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DUNet: a novel dehazing model
based on outdoor images
Wei Zhao1,2, Qiusheng Zhang1, Mingliang Li1, Guanshi Ye1,
Zichen Liu1, Mingyang Qi1*, Helong Yu3* and You Tang1,2,3*

1School of Electrical and Information Engineering, Jilin Agricultural Science and Technology
University, Jilin, China, 2College of Underwater Acoustic Engineering, Harbin Engineering University,
Harbin, China, 3College of Information Technology, Jilin Agricultural University, Changchun, China
Image dehazing technology is widely utilized in outdoor environments, especially in

precision agriculture, where it enhances image quality and monitoring accuracy.

However, conventional dehazing methods have exhibited limited performance in

complex outdoor conditions, necessitating the development of more advanced

models to address these challenges. This paper proposes DUNet, a high-

performance image dehazing model that is well-suited for outdoor smart

agriculture applications. In this study, we first introduce a novel hybrid

convolution block, MixConv, designed to fully extract detailed feature information

from images. Secondly, by incorporating the atmospheric scattering model, we

propose a dehazing feature extraction unit, DFEU, integrated between the encoder

and decoder, to establish a mapping relationship between hazy and haze-free

images in the feature space. Finally, the SK fusion mechanism dynamically fuses

feature maps extracted frommultiple paths. To evaluate the dehazing performance

of DUNet, we constructed a dataset consisting of 1,978 pairs of hazy UAV images of

paddy fields. DUNet achieved a PSNR of 36.0206 and an SSIM of 0.9946 on this

dataset. We further validated DUNet’s performance on a remote sensing dataset,

achieving a PSNR of 37.2887 and an SSIM of 0.9933. Experimental results

demonstrate that, compared to other well-established image dehazing models,

DUNet offers superior performance, confirming its potential and feasibility for

outdoor smart agriculture dehazing tasks.
KEYWORDS
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1 Introduction

With the continuous advancement of social and technological progress, smart

agriculture has emerged as a critical direction for modern agricultural development,

rapidly gaining popularity and widespread application. In modern smart agriculture,

drone technology serves as an essential tool for precision farming, widely employed in

areas such as farmland monitoring, crop growth evaluation, pest detection, and soil

moisture analysis (Guo et al., 2025; Su et al., 2024; Zhao et al., 2025). UAVs, equipped

with high-resolution cameras, infrared sensors, and multispectral imaging devices, can

efficiently cover extensive agricultural areas and capture real-time images of farmland,
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thereby providing precise decision support for agricultural

management (Yang et al., 2025). By integrating deep learning and

computer vision technologies, drone systems can not only assess

crop growth conditions with high accuracy but also detect issues

such as pests, water scarcity, or nutrient deficiencies in a timely

manner, thereby significantly enhancing the intelligence and

automation of farmland management (Wen et al., 2024). The

widespread adoption of this technology has transformed

agricultural production from traditional, experience-based

management to data-driven, precision-based models, enhancing

crop yields, reducing production costs, and minimizing pesticide

use, thereby promoting sustainable agricultural development.

However, drones still face several challenges in practical

applications, particularly under complex weather conditions such

as haze, which degrades image quality. Specifically, haze conditions

result in issues such as insufficient contrast and blurred details in

images captured by drones, hindering the accurate assessment of

crop health and timely identification of pests and diseases. This

imposes substantial limitations on the effectiveness of drone

applications, particularly in large-scale farmland monitoring,

where low-quality images can lead to decreased recognition

accuracy and even undermine the intelligence of agricultural

production. Therefore, it is essential to restore or enhance the

captured blurred images to ensure the usability and reliability of the

data, facilitating the smooth execution of subsequent detection and

identification tasks. This will not only improve the accuracy and

system stability of drone-based farmland monitoring but also play a

crucial role in advancing the intelligent development of agriculture

(Joshi et al., 2024; Yu et al., 2024b).

Image dehazing technology is a crucial task in computer vision,

aimed at restoring hazy images to clear and visible ones. The

presence of haze or other factors often leads to the loss of image

details and reduced contrast, which in turn affects subsequent image

analysis and processing. Dehazing technology can effectively

mitigate or eliminate these degradations, restoring image clarity

and detail and making the image more vivid and informative. This

not only enhances the visual experience but also provides more

accurate data for subsequent advanced visual tasks, such as object

detection and target recognition, thereby aiding in the extraction of

more valuable information from images (Goyal et al., 2024).In the

early stages of image dehazing research, the physical processes

behind haze formation were not yet understood. Most methods

relied on image enhancement techniques to achieve deblurring,

such as histogram equalization (Dale-Jones and Tjahjadi, 1993; Kim

et al., 2001; Zhu et al., 2013), color correctio (Huang et al., 2014),

and others. Following the introduction of the atmospheric

scattering model (Nayar and Narasimhan, 1999), researchers

recognized that hazy images result from the degradation of clear

images and began developing dehazing algorithms based on this

model. The atmospheric scattering model is represented by

Equation 1:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

Here, I is the hazy image, J is the clear image, A is the global

atmospheric light, t is the transmission map, and x is the pixel
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index. When the global atmospheric light A is uniform, t is

expressed as Equation 2:

t(x) = e−bd(x) (2)

Where b is the scattering coefficient of the atmosphere and d is

the depth information.

Early image dehazing methods based on the atmospheric

scattering model, predominantly relied on prior knowledge. In

2009, He et al. proposed the classic dark channel prior (DCP)

algorithm (He et al., 2009), which posits that most local regions in

haze-free outdoor images contain pixels with very low intensity in at

least one color channel. By integrating the atmospheric scattering

model, DCP can generate effective depth maps and restore clear

images. However, the DCPmethod has limitations, primarily due to

its reliance on statistical priors, which may not be suitable for

images where the atmospheric light closely resembles the scene

objects. In 2015, Zhu et al. proposed the color attenuation prior

(CAP) (Zhu et al., 2015), which models the scene depth in hazy

images using a linear model, recovers depth information through

supervised learning methods, and then estimates the transmission

rate using the atmospheric scattering model to obtain the dehazed

image. However, due to the limited learning capacity of the model,

many prior methods still exhibit shortcomings in representation

and accuracy.

With the rapid development of deep learning technologies,

many end-to-end convolutional neural networks (CNNs) have

been employed by researchers for image dehazing tasks (Jackson

et al., 2024). CNNs reduce the reliance on manually designed priors

by automatically learning useful image features. For example, Cai

et al. proposed DehazeNet (Cai et al., 2016), which takes hazy

images as input, outputs the medium transmission map, and then

uses the atmospheric scattering model to recover the clear image. Li

et al. proposed AOD-Net (Li et al., 2017), which is based on a

redesigned atmospheric scattering model and directly generates

clear images through CNNs, eliminating the need to estimate the

transmission matrix and atmospheric light. Song et al. proposed a

compact dehazing model, gUNet (Song et al., 2022), which

introduces minimal modifications to U-Net (Ronneberger et al.,

2015) and incorporates residual blocks with a gating mechanism.

This not only reduces the model’s parameter count effectively but

also yields good dehazing results. The DCPDN dehazing model

(Zhang and Patel, 2018) proposed by Zhang et al. integrates the

atmospheric scattering model into the network to optimize the

learning of the transmission map, atmospheric light, and dehazed

image, and introduces Generative Adversarial Networks

(Goodfellow et al., 2014) to enhance details, significantly

improving dehazing performance. Chen et al. proposed the end-

to-end gated context aggregation dehazing network GCANet (Chen

et al., 2019), which introduces a smooth dilation technique to

eliminate grid artifacts and utilizes a gating network to fuse

features across different levels, achieving better dehazing results.

Although these methods have advanced image dehazing

technology, they still face challenges in handling extreme weather

conditions, low-quality images, and real-time scenes. Nevertheless,
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the introduction of end-to-end networks has undeniably accelerated

the progress of image dehazing research.

In recent years, researchers have further enhanced the dehazing

performance of models by incorporating attention mechanisms. For

example, Xu et al. proposed a novel feature attention (FA) mechanism

that combines channel and pixel attention, which was applied to

CNNs to expand the network’s representational capacity. Through

local residual learning, the FFA-Net (Qin et al., 2020) network can

better focus on learning effective information. Chen et al. proposed the

DEA-Net (Chen et al., 2023), which is based on detail-enhancing

convolution and content-guided attention. This model introduces

differential convolution to enhance representational capacity and

integrates three attention mechanisms to comprehensively extract

image detail features. With the widespread application of

Transformers (Vaswani et al., 2017) in computer vision, and

inspired by the Vision Transformer (Dosovitskiy et al., 2020), Song

et al. proposed DehazeFormer (Song et al., 2023). This model employs

a shifted window partitioning scheme with reflective padding and

integrates a convolutional spatial information aggregation scheme

parallel to attention. Experimental results demonstrate its excellent

performance in dehazing tasks. Guo et al. combined Transformers

with CNNs to propose the Dehamer (Guo et al., 2022) model, which

retains the advantages of Transformer in global context modeling

while preserving CNN’s capability in local representations, thereby

significantly improving dehazing performance. However, some color

bias persists in its color restoration, causing the dehazed images to

differ in color from the clear images.

Although end-to-end networks have improved performance

within physical model constraints, they are often confined to the

original image space and fail to fully utilize the physical information

in the feature space. Therefore, Dong et al. proposed a physics-

based dehazing network, PFDN (Dong and Pan, 2020), which

explicitly utilizes the physical model in the feature space by

introducing a key component, the ASM-based Feature Dehazing

Unit (FDU), learning the required useful information to achieve

more effective dehazing. However, the FDU overlooks the fact that

atmospheric light and transmission maps are not always uniform,

and their features cannot be approximated similarly. To accurately

implement the physical model in the deep network feature space,

Zheng et al. proposed a physically-aware dual-branch unit (PDU)

(Zheng et al., 2023), which separately captures features

corresponding to atmospheric light and transmission maps in two

branches, considering the physical properties of each factor. This

allows for more precise synthesis of potential clear image features

based on the physical model and facilitates information transfer and

feature extraction in the feature space.

In recent years, dehazing research based on deep learning has

garnered increasing attention. Li et al. proposed an efficient dehazing

method applicable to both outdoor and remote sensing images, which

integrates the strengths of image enhancement and image restoration

techniques (Li et al., 2023). Experimental results on both synthetic and

real-world datasets demonstrated that this method outperformed

existing approaches. After that, Li et al. further introduced UAVD-

Net, a novel dehazing framework tailored for drone-based remote

sensing images affected by spatially varying haze (Li et al., 2025).
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UAVD-Net employs both global and local feature extraction

mechanisms to effectively eliminate non-uniform haze across spatial

regions, consistently achieving superior performance compared to

state-of-the-art methods on diverse datasets. Similarly, Cui et al.

proposed an image dehazing network called EENet, which aims to

achieve image dehazing through enhanced spatial-spectral learning

(Cui et al., 2025). This method works through the coordinated efforts

of three modules: frequency processing, spatial processing, and dual-

domain interaction. Based on modelling global dependencies and

multi-scale features, it achieves information fusion between the

frequency domain and the spatial domain to improve image

dehazing effects, and has achieved state-of-the-art performance on

synthetic and real-world image dehazing datasets. However, due to the

domain gap between synthetic and real images, models trained solely

on synthetic data often lack generalization in real-world scenarios. To

overcome this limitation, Su et al. proposed DNMGDT, a dehazing

network that integrates multi-prior guidance with domain transfer

mechanisms (Su et al., 2025). By leveraging pseudo-label supervision,

adaptive weighting, and physically guided domain transfer strategies,

DNMGDT significantly improves performance on real-world hazy

images. Collectively, these deep learning–based dehazing approaches

offer valuable insights and advancements for the field of

image restoration.

Smart agriculture plays a vital role in modern society, and

farmland monitoring, as a key component, significantly contributes

to its advancement through efficient and intelligent management. In

farmland monitoring, the images collected are often influenced by

the complexity of outdoor weather conditions, such as fog, causing

drones to capture blurry images with visible haze. This impacts

subsequent evaluation and recognition tasks, making it challenging

to accurately identify and analyze targets. Hazy images not only

reduce the accuracy of drone-based farmland monitoring systems

but may also adversely impact agricultural decision-making,

thereby affecting the responsiveness and efficiency of farmland

management (Qiu et al., 2024; Zhang et al., 2022). To address this

issue, image dehazing technology plays a crucial role in smart

agriculture by effectively enhancing the clarity and detail of

images, thus providing reliable visual support for tasks such as

crop monitoring and pest detection. However, existing image

dehazing algorithms continue to suffer from poor performance,

primarily due to their inability to directly establish the relationship

between hazy and clear images in the feature space, leading to

insufficient utilization of physical image information and poor

restoration quality. To address this, we propose a novel image

dehazing model, DUNet, based on the atmospheric scattering

model, designed to fully extract dehazing features and effectively

restore visual information affected by haze and other environmental

factors. Specifically, we utilize the classic U-Net architecture with

residual connections as the backbone to extract multi-scale

information. Next, we employ the hybrid convolution module,

MixConv, which incorporates depthwise separable convolution

and multi-scale gated convolution, to thoroughly extract detailed

feature information. Furthermore, we integrate a dehazing feature

extraction unit based on the atmospheric scattering model into the

network, which predicts atmospheric light and transmission maps
frontiersin.org

https://doi.org/10.3389/fpls.2025.1632052
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhao et al. 10.3389/fpls.2025.1632052
through dual paths, establishing the relationship between hazy and

clear images in the feature space. Finally, we utilize the SK fusion

module (Song et al., 2022) to dynamically merge the feature maps

extracted from different paths. Our main contributions are

as follows:
Fron
1. Based on real UAV-collected rice field image data, a haze-

affected paddy field image dataset was synthesized using the

atmospheric scattering model.

2. A new end-to-end dehazing model, DUNet, for smart

agriculture is proposed based on the atmospheric

scattering model.

3. A hybrid convolution module, MixConv, containing

depthwise separable convolution and multi-scale gated

convolution, is proposed to enhance the model’s ability to

extract multi-scale information.

4. A dehazing feature extraction unit (DFEU) is proposed to

establish the relationship between hazy and clear images in

the feature space.

5. Experimental results show that DUNet performs well in

dehazing tasks on the remote sensing haze dataset and rice

field haze image dataset, demonstrating good robustness

and providing a new strategy for image dehazing.
2 Materials and methods

2.1 Datasets

This study employed two datasets, one of which is the publicly

available remote sensing dataset, RSHaze (Lihe et al., 2024). Due to
tiers in Plant Science 04
the highly uneven distribution of haze in remote sensing images,

haze removal is commonly considered a classic non-uniform image

dehazing problem. Therefore, the dehazing performance of the

proposed model was evaluated on the remote sensing dataset. The

RSHaze dataset comprises 1330 pairs of remote sensing images,

each resized to 512x512 pixels. As per the official split, 1000 pairs

are designated for training, and the remaining 330 pairs are

allocated for testing. The second dataset is derived from two

paddy field datasets, URC (Bai et al., 2023) and DPRD (Ye et al.,

2024). The images are cropped to 512x512 pixels, resulting in a total

of 1978 clear paddy field images. According to Equations 1, 2, after

accurately estimating the depth information of the image, the

blurred image can be synthesized using the atmospheric

scattering model. Thus, we first estimate the depth information of

the clear paddy field images using Monodepth2 (Godard et al.,

2018). Next, following Equation 2, the scattering coefficient is set to

2.0 to compute the transmission map. Finally, based on Equation 1,

the atmospheric light is set to 170 to obtain the synthesized blurred

image. Ultimately, we constructed a haze image dataset for paddy

fields, named Paddydata. Paddydata consists of 1978 pairs of paddy

field images, each resized to 512x512 pixels. The dataset is randomly

split into training, validation, and test sets with a 7:1:2 ratio: 1385

pairs for training, 197 pairs for validation, and 396 pairs for testing.

The paired images from the two datasets are shown in Figures 1A, B

are randomly selected images with varying haze concentrations

from RSHaze, while Figures 1C, D are paired images from different

paddy fields. During training, to increase data diversity, we applied

five data augmentation techniques: random cropping, random

horizontal flipping, random rotation, aligned cropping, and pixel

normalization. Specifically, the images are randomly cropped to

256x256 pixels, with a 50% chance of horizontal flipping. The

rotation angles are randomly chosen from 0°, 90°, 180°, or 270°.
FIGURE 1

Images of RSHaze and Paddydata datasets. (A) and (B) depict images of varying haze concentrations from RSHaze, while (C) and (D) show haze
images of different rice paddies from Paddydata.
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Center cropping is applied to align the image size, and pixel values

are normalized to the range [-1,1]. These data augmentation

techniques effectively enhanced data diversity, mitigated

overfitting to specific sample features, and improved the

robustness and generalization ability of the model. The dataset is

publicly available at (https://github.com/MaiheZHao/data).
2.2 Network architecture

The DUNet model utilizes the MixConv module for feature

extraction at every stage. A dehazing feature extraction unit

(DFEU), based on the atmospheric scattering model, is inserted

between the encoder and decoder to extract fog-free features. The

decoder employs the SK fusion module to dynamically combine

feature representations from multiple paths. The overall

architecture of DUNet is depicted in Figure 2. The blurry image I

first passes through the MixConv module and a downsampling

encoder to extract multi-scale blurry image features Ii within the

feature space, where i is 1, 2, 3, or 4. Subsequently, the dehazing

feature extraction unit extracts fog-free features Ji, where i is 1, 2, 3,
Frontiers in Plant Science 05
or 4. Subsequently, the SK fusion module combines the feature

maps extracted by the encoder’s downsampling and those

upsampled and restored by the decoder. The MixConv module

decodes the fog-free features into a final dehazed image. Finally, a

global residual operation is applied to the blurry image I to produce

the final dehazed image J.
2.3 MixConv block

The MixConv Block primarily utilizes depthwise separable

convolutions (Chollet, 2017) and a multi-scale gated fusion

mechanism,and the structure of the MixConv Block is depicted in

Figure 3. First, the input feature x is normalised via BatchNorm

(Ioffe and Szegedy, 2015) to enhance network efficiency and

stability, yielding feature �x. Subsequently, �x undergoes dual-path

convolution processing.One branch employs deep separable

convolution to efficiently extract local features, while the other

branch incorporates a gating mechanism using the Sigmoid

function to generate channel weights for the features, thereby

enhancing the network’s expressive capacity. This results in the
FIGURE 2

Overall structure of DUNet.
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intermediate feature x1. Second, the intermediate feature x1
undergoes dual-path convolution processing. One branch

employs deep separable convolution to further extract local

features x2, while the other branch utilises dilated convolution

(Yu and Koltun, 2015) and deep convolution to extract features

x3 within a larger receptive field. Both branches incorporate

InstanceNorm (Ulyanov et al., 2016) and the ReLU activation
Frontiers in Plant Science 06
function to achieve normalisation and non-linear enhancement.

Finally, a gating mechanism fuses the features from the dual-path

convolutions. The outputs x2 and x3 are concatenated, then

convolved with the Sigmoid function to generate channel weights

w1 and  w2 for each feature. These weighted features are

subsequently fused, followed by a pointwise convolution for

channel mapping to unify dimensions. The result is connected via

residual connections to the original input feature x, yielding the

output feature y. With its computational process described by

Equations 3–8. Here, PWConv denotes pointwise convolution,

DWConv denotes depthwise convolution, and DConv denotes

dilated convolution.

�x = BatchNorm(x) (3)

x1 = Sigmoid(PWConv(�x))*DWConv(PWConv(�x)) (4)

x2 = DWConv(ReLU(InstanceNorm(PWConv(x1)))) (5)

x3 = DWConv(ReLU(InstanceNorm(DConv(x1)))) (6)

(w1,w2) = Sigmoid(Conv(Concatenate(x2, x3))) (7)

y = x + PWconv(w1*x2 + w2*x3) (8)
2.4 Dehazing feature extraction unit

The atmospheric scattering model is commonly employed to

describe the transition of a clear image to a hazy image. Due to the

uncertainties in atmospheric light and the transmission map, haze

removal from real hazy images remains a central focus for

researchers. Methods that directly estimate atmospheric light and

the transmission map in the original space may result in error

accumulation. Inspired by FDU and PDU, incorporating physical

priors into the feature space ensures the model aligns with the

atmospheric scattering model , thereby enhancing the

interpretability of the dehazing process while mitigating the

impact of estimation errors in atmospheric light and the

transmission map. This study introduces a novel dehazing feature

extraction unit, DFEU, which predicts atmospheric light and the

transmission map through a dual-path mechanism, establishing a

relationship between hazy and dehazed images in the feature space,

and synthesizing the features of the potential clear image with

greater accuracy based on the physical model. First, we redefine the

atmospheric scattering model, as shown in Equations 9, 10.

J(x) = I(x)
1

t(x)
+ A(1 −

1
t(x)

) (9)

J(x) = (I(x) − A)
1

t(x)
+ A (10)

Then, features are extracted through the kernel K, and

Equation 9 can be expressed as Equation 11:
FIGURE 3

Structure of MixConv Block.
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k⊛ J = k⊛ ((I − A)⊙
1
t
) + k⊛A (11)

where ⊛ represents the convolution operator, and ⊙
represents the Hadamard product. We then introduce K , J, I, A
and D as matrix-vector forms of k, J , I, A, and 1

t , as shown in

Equation 12. We can compute the formula through algebraic

operations. Additionally, the diagonal vectors of the diagonal

matrix D correspond to the vectorization of 1
t .

KJ = K(I − A)D + KA = KDI − KDA + KA (12)

Next, we decompose the matrix KD into the product of two

matrices K and Q, as indicated in Equation 13.

KJ = Q(KI) − Q(KA) + KA (13)

We can denote �A as an approximation of the atmospheric light

corresponding to the feature KA and �t as an approximation of the

transmission map corresponding to the feature Q−1. KI and KJ can
be considered the extracted features �I and �J of the hazy image   I and

its corresponding clear image J , respectively. Therefore, based on

Equation 12, we can calculate the physically perceived features, as

shown in Equation 14.

�J = (�I − �A)⊙
1
�t
+ �A (14)

The structure of the DFEU is illustrated in Figure 4. The DFEU

employs a dual-path design to predict atmospheric light and the

transmission map, with one branch generating the atmospheric

light �A. First, local features are extracted via convolution.

Subsequently, two shallow striped convolutions with reduced

parameters approximate the effect of standard large-kernel depth

convolutions, capturing broader contextual information. Next,

global context is fused and nonlinear expression enhanced

through convolution, BN, and the ReLU activation function.

Finally, atmospheric light is extracted via convolutional layer with

Sigmoid activation function (Cai et al., 2024). In the other branch,

the transmission map �t is generated. According to prior research,

the transmission map is non-uniform. First, we employ a spatial

pyramid structure for multi-scale feature extraction, wherein the

structure adaptively and uniformly pools the input features across

three scales to capture additional feature representations and
Frontiers in Plant Science 07
structural information. Subsequently, we adjust the dimensions of

the three outputs and concatenate them to form a one-dimensional

attention map (Guo et al., 2020). Next, we employ two points to

perform dimensionality reduction and enhance non-linear

expression through the convolutional layer and the ReLU

activation function. Finally, we utilise the Sigmoid activation

function to extract transmission graph features (Yu et al., 2024a),

as shown in Equations 15–17. Here, DWConv1�11 denotes a

convolution kernel of (1,11), which emphasizes feature extraction

in the horizontal direction, while DWConv11�1 denotes a

convolution kernel of (11,1), which emphasizes feature extraction

in the vertical direction.

�A = Sigmoid(Conv(ReLU(BN(Conv(DWConv11�1

(DWConv1�11(Conv(�I))))))))

(15)

�t1 = Concat(Resize((AAP(1)(�I),AAP(2)(�I),AAP(4)(�I)))) (16)

�t = Sigmoid(PWConv(ReLU(PWConv(�t1)))) (17)

The proposed DFEU generates dehazed features �J from the

input features �I, which are subsequently utilized by the decoder to

produce dehazed images. DFEU predicts atmospheric light and the

transmission map using a dual-path approach, establishing the

relationship between hazy and dehazed images in the feature

space and synthesizing more accurate features for potential

dehazed images.
2.5 SK fusion

To fuse the dehazed features extracted by DFEU with those

from the MixConv module, this study introduces SK Fusion, which

is based on the SK module (Li et al., 2019). The structural diagram is

presented in Figure 5. The two input features consist of the feature

map x1 from the skip connection and the feature map x2 from the

main path. Initially, the input features x1 and x2 are added, followed

by global average pooling to extract global information for each

channel. Next, the MLP module F comprising two PWConv layers

and a ReLU activation function, is introduced to generate a more
FIGURE 4

Structure of Dehaze Feature Extraction Unit.
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compact feature representation, thus improving the accuracy of

adaptive selection. The two PWConv layers perform dimensionality

reduction and expansion, enhancing the efficiency of the MLP

module. Finally, the obtained fusion weights are processed using

the softmax function and a segmentation operation, enabling the

weighted selection of different information, as shown in Equations

18, 19. Ultimately, the fused output feature y is obtained.

w1,w2f g = Split(Softmax(Fmlp(GAP(x1 + x2)))) (18)

y = w1*x1 + w2*x2 (19)
2.6 Loss function

In this study, the L1 loss function is employed, which quantifies

the absolute difference between the predicted and true values, also
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referred to as Least Absolute Deviation or Absolute Error Loss. In

general, it minimizes the sum of the absolute differences between

the target values yi and the model’s predicted values f (xi).

Specifically, let the target value be yi and the model’s predicted

value be f (xi). The loss function calculation is given by Equation 20.

L1loss(x, y) =  
1
no

n
i=1 yi − f (xi)j j (20)
3 Results and analysis

3.1 Experimental environment

In this study, to ensure the objectivity and reliability of the

experimental results, all experiments were conducted under a

consistent setup. The experiments were conducted on Ubuntu

20.04, utilizing an Intel(R) Xeon(R) Platinum 8352V CPU @

2.10GHz, paired with an NVIDIA GTX 4090 GPU and 24GB of

VRAM. The programming language used was Python 3.8.10, with

PyTorch 1.11.0 as the deep learning framework and CUDA 11.3 for

GPU acceleration. The training batch size was set to 24, with 1000

epochs. The optimizer used was AdamW (Kingma and Ba, 2014),

with an initial learning rate of 0.0002 and a decay factor of 0.01.
3.2 Evaluation metrics

This paper employs commonly used image dehazing evaluation

metrics, namely Peak Signal-to-Noise Ratio (PSNR) and Structural

Similarity (SSIM), to comprehensively evaluate the model’s

dehazing performance. PSNR is a metric for image quality that

measures the ratio between the maximum signal and background

noise. For a grayscale image I of size m×n and a noisy image K, the

PSNR calculation formula is provided in Equations 21, 22.

MSE =
1
mno

m−1
i=0 on−1

j=0 ½I(i, j) − K(i, j)�2 (21)

PSNR = 10� lg(
MaxValue2

MSE
) (22)

Here, MSE represents the Mean Squared Error between two

images, and MaxValue refers to the maximum possible pixel value

in the image. The minimum value of PSNR is 0, with higher values

indicating smaller differences between the two images and less

image distortion.

SSIM is a metric used to quantify the structural similarity

between two images, based on the human visual system’s

sensitivity to changes in local image structures. SSIM evaluates

image properties such as brightness, contrast, and structure.

Brightness is estimated using the mean, contrast through

variance, and structural similarity via covariance. Given two

images, x and y, the SSIM calculation formula is provided in

Equation 23.
FIGURE 5

Structure of SK Fusion.
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SSIM(x, y) =
(2mxmy + c1)(2sxy + c2)

(m2
x + m2

y + c1)(s 2
x + s 2

y + c2)
(23)

Here, mx represents the mean of x, s 2
x denotes the variance of x,

my is the mean of y, s 2
y is the variance of y  , sxy is the covariance

between x and y, c1 = (k1L)
2 and c2 = (k2L)

2 are constants to

maintain stability and avoid division by zero, and L refers to the

pixel value range. Typically, k1 = 0.01 and k2 = 0.03. The minimum

value of SSIM is 0, with higher SSIM values indicating greater

similarity between the two images.
3.3 Ablation experiment

In this study, due to the significant non-uniform distribution of

haze in remote sensing images, haze removal is frequently regarded

as a classic non-uniform image dehazing problem. Therefore, this

study assessed the performance of the proposed model in haze

removal using the RSHaze remote sensing dataset. Additionally, the

model’s dehazing performance in outdoor agricultural settings was

validated using the Paddydata paddy field haze dataset. Through a
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series of ablation experiments, the performance of each module in

the network was tested on both datasets, gradually adding modules

to observe their specific effect on network performance.

Additionally, we compared the dehazing performance of the

proposed DFEU with that of the FDU and PDU models.

3.3.1 Ablation experiment of modules
Based on gUNet, we named the resulting model Model1. We

then introduced the MixConv module alone, naming it Model2,

followed by the introduction of DFEU alone, resulting in Model3.

Finally, both MixConv and DFEU were combined, naming it

Model4. The experimental results are presented in Table 1. The

“√” in the table indicates the inclusion of the module. From Table 1,

it can be observed that Model1 achieved a PSNR of 33.2461 and an

SSIM of 0.9894 on the RSHaze remote sensing dataset, and a PSNR

of 34.7628 and an SSIM of 0.9935 on the Paddydata haze image

dataset. To enhance the model’s ability to extract multi-scale

information, Model2 incorporated the MixConv module,

replacing the convolution module of Model1, which leads to a

significant improvement in dehazing performance. The number of

parameters increased by 2.2371M. For RSHaze, the PSNR increased
TABLE 1 Ablation experiment results for different modules.

Model MixConv DFEU
RSHaze Paddydata

Parameters/M FLOPs/G
PSNR(dB) SSIM PSNR(dB) SSIM

Model1 33.2461 0.9894 34.7628 0.9935 0.8432 2.8347

Model2 ✓ 36.7143 0.9929 35.0863 0.9939 3.0803 10.2486

Model3 ✓ 34.5595 0.9909 35.3317 0.9936 2.0760 3.8639

Model4(ours) ✓ ✓ 37.2887 0.9933 36.0206 0.9946 4.1925 11.2745
f

The best results are marked bold.
FIGURE 6

Experimental results of ablation in different modules.
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by 3.4682, and SSIM increased by 0.0035. For Paddydata, PSNR

increased by 0.3235, and SSIM increased by 0.0004. Model3

integrated DFEU between the encoder and decoder, directly

establishing the relationship between hazy and clear images in the

feature space based on the atmospheric scattering model. This

further extracts dehazing features from the image and improves

the model’s dehazing performance. Compared to Model1, the

number of parameters increased by 1.2328M. For RSHaze, the

PSNR increased by 1.3134, and the SSIM increased by 0.0015. For

Paddydata, PSNR increased by 0.5689, and SSIM increased by

0.0001. Finally, Model4 incorporated both MixConv and DFEU,

combining the advantages of both to further improve the model’s

performance. Compared to Model1, the number of parameters

increased by 3.3493M, and FLOPs increased by 8.4398G. The

PSNR and SSIM on RSHaze increased by 4.0426 and 0.0039,

reaching values of 37.2887 and 0.9933, respectively. On

Paddydata, PSNR and SSIM increased by 1.2578 and 0.0011,

reaching values of 36.0206 and 0.9946.

This paper selected one representative image sample from each

of the RSHaze and Paddydata datasets for ablation experiments,

with results presented in Figure 6. Model2 incorporates MixConv

Blocks, demonstrating superior performance to Model1 in distant

scenes and hazy regions by preserving greater structural and

textural detail. However, residual blurring persists in denser fog

areas. Model3, featuring DFEU, exhibits enhanced stability when

processing unevenly distributed haze, with more natural transitions

at object boundaries. Nevertheless, clarity remains slightly

compromised on minute distant structures. Model 4, combining

both MixConv Block and DFEU, achieves the most balanced overall

performance. It not only effectively reduces extensive haze veils but

also demonstrates significant improvements in detail recovery. The

image’s colour fidelity and contrast are closer to the real scene,

demonstrating the effective integration of multi-scale feature

extraction and adaptive path selection, thereby validating the

efficacy of module combination.

The experimental results demonstrate that the MixConv Block

increases the receptive field by combining depthwise separable

convolution with dilated convolution. Without a significant

increase in computational costs, it captures subtle differences

between distant haze features and clear images. Depthwise

separable convolution reduces the parameter count, ensuring

computational efficiency and meeting the requirements for large-

scale image processing. Meanwhile, dilated convolution, by

expanding the receptive field, is better suited to handle deeper or

more extensive haze layers, thus improving the precision of
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information in the dehazing process. The incorporation of the

gating mechanism further enhances the model’s adaptability by

dynamically selecting the output from different convolution paths,

thereby effectively adjusting the fusion of multi-scale information.

For images with varying haze intensities and distributions, the

model can adaptively select the optimal feature path, thereby

improving the accuracy of image detail recovery affected by haze.

The application of this module in image dehazing not only

enhances the ability to extract multi-scale features but also

optimizes the restoration effect through an efficient weighting

mechanism. Particularly in complex haze environments, it more

effectively restores the true color and structure of the image. This

design enhances the quality of dehazing while avoiding excessive

computation and parameter redundancy introduced by traditional

convolution layers. It ensures the efficiency and robustness of the

entire dehazing process. DFEU predicts atmospheric light and

transmission maps using dual pathways, where one path

processes image information in different directions via horizontal

and vertical convolutions, thereby capturing spatial feature

dependencies. It adaptively learns the importance of each channel

in the dehazing task, enhancing features from channels that carry

critical information while suppressing irrelevant or redundant

channels, thereby improving dehazing performance. The second

path extracts spatial information at different scales through multi-

scale adaptive pooling, incorporating a weighting mechanism to

dynamically adjust feature importance at different spatial locations.

Through the fusion and learning of multi-scale information, it

ensures the precise restoration of haze regions of various sizes

during the dehazing process, thereby improving the model’s ability

to recover image details. MixConv Block extracts multi-scale haze

features while retaining structural details. These enhanced features

are then utilised by DFEU, which estimates transmitted light and

atmospheric light through dual-branch estimation, forming a

natural transition from multi-scale feature extraction to haze

component estimation. The incorporation of the MixConv Block

and DFEU allows for a better capture of multi-scale information in

images, further enhancing the model’s ability to detect dehazing

features, in the current environment of abundant computational

resources, ensuring model efficiency while significantly enhancing

its dehazing performance.

3.3.2 Ablation experiment of DFEU
Based on the atmospheric scattering model, we proposed a

Dehazing Feature Extraction Unit (DFEU) that predicts

atmospheric light and transmission maps through dual pathways,
TABLE 2 Ablation experiment results for DFEU.

Model FDU PDU DFEU
RSHaze Paddydata

Parameters/M FLOPs/G
PSNR(dB) SSIM PSNR(dB) SSIM

Model1 ✓ 36.7866 0.9928 35.2310 0.9941 3.5389 10.2435

Model2 ✓ 37.0704 0.9931 35.8030 0.9944 4.6154 10.6710

Model3(ours) ✓ 37.2887 0.9933 36.0206 0.9946 4.1925 11.2745
The best results are marked bold.
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establishing the relationship between hazy and clear images in

feature space, and synthesizing the potential clear image features

more accurately according to the physical model. To evaluate the

effectiveness of DFEU, we conducted experiments comparing the

FDU and PDU. Starting with gUNet+MixConv, the FDU was

introduced and named Model1, the PDU was added and named

Model2, and finally, the DFEU was introduced and named Model3.

The experimental results are presented in Table 2. The “√” in the

table indicates the addition of the module. From Table 2, it is

evident that Model3, our proposed DUNet, achieved a PSNR of

37.2887 and an SSIM of 0.9933 on the RSHaze dataset. Compared to

Model1 and Model2, the PSNR improved by 0.5021 and 0.2183,

respectively, while the SSIM increased by 0.0005 and 0.0002,

respectively. On the Paddydata foggy image dataset, the PSNR

was 36.0206, and the SSIM was 0.9946. Compared to Model1 and

Model2, the PSNR increased by 0.7896 and 0.2176, respectively,

while the SSIM increased by 0.0005 and 0.0002, respectively.

This paper selected one representative image sample each from

the RSHaze and Paddydata datasets for ablation experiments, with

results presented in Figure 7. Model1, failing to adequately account

for the spatial non-uniformity of the transmission map, often

exhibits residual haze veils in distant regions and blurred

boundaries within the test images. Model2 employs dual-branch

paths to model atmospheric light and transmission maps separately,

yielding more natural overall colouration and improved edge clarity

for foreground objects compared to FDU. However, it still exhibits
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insufficient detail in localised areas and extensive dense fog zones.

Model 3, the proposed model in this paper, further incorporates an

adaptive mechanism. In the test images, it not only restores colours

more accurately in complex regions such as terrain boundaries but

also maintains good clarity in fine textures and distant structures.

Simultaneously, it avoids over-restoration in clear areas, achieving

the optimal overall image depth and naturalness.

The experimental results show that FDU overlooks the fact that

transmission maps are not uniform like atmospheric light, and

using the same method to extract features for both atmospheric

light and transmission maps does not lead to accurate feature

representations. PDU employs dual pathways to separately extract

features corresponding to atmospheric light and transmission maps,

more accurately synthesizing potential clear image features and

promoting information transfer and feature extraction in feature

space. DFEU further enhances feature detail extraction in the dual

pathways, not only adaptively adjusting the importance of feature

maps but also dynamically adjusting haze intensity in various

regions of the image. This results in more accurate extraction of

features corresponding to atmospheric light and transmission maps,

thereby improving the dehazing effect. DFEU enables the model to

restore details in hazy areas more effectively, while preventing over-

restoration of clear regions, thereby preserving the naturalness of

the image. Compared to FDU and PDU, DFEU exhibited excellent

dehazing performance on both datasets, demonstrating the success

of the proposed module.
FIGURE 7

DFEU module ablation experiment results.
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3.4 Comparison of experimental results of
various dehazing models

To validate the performance and effectiveness of the model, we

conducted a comprehensive comparison experiment using several

representative models, including AODNet, DehazeNet, gUNet,

AECRNet (Wu et al., 2021), GridDehazeNet (Liu et al., 2019),

GCANet, PFDN, MSBDN (Dong et al., 2020), and Dehazeformer.

3.4.1 Quantitative analysis
To comprehensively assess the dehazing performance of the

DUNet model developed in this study, we conducted comparative

experiments using existing popular models in the same

experimental environment. The results of the comparative

experiments are presented in Table 3. As presented in Table 3,

the PSNR of DUNet on the RSHaze remote sensing dataset is

37.2887, and the SSIM is 0.9933. On the Paddydata foggy image

dataset, the PSNR is 36.0206, and the SSIM is 0.9946. DUNet

achieved the highest PSNR and SSIM on both datasets. Compared

to Dehazeformer, the model with the best dehazing performance

among the other models, the number of parameters in the model

increased by 3.5051M, and FLOPs increased by 4.8337G. DUNet

improved the PSNR and SSIM by 1.3505 and 0.003, respectively, on

the RSHaze dataset. On the Paddydata dataset, DUNet improved

the PSNR and SSIM by 0.8459 and 0.0009, respectively. Compared

with other models, DUNet has obvious advantages in terms of

PSNR and SSIM, proving that our model has good application

potential and scalability without significantly increasing

computational overhead while improving dehazing performance.

The comparison and analysis of the above results clearly

demonstrate that, in the image dehazing task, DUNet achieves

better evaluation metrics compared to other popular models,

indicating superior dehazing performance.
Frontiers in Plant Science 12
3.4.2 Qualitative analysis
We selected three representative samples from the RSHaze

dataset, which cover different haze concentrations in remote

sensing images. Additionally, we chose three representative

samples from the Paddydata dataset, containing images with

varying haze concentrations collected from rice fields. These

samples were qualitatively analyzed to assess the performance

differences of various methods in handling segmentation

accuracy, robustness, and adaptability to complex scenarios. In

the selected test images, we focused on representative areas, such

as color-rich regions and heavily hazy zones, and observed the

dehazing performance of different models. Figure 8 and Figure 9

provide a qualitative comparison between DUNet and other

dehazing models.

For the RSHaze dataset, early end-to-end image dehazing

models, such as AODNet and DehazeNet, exhibit poor

performance on remote sensing datasets. These models tend to

distort when processing detailed and complex scenes, leaving

significant haze in the resulting images and failing to achieve

effective haze removal. Models that neglect physical feature

spaces, such as gUNet, AECRNet, GridDehazeNet, and GCANet,

display similar dehazing performance but still struggle with haze

detail processing. As shown in Figure 8, these models leave residual

haze in the dehazed regions, resulting in slightly hazy images with

color discrepancies compared to haze-free images. This indicates

that neglecting physical features impacts both haze removal and

color restoration in blurred areas. PFDN and MSBDN demonstrate

improved dehazing performance, however, they still suffer from

artifacts at object edges and slight visual blur in the restored images.

Due to its feature extraction unit, PFDN stands out in color

restoration and is one of the few models that emphasize color

details in the tests. The introduction of an improved Transformer

Block in Dehazeformer significantly advances feature extraction,
TABLE 3 Comparative experimental results of different models.

Model
RSHaze Paddydata

Parameters/M FLOPs/G
PSNR(dB) SSIM PSNR(dB) SSIM

gUNet 33.2464 0.9894 34.7626 0.9935 0.8432 2.8304

MSBDN 35.4667 0.9908 34.1449 0.9903 28.7117 24.6672

DehazeNet 22.6331 0.9262 20.9062 0.7736 0.0092 0.5915

AOD-Net 22.4631 0.9291 19.1063 0.7531 0.0023 0.1164

GCANet 33.8754 0.9885 31.8586 0.9878 0.7021 18.5027

GridDehazeNet 33.0615 0.9895 34.3725 0.9929 0.9588 21.5598

AECRNet 31.8469 0.9847 32.1510 0.9831 2.5906 42.9314

PFDN 34.9240 0.9900 33.5383 0.9869 11.2742 50.5294

Dehazeformer 35.9382 0.9903 35.1747 0.9937 0.6874 6.4408

DUNet(ours) 37.2887 0.9933 36.0206 0.9946 4.1925 11.2745
The best results are marked bold.
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particularly at object edges, making it the second-best model after

our DUNet. However, it struggles to accurately restore the original

colors in bright regions obscured by haze, leading to noticeable

color errors. As shown in Figure 8, our DUNet model outperforms

all other models in dehazing, including color restoration and feature

detail recovery. It not only recovers the bright regions obscured by

haze but also excels in processing object details.
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For the Paddydata dataset, AODNet and DehazeNet encounter

the same issue. The processed paddy field images still retain some

haze, which is easily noticeable, and fail to achieve effective haze

removal. gUNet, AECRNet, and GCANet exhibit similar dehazing

performance, however, they still show significant shortcomings in

handling the edges of object details, such as the colored flag markers

in the paddy fields. As shown in Figure 9, after processing, the edges
8FIGURE

Performance evaluation of different dehazing models on the RSHaze dataset.
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of the flag markers still display haze features, resulting in blurry

details in the output image. Furthermore, due to the residual haze,

color recovery is also insufficient. GridDehazeNet, PFDN, and

MSBDN further improve dehazing performance. However, they

still exhibit artifacts at object edges, and the bright regions of the

restored images remain slightly obscured by haze. The introduction

of an improved Transformer Block in Dehazeformer leads to
Frontiers in Plant Science 14
significant advancements in feature handling, making it second

only to DUNet in terms of dehazing performance. Nevertheless,

color compensation remains slightly skewed, showing deviations

from the original clear images, and slight haze still lingers in certain

details, such as the paddy stalks. Finally, as shown in Figure 9,

DUNet outperforms all other models in haze removal, excelling in

both object edge details and vibrant color regions. It restores
FIGURE 9

Performance evaluation of different dehazing models on the Paddydata dataset.
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sharper edges and handles detailed elements like paddy stalks and

colored flags with the best performance.
3.5 Failure analysis and discussion

In Figure 8 and Figure 9, it can be observed that the model still

exhibits minor residual haze in certain areas with colour tones similar to

those of haze, such as road surfaces and reflective areas of paddy fields.

In such areas, where the colours of the objects are highly similar to those

of the haze itself, the model may struggle to distinguish between the

actual scene content and the haze components, leading to incomplete

haze removal. The fundamental reason lies in the fact that, in these low-

contrast areas, the model finds it difficult to accurately differentiate

between the foreground and the background information obscured by

the haze, thereby reducing the effectiveness of the haze removal process.

This phenomenon also reflects that the current model still has room for

improvement in its representation capabilities when dealing with areas

with blurred edges and weakened details, particularly in terms of

modelling accuracy for colour separation and structural preservation.

In future research, we will enhance themodel’s perception capabilities in

low-contrast regions and improve its ability to distinguish between haze

and background details. For example, more refined feature

enhancement mechanisms or region-adaptive dehazing methods

based on visual attention can be introduced to improve the model’s

dehazing accuracy in regions with similar colours.
4 Discussion

Deep learning has demonstrated significant advantages in

image restoration tasks, offering an effective approach to the

problem of fog removal. However, existing methods remain prone

to feature loss and edge blurring under extreme weather conditions

and complex scenes. Consequently, developing efficient fog removal

techniques holds considerable importance for enhancing the

accuracy and stability of drone-based agricultural field monitoring.

This paper proposed a dehazing method and develops a new

dehazing network to remove blurriness from remote sensing

datasets and foggy paddy field image datasets. DUNet aims to

fully extract clear features from the images and effectively recover

visual information affected by blurriness. Specifically, the backbone

network extracts multi-scale feature information from blurry

images, while the MixConv convolution module captures useful

information more comprehensively, improving the model’s feature

representation ability when handling complex blurry images. The

DFEU based on the atmospheric scattering model, establishes a

mapping between the blurry and clear images in feature space

through dual-path predictions, providing more precise information

for the dehazing process and yielding finer dehazing features.

Finally, the dynamic characteristics of the SK module enable it to

flexibly adjust the feature fusion strategy under different input

conditions, enhancing the model’s adaptability and robustness.
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The research on image dehazing based on remote sensing and

foggy paddy field image datasets demonstrates that DUNet holds

significant potential in addressing challenges such as haze and

blurring. The PSNR on the RSHaze remote sensing dataset is

37.2887, and the SSIM is 0.9933. On the foggy paddy field image

dataset, Paddydata, the PSNR is 36.0206 and the SSIM is 0.9946.

Experimental results demonstrate that, compared to other popular

image dehazing models, DUNet directly establishes relationships

between hazy and clear images within the feature space. This

enables the model to fully leverage image physical information to

extract dehazing features and effectively restore visual information

impaired by factors such as haze. DUNet offers superior

performance, confirming its potential and feasibility for outdoor

smart agriculture dehazing tasks.

However, similar to most deep convolutional network models,

DUNet relies on paired images for training. While it demonstrates

strong dehazing performance on the two synthetic blurry datasets

used in this study, experiments with unpaired foggy images have

not yet been explored. Moreover, DUNet does not adequately

balance the number of parameters with computational efficiency.

Although it performs well, the inclusion of complex units increases

both the number of parameters and computational demands.

Furthermore, the lack of real-world foggy image datasets has long

been a challenge in the image dehazing field. Most existing open-

source datasets are based on clear images with synthetic haze, which

undermines the authenticity of foggy datasets and negatively

impacts the model’s performance.

In future research, we plan to address these limitations from

three aspects. First, regarding datasets, we will collaborate with

professional organizations or large laboratories to collect real

foggy data, capturing paired images from the same area under

both clear and foggy conditions. This will also include unpaired

real foggy and clear images to ensure the authenticity and

effectiveness of the dataset, which is foundational in deep

learning. Second, in terms of models, developing a lightweight,

high-performance image dehazing model will be a key direction,

as image dehazing is primarily used as preprocessing for

subsequent visual tasks. Thus, further research on model

deployment and computational efficiency is necessary, focusing

on lightweight yet high-performance model architectures.

Additionally, incorporating better attention mechanisms and

innovative feature fusion strategies will enhance the model’s

adaptability to complex environmental conditions. Finally, we

aim to explore unpaired image dehazing, enabling experiments

to be conducted entirely based on real-world foggy images,

independent of datasets . This wi l l involve not only

convolutional neural networks but also the integration of

generative adversarial networks and diffusion models for future

development. Through these efforts, we seek to advance image

dehazing technology to meet real-world needs for high-quality

image restoration, providing more accurate technical support for

research and contributing to the progress of fields such as

intelligent monitoring, remote sensing, and smart agriculture.
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