated feature selection and robust classification performance

(Raja et al., 2022). For instance, convolutional neural networks

(CNNs) and support vector machines (SVMs) have been widely

used to analyze spectral-spatial information for early disease and

stress detection in crops (Varghese et al., 2021; Hui et al., 2023).

Despite these advancements, most existing approaches lack

generalizability across different stress types and fail to provide

early warnings. Moreover, the indiscriminate use of all spectral

bands increases computational overhead and reduces model

interpretability (Wei et al., 2021). Studies have shown that

redundant spectral information can negatively impact classifier

performance unless optimal band selection is applied (Benelli

et al., 2020).

To bridge these gaps, we propose two novel hyperspectral

vegetation indices—Machine Learning-Based Vegetation Index

(MLVI) and Hyperspectral Vegetation Stress Index (H_VSI)—

that leverage recursive feature elimination (RFE) for data-driven

band selection. These indices, when fed into a 1D CNN classifier,

enable efficient and accurate early stress detection. The proposed

CNN model achieved a classification accuracy of 83.40% and

successfully differentiated six levels of crop stress severity.

This study aims to:
Fron
i. Develop machine learning-optimized vegetation indices

using RFE;

ii. Integrate these indices into a 1D CNN model for multi-

class stress classification; and
tiers in Plant Science 02
iii. Evaluate the proposed framework against conventional

indices using hyperspectral data.
The rest of the paper is structured as follows: Section 2 discusses

the related works; Section 3 outlines the methodology, including

data acquisition, preprocessing, and feature selection; Section 4

presents the results and discussion, including index performance,

classification metrics, and geospatial stress mapping; Section 5

concludes the study and discusses future directions for precision

agriculture deployment.
2 Related work

2.1 Hyperspectral imaging in crop stress
detection

Hyperspectral imaging (HSI) captures reflectance across

hundreds of narrow bands in the visible, near-infrared (NIR), and

short-wave infrared (SWIR) regions, enabling detection of early

stress-induced changes in plant physiology. Multiple studies have

shown that stress-related alterations—such as reductions in leaf

water content, pigment degradation, and changes in canopy

structure—correlate with spectral variations, particularly in the

SWIR region (Koh et al., 2022). The author (Okyere et al., 2024)

demonstrated that hyperspectral imaging combined with ML

models effectively captured both drought and nitrogen stress

interactions in wheat, highlighting its dual diagnostic potential.

Studies like You et al. (2024) emphasize the role of surface

parameterization and its influence on remote sensing outputs,

which can be crucial when interpreting hyperspectral data in

variable terrain or microclimates. UAV-mounted HSI systems

offer fine spatial resolution and large-area coverage, making them

ideal for early stress detection across a range of crops, including

wheat, pearl millet, potato, and maize (Khanna et al., 2019). The

work (Wei et al., 2021) showed how point-based hyperspectral

readings, when combined with multivariate regression, could

effectively estimate grapevine water status, underscoring the value

of spectral resolution for water stress analysis.
2.2 Machine and deep learning for stress
classification

Machine learning (ML) models like Support Vector Machines

(SVM), Random Forest (RF), and Deep Neural Networks (DNN)

have been successfully used for classifying crop stress using HIS (Lu

et al., 2020). For instance, SVMs have achieved high accuracy

(>90%) in detecting drought and nutrient deficiencies (Varghese

et al., 2021). However, their performance relies heavily on the

quality and selection of input features.

Deep learning models, especially 1D and 2D Convolutional

Neural Networks (CNNs), have demonstrated strong potential in

extracting hierarchical features directly from raw or preprocessed
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spectral data. CNNs outperform traditional ML in cases with large

datasets but require considerable computational power and risk

overfitting when spectral inputs are not optimized (Wei et al., 2021).

AutoML and meta-learning approaches have also shown promise in

learning from limited training data (Benelli et al., 2020).

Recent advancements in ensemble learning and hybrid deep

models have demonstrated the power of integrating multiple

learning paradigms for complex classification tasks (Chen B.

et al., 2024). For example (Bao et al., 2023), proposed a Deep

Forest (DF)-based model for Golgi protein classification, which

combines decision tree ensembles with representation learning,

offering robustness with limited data and avoiding the need for

extensive hyperparameter tuning—an approach that is well-suited

for hyperspectral stress analysis where labeled data is limited (Chen

H. et al., 2024). Similarly (Duarte-Carvajalino et al., 2021), utilized

feature-engineered inputs combined with machine learning

classifiers for cleft lip and palate reconstruction, demonstrating

the value of domain-specific feature extraction in improving model

interpretability and classification accuracy. These insights align with

our study’s design, where Recursive Feature Elimination (RFE) is

used to derive optimized hyperspectral vegetation indices (MLVI,

H_VSI) that feed into a CNN for robust stress classification.
2.3 Vegetation index development

Traditional vegetation indices such as NDVI and NDWI are

limited by their reliance on broad spectral bands and chlorophyll

sensitivity, which hampers early detection of abiotic stress. Recent

research has focused on developing more stress-specific indices by

targeting NIR and SWIR wavelengths linked to water content, leaf

thickness, and pigment loss (Murphy et al., 2020). Examples include

the Leaf Water Vegetation Index (LWVI), which is designed for

drought monitoring in durum wheat, and indices optimized for

pearl millet and groundnut using ML-based feature selection (Kim

et al., 2015; Malounas et al., 2024).

Despite these efforts, most indices remain manually crafted and

are not dynamically optimized for varying crop conditions or stress

types. Moreover, few studies incorporate both band selection and

index formulation into a unified classification framework.
2.4 Crop-specific applications

In wheat, hyperspectral indices combined with SVM or RF

classifiers have classified drought stress levels under varying

nitrogen regimes with accuracies exceeding 94% (Roy et al.,

2023). In maize, unsupervised learning techniques have detected

stress up to 10 days earlier than NDVI (Gessner et al., 2023). In

potato, CNN and RF models trained on hyperspectral features have

predicted water stress with high precision, even on small datasets. In

tomato crops, author (Zhang et al., 2024; Tola et al., 2025) used

spectral indices to assess salinity stress, demonstrating the broader

utility of reflectance-based stress diagnosis across crop types.
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These findings highlight the cross-crop applicability of HSI and

ML models but also point to a need for better generalization and

computational efficiency.
2.5 Research gap and study contribution

While existing methods demonstrate strong performance, they

often rely on fixed-band inputs and perform binary classification of

stress presence. They lack the ability to generalize across diverse

stress types or quantify stress severity (Zhou et al., 2022). Moreover,

full-spectrum HSI models introduce unnecessary computational

complexity and limit scalability in real-world deployments.

This study bridges these gaps by:

Proposing two new hyperspectral vegetation indices (MLVI and

H_VSI) derived from machine learning-guided Recursive Feature

Elimination (RFE); Embedding these indices into a CNN classifier

for accurate, multi-level stress classification; Validating the model

on real-world UAV-acquired hyperspectral datasets, demonstrating

its practical value in precision agriculture (Abbas et al., 2023).

This Table 1 highlights the diverse applications of machine learning

techniques in hyperspectral-based crop stress detection, demonstrating

their effectiveness across various crops and stress conditions.

Traditional vegetation indices, such as NDVI and NDWI, have

been widely used for vegetation monitoring. However, their

effectiveness in detecting early stress conditions is limited due to

their reliance on broad spectral bands (Das et al., 2023). Recent

advancements in hyperspectral imaging and machine learning have

enabled more precise stress detection by leveraging narrow spectral

features. Studies have demonstrated that hyperspectral indices

incorporating SWIR bands can detect stress earlier than NDVI.

Machine learning-based approaches, such as Random Forest, CNN

have further improved classification accuracy by automatically

selecting the most relevant spectral bands.
TABLE 1 Comparison of machine learning techniques for hyperspectral
stress detection.

Machine
Learning
Technique

Application in Crop
Stress Detection

Citation

Support Vector
Machines (SVM)

Classification of drought stress levels
in wheat and pearl millet

(Sankararao
et al., 2023)

Random Forest (RF),
Deep Neural
Networks (DNN)

Prediction of stomatal conductance
and photosynthetic rates in wheat

(Okyere
et al., 2024)

Convolutional
Neural
Networks (CNN)

Identification of water stress
in Chickpea

(Sankararao
et al., 2021)

AutoML
Classification of broccoli drought

acclimation/stress responses
(Malounas
et al., 2024)

Meta-Learning
Detection of frost stress in tomato

plants with limited target domain data
(Ruan
et al., 2023)
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3 Methodology

This section outlines the complete workflow for hyperspectral

stress classification, including data acquisition details, preprocessing,

feature selection, vegetation index formulation, and deep learning-

based classification as mentioned in Figures 1, 2.
3.1 Dataset description

This study utilizes the GHISACONUS Hyperspectral Spectral

Library, comprising reflectance data acquired from NASA’s EO-1

Hyperion sensor. The dataset spans a spectral range of 437–2345 nm
Frontiers in Plant Science 04
and includes detailed metadata on location, crop type, and growth

stage. Key bands relevant to plant stress were identified, including:
X661 (Red) – chlorophyll absorption,

X854 (NIR) – canopy structure,

X1649 (SWIR1) – water content,

X2133 (SWIR2) – leaf dryness.
3.2 Spectral preprocessing

To enhance signal quality, spectral reflectance data were first

smoothed using the Savitzky-Golay filter (Sara and Rajasekaran,
FIGURE 1

General workflow of crop stress analysis.
FIGURE 2

Workflow diagram of the proposed methodology for early crop stress detection.
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2025), which fits a low-degree polynomial across a moving window

to reduce noise while preserving peak shapes. This step ensures that

small but meaningful spectral variations related to stress are

retained. Following smoothing, Z-score normalization was applied

to each spectral band (Alordzinu et al., 2021; Johnson et al., 2024b).

This standardized the input by centering values around a mean of

zero and scaling them to unit variance, which is essential for

preventing bias during model training.

3.2.1 Savitzky-Golay filtering
In this study, the Savitzky-Golay filter was applied during the

preprocessing stage to enhance the quality of the hyperspectral

reflectance data. This step was essential for minimizing noise

introduced by environmental variability, sensor drift, and atmospheric

interference, which can distort subtle spectral cues relevant to early

stress detection. By smoothing the data while retaining key spectral

patterns, the filter improved the reliability of subsequent feature

selection and classification stages.

The polynomial smoothing equation (Equation 1) enhances the

reflectance signal by:

Savitzky-Golay formula:

ŷ i =o j = −mmcjyi+j (1)

Where ŷ i is the smoothed value, yi+j are neighboring points, and

cj are the filter coefficients.

Th i s wou ld enhance the s c i en t ific r i go r o f the

preprocessing explanation.

Figure 3 demonstrates the effect of the filter:
Fron
• The raw spectral data (red line with circles) shows

noticeable fluctuations and noise.
tiers in Plant Science 05
• The smoothed spectral curve (blue dashed line with

squares) closely follows the overall trend of the raw data

but with significantly reduced variability.

• This preprocessing step ensured that the spectral input to

machine learning and vegetation index calculations

remained biologically meaningful and robust to noise.
Then apply Z-score normalization to ensure that the filtered

spectral data is scaled consistently across bands before feature

selection and CNN input.

3.2.2 Normalization: scaling of reflectance values
across spectral bands

To ensure consistency and stability across the high-dimensional

hyperspectral inputs, Z-score normalization was applied to all selected

spectral bands prior to index formulation andCNN classification. This

standardization technique transforms each spectral value by

subtracting the mean and dividing by the standard deviation of its

respective band. As hyperspectral reflectance data often contains

varying magnitudes across wavelengths due to differences in sensor

response and biophysical properties, normalization is essential for

preventing feature dominance and improving model convergence.

This preprocessing step plays a critical role in our pipeline,

especially when feeding selected bands (e.g., X854, X1649, X2133)

or derived indices (MLVI and H_VSI) into the 1D CNN. By

centering the data around zero mean and scaling to unit variance,

the model is able to learn more efficiently from all spectral features

without bias toward specific band ranges.

Z-score normalization was applied using Equation 2:

Xnorm =
X − m
s

(2)
FIGURE 3

Effect of savitzky-golay filtering on hyperpsectral data.
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Where:
Fron
X = original reflectance value

m = mean of the spectral band

s = standard deviation of the spectral band
3.3 Spectral correlation analysis

A spectral correlation matrix was generated to visualize

redundancy and inter-band relationships. Bands exhibiting strong

correlation with known stress indicators were prioritized for further

analysis. Heatmaps were used to identify regions with high

information density and eliminate irrelevant wavelengths.

Correlation heatmap of hyperspectral features with regions

corresponding to visible-range (VIS), near-infrared (NIR), and

short wave IR (SWIR) bands highlighted (Figure 4a). Strong

intra-region correlations are observed within VIS and NIR bands,

while SWIR bands show distinct correlation behavior (Figure 4b),

indicating their importance for water and structural stress detection

(Kumar and Shankar, 2024). The highlighted divisions validate the

selection of multi-spectral bands for optimal stress-sensitive

index formulation.

The Pearson correlation coefficient r, computed using Equation

(X), quantifies linear dependency between spectral bands. The

correlation matrix (Figure 4) uses this metric to identify highly

correlated band pairs for elimination, and bands with low

redundancy and high stress sensitivity for retention.
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Equation 3 or method used to compute correlation coefficients

(Pearson or Spearman) is

Pearson’s correlation coefficient formula:

r = on
i=1

(Xi−�X)(Yi−�Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(Xi−�X)

2
p

·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(Yi−�Y)

2
p (3)

Where,
Xi and Yi are the individual sample points

�X is the mean of the X values

�Y is the mean of the Y values

n is the number of paired observations
Hyperspectral data has hundreds of bands, many of which are

redundant or noisy. PCA reduces this to the top 30 components

(Ruan et al., 2023), capturing the most important variance in the data.

These components are used as input for training the CNN model.

The plot (Figures 5a, b) shows how much total variance is retained as

more principal components are added. First 3 components explain

over 80% of the data variance. 30 components retain over 95%,

ensuring minimal information loss.

The different vegetation indices and their respective sensitivities

are summarized in Table 2. NDVI primarily reflects chlorophyll

concentration but often exhibits delayed responses under stress

conditions. NDWI enhances sensitivity to water stress, while H_VSI

extends detection to early water and structural stress. The MLVI

index, optimized through machine learning-driven band selection,

offers superior early-stage stress detection by integrating multiple

stress-sensitive spectral regions (Felix et al., 2025).
FIGURE 4

(a) Correlation heatmap of hyperspectral features in the dataset (b) Features highlighting VIS and SWIR Bands.
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3.4 Band selection using recursive feature
elimination

Recursive Feature Elimination (RFE) was used in conjunction

with a Random Forest estimator to select the top 10 stress-sensitive

spectral bands. This dimensionality reduction step improves both

classification performance and model interpretability by focusing

on biologically relevant features. The selected bands (e.g., X854,

X1649, X2133) formed the foundation for vegetation index design.

Given the high dimensionality of hyperspectral data, feature

reduction is essential to improve model performance and

interpretability. Two complementary approaches were used:
Fron
• Recursive Feature Elimination (RFE): This method ranks

spectral bands based on their importance in a machine

learning model (e.g., SVM) and iteratively eliminates the

least significant bands. The selected bands were used to

construct two custom indices: MLVI and H_VSI. RFE band

selection is explained in Algorithm 1.

• Principal Component Analysis (PCA): PCA was applied to

visualize data variance and support unsupervised

dimensionality reduction. While PCA outputs were not

used directly in model training, they were used for
tiers in Plant Science 07
exploratory analysis and variance validation (Lin

et al., 2014).
Input: Hyperspectral dataset X with spectral bands,

Labels Y, Model M (e.g., Random Forest or SVM), Desired

number of bands k

Output: Top k stress-sensitive spectral bands

1: Initialize feature set F ← all spectral bands in X

2: while |F| > k do

3: Train model M using features in F

4: Compute importance scores for each spectral band in F

5: Remove the band with the lowest importance score from F

6: end while

7: SelectedBands ← F

8: Use SelectedBands to compute MLVI and H_VSI indices

9: Return SelectedBands
Algorithm 1. Stress-Sensitive band selection using recursive feature
elimination (RFE).

The hyperspectral data was first standardized and then reduced

using Principal Component Analysis (PCA) to retain only the most

informative features for CNN classification illustrates in Figure 5.

PCA selects the most important features from the hyperspectral

dataset and gives the optimal feature extraction. After PCA

selection the Band selection is carried over. For the better band

selection Spectral Correlation Analysis is done for the dataset.

PCA transforms input data X into uncorrelated components

using Equation 4:

Z = X :W (4)

Where:
X: standardized spectral data (after scaling)

W: matrix of eigen-vectors (principal components)

Z: transformed data (principal components)
FIGURE 5

(a) PCA analysis and (b) PCA biplot.
TABLE 2 Novel index comparison with traditional indices.

Index Formula Sensitivity

NDVI (NIR - Red)/(NIR + Red)
Chlorophyll-based, delayed

stress response

NDWI
(NIR - SWIR1)/(NIR

+ SWIR1)
Water stress detection

H_VSI
(NIR - SWIR1)/

(NIR + SWIR1 + SWIR2)
Early water & structural

stress detection

MLVI MLVIgen =
Rl1 − Rl2

Rl3

Machine-learning optimized
stress detection
frontiersin.org
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3.5 Vegetation index formulation

Based on the RFE-selected bands, two novel vegetation indices

were formulated:
Fron
• Machine Learning-Based Vegetation Index (MLVI):

Combines bands most predictive of early stress from NIR

and SWIR regions.

• Hyperspectral Vegetation Stress Index (H_VSI): Captures

stress-sensitive spectral contrast using a weighted band-ratio

approach optimized for drought and nutrient deficiencies.
Hyperspectral Vegetation Stress Index (H_VSI), defined in

Equation 5:

HVSI =
(NIR − SWIR1)

(NIR + SWIR1 + SWIR2)
(5)

This index effectively integrates NIR, SWIR1, and SWIR2 to

detect stress levels, including water stress and structural damage.

NDVI - based indices focus on chlorophyll (Red/NIR) but are weak

for detecting water stress. H_VSI directly accounts for leaf water
tiers in Plant Science 08
content changes through SWIR1 and SWIR2, making it better for

detecting drought stress early.

Machine Learning-Based Vegetation Index (MLVI)

formulated as shown in Equation 6:

MLVIgen =
Rl1 − Rl2

Rl3
(6)

MLVI dynamically selects the best spectral bands using Recursive

Feature Elimination (RFE) and machine learning models. In our work

X854, X1649, X2133 spectral bands are chosen dynamically for

analyzing the early stress response (Equation 7).

MLVI =
X854 − X1649

X2133
(7)

The vegetation index derivation workflow is illustrated in

Figure 6. Initially, hyperspectral reflectance data are organized

into a matrix format with each sample represented across

hundreds of spectral bands (Sharma et al., 2023b). Stress

conditions are labeled according to severity (healthy, moderate,

high stress), forming a supervised dataset. To reduce dimensionality

and emphasize the most informative wavelengths, Recursive

Feature Elimination (RFE) is applied, iteratively selecting the top

2–3 bands most correlated with stress levels. A custom vegetation

index is then formulated using a normalized difference structure

based on these selected bands. The derived index is computed pixel-

wise over the hyperspectral imagery, converting complex spectral

information into a stress-sensitive grayscale map. Finally, the index

output is used as input for ML classifiers such as CNN or SVM to

automate vegetation stress detection and mapping. This workflow

enables efficient, robust, and physiologically meaningful stress

monitoring from hyperspectral remote sensing data.
3.6 Deep learning-based classification

To perform multi-level classification of crop stress, a one-

dimensional Convolutional Neural Network (1D-CNN) was

developed and trained using two proposed vegetation indices

MLVI and H_VSI as input features. These indices condense

critical spectral information related to chlorophyll content, water

availability, and structural degradation, enabling efficient and

interpretable input representation.

The CNN architecture comprises two convolutional layers with

ReLU activation functions, followed by max pooling to reduce feature

dimensionality and emphasize key spectral patterns. A dropout layer

was incorporated to prevent overfitting and improve generalization.

The final softmax layer classified each input into one of six crop stress

severity levels (Duarte-Carvajalino et al., 2021), ranging from healthy

to extreme stress.

To optimize model performance, Recursive Feature Elimination

(RFE) was used to identify a subset of the most informative spectral

bands. These selected bands were then used to compute the MLVI

and H_VSI indices, which were fed as structured 1D sequences into

the CNN. This approach reduced computational complexity and

ensured the network focused on stress-relevant wavelengths.
FIGURE 6

Machine learning assissted novel vegetation index derivation flow.
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Given the sequential nature of hyperspectral data—with spectral

bands ordered by wavelength—the 1D-CNN was well-suited to

capture both local spectral patterns and long-range dependencies

across the spectrum. The architecture learned subtle transitions in

reflectance associated with physiological stress responses such as

chlorophyll breakdown, water loss, and tissue degradation. This

design enabled robust performance across varying stress conditions,

achieving a classification accuracy of 83.40%.

For benchmarking, traditional classifiers including Linear

Discriminant Analysis (LDA) and Support Vector Machines (SVM)

were evaluated using the same inputs. While LDA highlighted spectral
Frontiers in Plant Science 09
separability and SVM handled high-dimensional inputs effectively,

both were outperformed by the CNN, which demonstrated superior

ability to learn both spatially localized and spectrally sequential features.

This flowchart (Figure 7a) illustrates a six-step pipeline for

hyperspectral crop stress classification. It includes data acquisition,

preprocessing (Savitzky-Golay filtering and normalization), stress

labeling, RFE-based band selection, CNN-based classification, and

final stress prediction with 83.40% accuracy. Each step

systematically transforms raw spectral input into actionable stress

level insights.The model (Figure 7b) ingests vegetation indices

derived from RFE-selected bands and includes convolutional,
FIGURE 7

(a) Proposed MLVI band selected - Steps for Hyperspectral stress classification (b) 1D-CNN architecture.
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pooling, dropout, and softmax layers. This architecture captures

localized spectral features and sequential dependencies to classify

six crop stress severity levels with high accuracy.
3.7 Model training and evaluation strategy

To ensure robust and unbiased model performance, the dataset

was partitioned using a stratified sampling strategy into 70%

training, 15% validation, and 15% testing subsets. Stratification

preserved the distribution of stress severity classes across all splits.

The training set was used to learn, validation set for hyperparameter

tuning, and the test set exclusively for final performance assessment.

The proposed CNN model was trained by the categorical cross-

entropy loss function is calculated using Equation 8:

L = −oC
i=1yi log (ŷ i) (8)

Where, yi is the ground truth label, ŷi is the predicted

probability for class i, and C is the number of classes.

Model optimization was conducted using Adam optimizer with

initial learning rate of 0.001. A learning rate-scheduler

(ReduceLROnPlateau) dynamically adjusted the learning rate

based on validation loss stagnation, preventing overfitting and

enhancing convergence.

3.7.1 Performance metrics
To quantitatively assess model performance, the following

standard metrics were calculated using the below Equations 9–13:

Accuracy = (TP + TN)=(TP + TN + FP + FN) (9)

Precision = TP=(TP + FP) (10)
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Recall = TP=(TP + FN)  (11)

F1 Score = 2� (Precision� Recall)=(Precision + Recall) (12)

MCC =
(TP · TN) − (FP · FN)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

p (13)

The above metrics were evaluated on the test dataset using

confusion matrices and ROC curves for each classifier.

In addition to conventional metrics, we evaluated Matthews

Correlation Coefficient (MCC) to assess the balance and robustness

of classification performance, especially under class imbalance

conditions. The proposed 1D CNN model achieved the highest

MCC of 0.659, outperforming SVM (0.570) and LDA (0.528). These

results highlight the CNN’s superior ability to correctly classify both

positive and negative stress levels across multiple severity classes.

This underscores the robustness and suitability of the MLVI-CNN

framework for real-world hyperspectral crop stress detection tasks.
4 Results and discussion

4.1 Performance of novel indices

The proposed indices, MLVI and H_VSI, demonstrated

substantial improvements over traditional vegetation indices such

as NDVI, NDWI, and PRI in early stress detection. Through

optimization via Recursive Feature Elimination (RFE), MLVI was

able to detect stress signals 10–15 days earlier than NDVI,

particularly in water- and heat-stressed vegetation zones (Figure 8).

This improvement aligns with prior research that highlights the

sensitivity of SWIR/NIR bands to physiological stress.
FIGURE 8

Early stress detection using MLVI.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1631928
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


S and Shirly Edward 10.3389/fpls.2025.1631928

Frontiers in Plant Science 11
A correlation analysis (Figure 9) revealed that MLVI had a

stronger correlation with actual stress levels (r = 0.98) compared to

NDVI (r = 0.86), indicating a more accurate relationship between

MLVI and plant health status. The threshold behavior of MLVI

across stress levels is summarized in Table 3, where values

approaching 1.0 indicated healthy vegetation, while negative

values corresponded to severe stress, characterized by declining

NIR reflectance and increasing SWIR1/SWIR2 absorption.

The temporal profile shown in Figure 10 further emphasizes

that while NDVI remains relatively stable, MLVI and H_VSI

demonstrate dynamic variation, particularly between Julian dates

150–250, signaling their superior sensitivity to early and mid-stage

stress development (Khanna et al., 2019; Anand and Sharma, 2024).
FIGURE 9

Correlation analysis of MLVI and NDVI.
FIGURE 10

Temporal comparison of vegetation indices (NDVI, MLVI, H_VSI) across Julian Dates.
TABLE 3 Interpretation of MLVI values in relation to crop stress severity.

MLVI Value Plant Condition

Close to 1
Healthy, no stress (High NIR, Low SWIR1

& SWIR2)

Slightly Positive (0.3 - 0.7) Mild stress (SWIR1 increasing, early water loss)

Near Zero (~0)
Moderate stress (SWIR1 & SWIR2

both increasing)

Negative (<0)
Severe stress (dehydration, leaf structure

col lapse)
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4.2 Machine learning classification
performance

To assess classification performance, ML models including

LDA, SVM, and a 1D CNN were evaluated. The 1D CNN

outperformed traditional models, achieving an accuracy of
Frontiers in Plant Science 12
83.40%, while SVM and LDA yielded 78.97% and 77.40%,

respectively (Figure 11).

The CNN’s hybrid architecture allowed it to effectively extract

both localized and sequential spectral patterns, making it

more adept at capturing complex stress signals from

hyperspectral inputs.
FIGURE 12

Perfomance metrics comparison by model.
TABLE 4 Classification performance metrics across different models.

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) MCC

LDA 77.4 76.5 76.2 76.3 0.528

SVM 78.97 78.6 78.4 78.5 0.570

1D CNN 83.4 83 82.9 82.95 0.659
FIGURE 11

Models accuracy comparision for plant stress detection.
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Figure 12 and Table 4 compare additional metrics (precision,

recall, F1-score), all of which were highest for the CNN. The ROC

curves in Figure 13a further support the model’s reliability,

with AUC scores exceeding 0.95 for all six stress classes, and a

micro-average AUC of 0.98. Figure 13b demonstrates stable

learning behavior, with minimal overfitting across training and

validation sets.

Figure 14 presents confusion matrices for the three models. The

CNN model showed improved prediction across all classes,

especially for subtle stress stages like “Healthy” and “Extreme

Stress” The terminology was unified by mapping stages to stress

classes: Class 0 (Healthy) to Class 5 (Extreme Stress).
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4.3 Comparison of feature extraction
methods

Figure 15 highlights the classification accuracy of different input

strategies. NDVI-based input achieved only 68.00% accuracy due to

its limited spectral sensitivity. PCA-based inputs improved

performance to 75.00% by capturing key variance but still lacked

domain-specific feature focus. MLVI-based input outperformed

both, achieving 83.40% accuracy, demonstrating the advantage of

ML-guided band selection (NIR, SWIR1, SWIR2).

Confusion matrices in Figures 16, 17 validate this observation.

The MLVI-CNN model displayed the most balanced performance
FIGURE 13

(a) ROC curve for multi-class level stress classification (b) training and validation accuracy over epochs for ID CNN model.
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across all stress stages, with minimal misclassification, especially in

early and moderate stress conditions.
4.4 Geospatial stress visualization

Considering the role of irrigation patterns and mechanical

stress, studies like (Hui et al., 2023) could provide context for

associating field-level sprinkler stress patterns with spectral stress

zones. Geospatial mapping (Figure 18) of MLVI-derived stress

scores using GPS coordinates and Folium-based heatmaps

revealed clearly defined high-stress zones within the test field.

Bright regions corresponded to severe stress, while dark regions

indicated healthy crops. These spatial insights align with previous

studies using fused or pansharpened hyperspectral imagery, further
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validating the robustness of MLVI for precision agriculture

applications (Dao et al., 2021).
5 Comparison of proposed method
with existing works with different
datasets

Table 5 compares the highlights how the proposed method

(MLVI + 1D CNN) performs against several existing studies. The

comparison includes key metrics such as classification accuracy and

highlights which stress types are detected, along with proper

reference citations.

(MLVI + 1D CNN) achieved the highest classification accuracy

(83.40%) among the compared studies. It is also more specialized in
FIGURE 14

Confusion matrices comparing the classification performance of four machine learning model - Linear Discriminant Analysis (LDA), Support Vector
Machine (SVM) and 1D Convolutional Neural Network (1D CNN) on vegetation stress stage detection.
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detecting both early-stage water stress and structural stress, by the

use of MLVI’s RFE-optimized band selection. It outperforms several

advanced models (e.g., ATSFCNN, SSFNet) that use full-spectrum

hyperspectral input, highlighting the benefit of optimized feature

engineering (Sankararao et al., 2023; Li et al., 2025).
6 Conclusion

This study presents the development and evaluation of two novel

hyperspectral vegetation indices MLVI and H_VSI designed for early

detection of crop stress. By leveraging RFE for optimal band selection
Frontiers in Plant Science 15
and 1D CNN for robust classification, the projected method

significantly outperforms conventional indices such as NDVI and

NDWI in terms of sensitivity and classification accuracy. MLVI

demonstrated a stronger correlation with stress indicators (r =

0.98) and detected stress conditions up to 10 days earlier than

conventional indices. The 1D CNN hybrid model achieved a

classification accuracy of 83.40%, further validating the effectiveness

of the selected spectral features. Geospatial visualization using MLVI

enabled the mapping of stress intensity across agricultural fields,

offering actionable insights for precision agriculture. These findings

highlight the potential of hyperspectral-ML approaches to

revolutionize early stress detection and crop health monitoring.
FIGURE 15

Classification accuracy comparison across feature extraction methods.
FIGURE 16

Confusion matrix for NDVI (Model A) and PCA (Model B) based features.
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6.1 Novelty & strength

MLVI is the first machine learning-optimized vegetation index that

integrates hyperspectral selection with deep learning. It surpasses

conventional models in early detection, spectral sensitivity, and robustness.
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6.2 Limitations & error analysis

Mild stress sometimes misclassified as healthy.

Performance drops under cloud-contaminated bands.

Biochemical validation was not performed yet.
FIGURE 17

Confusion matrix for 1D CNN model for optimized RFE - MLVI based features.
FIGURE 18

Geospatial stress visualization for MLVI optimized Stress detection over the region.
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6.3 Generalizability

Future studies will test MLVI on varied crop types and field

trials across regions including India. Compatibility with UAV

sensors and real-time monitoring is under evaluation.
6.4 Implications

Using MLVI could improve early interventions, reduce water/

fertilizer misuse, and enable large-scale crop health monitoring. Such

methods support climate-smart agriculture and yield protection.
7 Future work

Future research will focus on integrating these indices with real-

time UAV and satellite-based hyperspectral platforms, improving

model generalization across diverse crop types, and coupling

spectral indices with biochemical validation to enhance

interpretability and robustness.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

PS: Writing – original draft, Writing – review & editing. ASE:

Writing – review & editing.
Frontiers in Plant Science 17
Funding

The author(s) declare that no financial support was received for

the research, and/or publication of this article.
Acknowledgments

We thank [SRM Institute of Science and Technology] for

providing infrastructure and research support.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
TABLE 5 Comparison Study of other Models and Stress Types with proposed models.

References Index/Method Used ML Model Stress Type Accuracy (%)

Ref (Koh et al., 2022) Custom hyperspectral VIs Optimized regression General plant traits 82

Ref (Okyere et al., 2024) Red-edge indices RF, SVM Drought, nitrogen 83

Ref (Sun et al., 2017; You et al., 2024) SWIR-based reflectance PCA + SVM Water stress 79

Ref (Cai et al., 2024; Johnson et al., 2024b) Full hyperspectral ATSFCNN Multi-class vegetation stress 81.3

Ref (Kim et al., 2015) Hyperspectral Deep CNN Millet disease 83.1

Proposed Work
MLVI (RFE-optimized: NIR,
SWIR1, SWIR2)

1D CNN Water and Structural stress 83.40
While the datasets and crop types vary, the table highlights the relevance and effectiveness of hyperspectral indices and ML architectures across diverse plant stress scenarios.
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stress in potato plants using hyperspectral imagery and machine learning algorithms.
Horticulturae 7, 176. doi: 10.3390/horticulturae7070176

Felix, M. J. B., Main, R., Watt, M. S., Arpanaei, M., and Patuawa, T. (2025). Early
detection of water stress in kauri seedlings using multitemporal hyperspectral indices
and inverted plant traits. Remote Sens. 17, 463. doi: 10.3390/rs17030463

Gessner, U., Reinermann, S., Asam, S., and Kuenzer, C. (2023). Vegetation stress
monitor—Assessment of drought and temperature-related effects on vegetation in
Germany analyzing MODIS time series over 23 years. Remote Sens. 15, 5428.
doi: 10.3390/rs15225428

Hui, X., Zhao, H., Zhang, H., Wang, W., Wang, J., and Yan, H. (2023). Specific
power or droplet shear stress: Which is the primary cause of soil erosion under low-
pressure sprinklers? Agric. Water Manage. 286, 108376. doi: 10.1016/
j.agwat.2023.108376

Johnson, I., Mary, X. A., Raj, A. P. W., Chalmers, J., Karthikeyan, M., and Jeyabose,
A. (2024b). Deep-Millet: A Deep learning model for Pearl Millet Disease identification
to envisage precision Agriculture. Environ. Res. Commun. 6, 105031. doi: 10.1088/
2515-7620/ad8415

Khanna, R., Schmid, L., Walter, A., Nieto, J., Siegwart, R., and Liebisch, F. (2019). A
spatio temporal spectral framework for plant stress phenotyping. Plant Methods 15.
doi: 10.1186/s13007-019-0398-8

Kim, D. M., Zhang, H., Zhou, H., Du, T., Wu, Q., Mockler, T. C., et al. (2015). Highly
sensitive image-derived indices of water-stressed plants using hyperspectral imaging in
SWIR and histogram analysis. Sci. Rep. 5. doi: 10.1038/srep15919

Koh, J. C., Banerjee, B. P., Spangenberg, G., and Kant, S. (2022). Automated
hyperspectral vegetation index derivation using a hyperparameter optimisation
framework for high-throughput plant phenotyping. New Phytol. 233, 2659–2670.
doi: 10.1111/nph.17947

Kumar, N., and Shankar, V. (2024). Application of artificial intelligence-based
modelling for the prediction of crop water stress index. Res. Square (Research
Square). doi: 10.21203/rs.3.rs-3900676/v1

Li, Z., Duan, P., Zheng, J., Xie, Z., Kang, X., Yin, J., et al. (2025). SSFNET: spectral-
spatial fusion network for hyperspectral remote sensing scene classification. IEEE
Trans. Geosci. Remote Sens. 1. doi: 10.1109/tgrs.2025.3549075

Lin, C., Chen, J., Su, P., and Chen, C. (2014). Eigen-feature analysis of weighted
covariance matrices for LiDAR point cloud classification. ISPRS J. Photogramm.
Remote Sens. 94, 70–79. doi: 10.1016/j.isprsjprs.2014.04.016
Frontiers in Plant Science 18
Lu, B., Dao, P., Liu, J., He, Y., and Shang, J. (2020). Recent advances of hyperspectral
imaging technology and applications in agriculture. Remote Sens. 12, 2659.
doi: 10.3390/rs12162659

Lutz, N., Rodriguez-Veiga, P., and Menor, I. O. (2024). Estimating vegetation structure
and aboveground carbon storage in Western Australia using GEDI LiDAR, Landsat, and
Sentinel data. Environ. Res. Ecol. 3, 045004. doi: 10.1088/2752-664x/ad7f5a

Malounas, I., Paliouras, G., Nikolopoulos, D., Liakopoulos, G., Bresta, P., Londra, P.,
et al. (2024). Early detection of broccoli drought acclimation/stress in agricultural
environments utilizing proximal hyperspectral imaging and AutoML. Smart Agric.
Technol. 8, 100463. doi: 10.1016/j.atech.2024.100463

Murphy, M. E., Boruff, B., Callow, J. N., and Flower, K. C. (2020). Detecting frost
Stress in wheat: A Controlled Environment Hyperspectral Study on wheat plant
components and implications for multispectral field sensing. Remote Sens. 12, 477.
doi: 10.3390/rs12030477

Okyere, F. G., Cudjoe, D. K., Virlet, N., Castle, M., Riche, A. B., Greche, L., et al.
(2024). Hyperspectral imaging for phenotyping plant drought stress and nitrogen
interactions using multivariate modeling and machine learning techniques in wheat.
Remote Sens. 16, 3446. doi: 10.3390/rs16183446

Pertiwi, S., Ipung, H. P., and Sukarno, B. P. W. (2024). Prototype of chili pathogen
early detection system by using multispectral NIR/NUV. IOP Conf. Ser. Earth Environ.
Sci. 1386, 12032. doi: 10.1088/1755-1315/1386/1/012032

Raja, S. P., Sawicka, B., Stamenkovic, Z., andMariammal, G. (2022). Crop prediction based
on characteristics of the agricultural environment using various feature selection techniques
and classifiers. IEEE Access 10, 23625–23641. doi: 10.1109/access.2022.3154350

Roy, B., Sagan, V., Haireti, A., Newcomb, M., Tuberosa, R., LeBauer, D., et al. (2023).
Early detection of drought stress in durum wheat using hyperspectral imaging and
photosystem sensing. Remote Sens. 16, 155. doi: 10.3390/rs16010155

Ruan, S., Cang, H., Chen, H., Yan, T., Tan, F., Zhang, Y., et al. (2023). Hyperspectral
classification of frost damage stress in tomato plants based on Few-Shot learning.
Agronomy 13, 2348. doi: 10.3390/agronomy13092348

Sankararao, A. U. G., Rajalakshmi, P., and Choudhary, S. (2023). Machine Learning-
Based Ensemble band selection for early water stress identification in groundnut
canopy using UAV-Based hyperspectral imaging. IEEE Geosci. Remote Sens. Lett. 20, 1–
5. doi: 10.1109/lgrs.2023.3284675

Sankararao, A. U. G., Priyanka, P., Rajalakshmi, P., and Choudhary, S. (2021). "CNN
based water stress detection in chickpea using UAV based hyperspectral imaging," in
IEEE International India Geoscience and Remote Sensing Symposium (InGARSS),
Ahmedabad, India, 2021. pp. 145-148. 2021. pp. 145–148. doi: 10.1109/
InGARSS51564.2021.9791948

Sara, K., and Rajasekaran, E. (2025). High Spatiotemporal Resolution Land Surface
Temperature reveals fine-scale hotspots during heatwave events over India. Environ.
Res. Commun. doi: 10.1088/2515-7620/adc0f2

Sharma, C., Barkataki, N., and Sarma, U. (2023b). A deep neural network with
electronic nose for water stress prediction in Khasi Mandarin Orange plants.Meas. Sci.
Technol. 34, 125152. doi: 10.1088/1361-6501/acf8e3

Sun, H., Liu, W., Wang, Y., and Yuan, S. (2017). Evaluation of typical spectral
vegetation indices for drought monitoring in Cropland of the North China Plain. IEEE
J. Select. Topics Appl. Earth Observ. Remote Sens. 10, 5404–5411. doi: 10.1109/
jstars.2017.2734800

Tola, E., Al-Gaadi, K. A., Madugundu, R., Zeyada, A. M., Edrris, M. K., Edrees, H. F.,
et al. (2025). The use of spectral vegetation indices to evaluate the effect of grafting and
salt concentration on the growth performance of different tomato varieties grown
hydroponically. Horticulturae 11, 368. doi: 10.3390/horticulturae11040368

Varghese, D., Radulović, M., Stojković, S., and Crnojević, V. (2021). Reviewing the
potential of Sentinel-2 in assessing the drought. Remote Sens. 13, 3355. doi: 10.3390/
rs13173355

Wei, H., Grafton, M., Bretherton, M., Irwin, M., and Sandoval, E. (2021). Evaluation
of point hyperspectral reflectance and multivariate regression models for grapevine
water status estimation. Remote Sens. 13, 3198. doi: 10.3390/rs13163198

You, Y., Huang, C., and Zhang, Y. (2024). Assessing the sensitivity of snow depth
simulations to land surface parameterizations within Noah-MP in Northern Xinjiang,
China. Remote Sens. 16, 594. doi: 10.3390/rs16030594

Zhang, X., Vinatzer, B. A., and Li, S. (2024). Hyperspectral imaging analysis for early
detection of tomato bacterial leaf spot disease. Sci. Rep. 14, 27666. doi: 10.1038/s41598-
024-78650-6

Zhou, Z., Ding, Y., Fu, Q., Wang, C., Wang, Y., Cai, H., et al. (2022). Comprehensive
evaluation of vegetation responses to meteorological drought from both linear and
nonlinear perspectives. Front. Earth Sci. 10. doi: 10.3389/feart.2022.953805
frontiersin.org

https://doi.org/10.3390/agronomy13061524
https://doi.org/10.3390/s21175705
https://doi.org/10.1088/2631-8695/ad3a34
https://doi.org/10.1088/2631-8695/ad3a34
https://doi.org/10.3389/fnins.2023.1197824
https://doi.org/10.4081/jae.2020.1030
https://doi.org/10.1088/2632-2153/ad1d05
https://doi.org/10.1016/j.jia.2024.03.042
https://doi.org/10.1016/j.jia.2024.03.042
https://doi.org/10.2174/0115748936330499240909082529
https://doi.org/10.2174/0115748936330499240909082529
https://doi.org/10.1016/j.jag.2021.102364
https://doi.org/10.1109/lgrs.2023.3244324
https://doi.org/10.3390/horticulturae7070176
https://doi.org/10.3390/rs17030463
https://doi.org/10.3390/rs15225428
https://doi.org/10.1016/j.agwat.2023.108376
https://doi.org/10.1016/j.agwat.2023.108376
https://doi.org/10.1088/2515-7620/ad8415
https://doi.org/10.1088/2515-7620/ad8415
https://doi.org/10.1186/s13007-019-0398-8
https://doi.org/10.1038/srep15919
https://doi.org/10.1111/nph.17947
https://doi.org/10.21203/rs.3.rs-3900676/v1
https://doi.org/10.1109/tgrs.2025.3549075
https://doi.org/10.1016/j.isprsjprs.2014.04.016
https://doi.org/10.3390/rs12162659
https://doi.org/10.1088/2752-664x/ad7f5a
https://doi.org/10.1016/j.atech.2024.100463
https://doi.org/10.3390/rs12030477
https://doi.org/10.3390/rs16183446
https://doi.org/10.1088/1755-1315/1386/1/012032
https://doi.org/10.1109/access.2022.3154350
https://doi.org/10.3390/rs16010155
https://doi.org/10.3390/agronomy13092348
https://doi.org/10.1109/lgrs.2023.3284675
https://doi.org/10.1109/InGARSS51564.2021.9791948
https://doi.org/10.1109/InGARSS51564.2021.9791948
https://doi.org/10.1088/2515-7620/adc0f2
https://doi.org/10.1088/1361-6501/acf8e3
https://doi.org/10.1109/jstars.2017.2734800
https://doi.org/10.1109/jstars.2017.2734800
https://doi.org/10.3390/horticulturae11040368
https://doi.org/10.3390/rs13173355
https://doi.org/10.3390/rs13173355
https://doi.org/10.3390/rs13163198
https://doi.org/10.3390/rs16030594
https://doi.org/10.1038/s41598-024-78650-6
https://doi.org/10.1038/s41598-024-78650-6
https://doi.org/10.3389/feart.2022.953805
https://doi.org/10.3389/fpls.2025.1631928
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	MLVI-CNN: a hyperspectral stress detection framework using machine learning-optimized indices and deep learning for precision agriculture
	1 Introduction
	2 Related work
	2.1 Hyperspectral imaging in crop stress detection
	2.2 Machine and deep learning for stress classification
	2.3 Vegetation index development
	2.4 Crop-specific applications
	2.5 Research gap and study contribution

	3 Methodology
	3.1 Dataset description
	3.2 Spectral preprocessing
	3.2.1 Savitzky-Golay filtering
	3.2.2 Normalization: scaling of reflectance values across spectral bands

	3.3 Spectral correlation analysis
	3.4 Band selection using recursive feature elimination
	3.5 Vegetation index formulation
	3.6 Deep learning-based classification
	3.7 Model training and evaluation strategy
	3.7.1 Performance metrics


	4 Results and discussion
	4.1 Performance of novel indices
	4.2 Machine learning classification performance
	4.3 Comparison of feature extraction methods
	4.4 Geospatial stress visualization

	5 Comparison of proposed method with existing works with different datasets
	6 Conclusion
	6.1 Novelty &amp; strength
	6.2 Limitations &amp; error analysis
	6.3 Generalizability
	6.4 Implications

	7 Future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References




