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Introduction: Sorghum is an important food and feed crop. Identifying sorghum

seed varieties is crucial for ensuring seed quality, improving planting efficiency,

and promoting sustainable agricultural development.

Methods: This study proposes a high-precision classification method based on

the fusion of RGB images and hyperspectral data, using an improved deep

residual convolutional neural network. A spectrogram fusion dataset containing

12,800 seeds from eight sorghum varieties was constructed. The network was

enhanced by integrating depthwise separable convolution (DSC) and the

Convolutional Block Attention Module (CBAM) into the ResNet50 framework.

Results: The CBAM-ResNet50-DSC model demonstrated outstanding

performance, achieving a classification accuracy of 94.84%, specificity of

99.20%, recall of 94.39%, precision of 94.52%, and an F1-score of 0.9438 on

the fusion dataset.

Discussion: These results confirm that the proposed model can accurately and

non-destructively classify sorghum seed varieties. The method offers a

dependable and efficient approach for seed screening and has practical value

in agricultural applications.
KEYWORDS

artificial intelligence, sorghum seed, variety identification, multi-modal fusion,
ResNet models
1 Introduction

Sorghum is a drought and heat-tolerant cereal crop widely used for food, feed, and

brewing. Its gluten-free nature and associated health benefits have also drawn increasing

attention in developing functional and health-oriented food products (Khoddami et al.,

2023). Seed purity refers to the consistency of sorghum seeds in maintaining their
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characteristic traits, which directly impacts the crop’s yield and

quality. During harvesting and storage, impurities may be

unintentionally mixed into seed lots, leading to economic losses

in agricultural production and processing. Moreover, some

individuals or companies may intentionally substitute inferior

sorghum seeds for high-quality varieties in the seed market to

gain additional profit (Zhang et al., 2017). Therefore, developing a

rapid and nondestructive detection technique to screen and grade

sorghum seeds before they enter the market is essential, ensuring

effective agricultural production implementation, quality control,

and market supervision.

Traditional methods for seed identification include visual

inspection (Shahin et al., 2006), flotation (Torchio et al., 2014),

microscopic analysis (Asmussen et al., 2015), chemical testing (Chen

et al., 2016), and germination experiments (Andersson et al., 2007).

Although these approaches are simple and easy to implement, they are

time-consuming and highly subjective, making them insufficient to

meet the demands of modern agriculture. Therefore, there is an urgent

need for a rapid, accurate, and nondestructive method for identifying

and classifying sorghum seeds.

In recent years, image processing and deep learning approaches

have received a lot of interest in the subject of seed classification. For

example, Franco C showed that by combining data augmentation

with deep convolutional neural networks, seed vigor could be

predicted with up to 90% accuracy using simple RGB

information, such as shape, color, and size (Franco et al., 2020).

Similarly, Masuda K used deep learning and interpretable AI

approaches to perform noninvasive diagnosis of seedless/seeded

internal features in persimmon fruits, with a VGG16 model

classification accuracy of up to 89% from simple RGB photos

(Masuda et al., 2021). In another study, Sunil, G used the VGG16

deep learning classifier to classify RGB images of four weeds

(horseshoe grass, kochia, ragweed, and waterhemp) and six crops

(black beans, canola, corn, flax, soybeans, and sugar beets). The

results showed that the average Fl score of the VGG16 model

classifier ranged between 93% and 97.5 (Sunil et al., 2022).

In summary, RGB data collected by industrial cameras, paired

with deep learning models, performed well in seed classification.

However, relying solely on RGB photos does not completely utilize

the spectral information inside the seeds, resulting in certain

limitations in categorization accuracy. As a result, hyperspectral

imaging technology is a cutting-edge technology that has advanced

rapidly in recent years, and it has been integrated with artificial

intelligence algorithms to create a new nondestructive detection

technique (Kamruzzaman et al., 2016). For example, Soares and

SFC employed near-infrared hyperspectral imaging (NIR-HSI) to

quickly and non-destructively classify cotton seed varieties. The

NIR-HSI, conventional NIR, and conventional VIS-NIR datasets

were correctly classified at 98.0%, 89.7%, and 91.7%, respectively,

using partial least squares discriminant analysis (Soares et al., 2016).

Similarly, An, JL introduced a unique feature extraction method

called Low-Rank Tensor Approximation (LRTA) based on

hyperspectral images, which improved accuracy by 4% over the

old method (An et al., 2023). In another study, Malik showed that

integrating hyperspectral imaging (HSI) and convolutional neural
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networks (CNNs) could quickly and non-destructively estimate the

tofu quality of soybean seeds with 96-99% accuracy (Malik et al.,

2024). Recently, Yao et al. proposed Spectral Mamba, an efficient

state-space model for hyperspectral image classification (Yao et al.,

2024), while Pang et al. introduced SPECIAL, a CLIP-based zero-

shot classification framework that eliminates the need for manual

annotations (Pang et al., 2025), providing new directions for

efficient and generalizable HSI analysis.

In recent years, to enhance feature extraction capability and

computational efficiency in agricultural image analysis, attention

mechanisms (such as SE, ECA, and CBAM) and depthwise

separable convolutions (DSC) have been widely introduced into

various detection and classification tasks. Jiang et al. proposed a

deep learning-based method for dense Muscovy duck detection. By

integrating CBAM modules into the YOLOv7 framework, they

developed the CBAM-YOLOv7 model. Experimental results

demonstrated that this method outperformed SE-YOLOv7 and

ECA-YOLOv7 in terms of accuracy, recall, and mAP, confirming

the effectiveness of attention mechanisms in dense livestock detection

tasks (Jiang et al., 2022). Guo et al. proposed an improved SSD-based

method for cotton leaf disease detection to address the problems of

large model size and low detection accuracy. By introducing the

lightweight MobileNetV2 as the backbone and integrating SE, ECA,

and CBAM attention mechanisms, the model significantly reduced

parameters and computation while enhancing detection speed and

accuracy. Among the variants, the SSD_MobileNetV2+ECA model

achieved the highest precision, recall, F1-score, mAP, and FPS,

demonstrating that attention mechanisms can effectively enhance

feature representation and improve detection performance under

complex conditions (Guo et al., 2024). Tyagi et al. proposed a

hyperspectral imaging approach combined with improved

depthwise separable convolution to assess fruit maturity. Applied to

kiwifruit and avocado, the model achieved higher accuracy in

predicting maturity, firmness, and sugar content, outperforming

state-of-the-art methods (Tyagi et al., 2024). In summary, although

existing studies have made progress in seed classification using RGB

images and hyperspectral techniques, and methods such as attention

mechanisms and depthwise separable convolutions have shown

potential in enhancing model performance and efficiency, each

approach has its limitations. RGB-based methods lack internal

spectral information, while hyperspectral approaches often face

high data complexity. Moreover, multi-modal studies specifically

targeting sorghum seeds remain limited, highlighting the need for

further research to improve classification accuracy and practical

applicability. As a result, our project team has previously

investigated the merging of geometric and textural features taken

from photos with hyperspectral data to create multi-modal feature

vectors and categorize them using machine learning algorithms. The

results demonstrate that multi-modal data fusion can significantly

increase classification performance (Bi et al., 2024). However, in real

applications, the preprocessing procedure of integrating multi-modal

data into one-dimensional vectors is complex, increasing the

preparation workload. As a result, this paper presents a novel

multi-modal fusion technique and employs an upgraded ResNet

network model for classification.
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The main contributions and novelties of this work are

summarized as follows:
Fron
1. We propose a novel data-level multi-modal fusion strategy

that transforms one-dimensional hyperspectral data into two-

dimensional reflectance curve images and concatenates them

with RGB images to form a unified spectrogram-like input.

This early-stage data fusion preserves both spatial and spectral

characteristics in a structurally consistent format (224*224*3),

enabling the network to extract complementary information

more effectively and facilitating end-to-end learning.

2. We design an enhanced ResNet50-based classification model

by integrating the Convolutional Block Attention Module

(CBAM), which strengthens the model’s ability to focus on

critical spatial and channel features, leading to improved

feature discrimination and classification performance.

3. To further reduce model complexity and improve

computational efficiency, we incorporate depthwise

separable convolution (DSC) into the network. This not

only lowers the number of parameters and FLOPs but also

maintains high accuracy, making the model more suitable

for large-scale or resource-constrained applications.
Overall, this study introduces a lightweight and effective

framework for high-resolution sorghum seed classification,

demonstrating the value of data-level fusion in enhancing feature

representation and model performance.

The following of this article was organized as the section

“Materials and Methods” described the details of the datasets and

the overview of the methods, the experimental results were

described and discussed in the section “Results and Discussions,”

and the section “Conclusions” was the concluding remarks.
2 Materials and methods

2.1 Image acquisition and preprocessing

2.1.1 Data source and acquisition
The Jilin Academy of Agricultural Sciences, Jilin Province,

supplied eight distinct sorghum seed varieties, including JZ127,
tiers in Plant Science 03
JZ136, JZ141, JZ159, JZ160, JZ177, JZ186, and JZ187, which were

employed in this experiment. There were 12,800 seeds in total, 1600

seeds in each type. Training, validation, and testing were the three

groups into which the dataset was split in a 7:2:1 ratio.

2.1.2 Data acquisition and preprocessing
2.1.2.1 RGB image data

A Nikon camera (Nikon D7100) was used to take RGB pictures

of these seeds, and Figure 1a displays the RGB capture scheme. The

seeds were carefully chosen and validated by professionals before

images were taken to guarantee that the samples were entire,

consistently shaped, and free of dust and contaminants. Every

seed that was chosen acted normally looked tidy, and showed no

signs of damage. For imaging, 1600 samples of each type were

randomly picked; the sample size was selected to accommodate the

substantial data needed for the deep learning model (Wen, 2020).

Figure 1b displays the RGB pictures of the gathered sorghum seeds.

The main goal of sorghum variety identification is to ensure

sorghum seeds are pure, particularly to confirm the legitimacy of

individual seeds. An image with several seeds must be segmented to

employ a single seed recognition technique to differentiate between

various sorghum seed types. The original image is first transformed

to greyscale to highlight brightness-related elements and exclude

color information. A binarized image is then produced by applying

automatic global thresholding and morphological filtering

procedures, simplifying the image and extracting the target

contours. Lastly, morphological filtering was used to score and

mask the sorghum seed area in the binarized image. After that, it

was divided into separate 224*224 sorghum seeds, yielding 12,800

raw photos. Figure 2 depicts the picture-cutting procedure.

2.1.2.2 Hyperspectral data

The spectral data of sorghum seeds was obtained in this

experiment using a FieldSpec4 ground spectrometer; Figure 3a

displays the schematic diagram of the bright light data acquisition.

The instrument operates in the visible (VNIR), near-infrared (NIR),

and short-wave infrared (SWIR) bands, which span the wavelength

range of 350–2500 nm. It is ideal for fine spectrum analysis due to its

broad wavelength range, high signal-to-noise ratio (SNR up to

9000:1), and excellent spectral resolution (VNIR 1–3 nm, NIR 3–5

nm, SWIR 5–10 nm). In this experiment, the spectral characteristics of
FIGURE 1

(a) Schematic diagram of the RGB imaging setup for sorghum seeds (b) RGB images of eight sorghum seed varieties.
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sorghum seeds may be efficiently characterized for seed classification

utilizing hyperspectral data obtained with the FieldSpec4 ground

spectrometer. Because of its structure and effectiveness, a one-

dimensional form is typically employed to store spectral data.

Figure 3b displays the one-dimensional spectrum data.

2.1.2.3 2D fusion of image data with hyperspectral data

In earlier studies, this project team successfully built multi-

modal feature vectors, applied machine learning techniques for
Frontiers in Plant Science 04
classification, and merged geometric and textural aspects of images

with hyperspectral data. The findings demonstrate that the

classification performance is much enhanced by multi-modal data

fusion. The multi-modal data must be combined into one-

dimensional vectors using this fusion approach, and the

preprocessing step is challenging, adding to the data processing

workload. This paper suggests a novel approach to data fusion:

upscaling one-dimensional spectral data to two-dimensional curves

and fusing them with two-dimensional picture data. This approach
FIGURE 2

Sorghum seed image cutting preprocessing.
FIGURE 3

(a) Schematic diagram of the hyperspectral data acquisition setup for sorghum seeds (b) Schematic representation of the raw spectral data storage
format for sorghum seeds.
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increases the fusion process’s efficiency while streamlining the data

preprocessing step. In particular, wavelengths and their related

reflectance values are employed to record the spectral data, with

the wavelength serving as the horizontal coordinate and the

reflectance as the vertical coordinate. The one-dimensional

spectral data are plotted intuitively as spectral reflectance curves

using data visualization tools (such as Python’s matplotlib library).

Using Python visualization tools such as matplotlib, the processed

spectral data are plotted into intuitive reflectance curves, clearly

reflecting the sample’s spectral response across different

wavelengths and providing a solid foundation for further data

analysis and fusion. Figure 4a illustrates a typical spectral curve of

collected sorghum seeds. To enhance curve smoothness and

readability, Savitzky-Golay (SG) filtering is applied prior to

plotting, effectively suppressing high-frequency noise while

preserving key structural features, as shown in Figure 4b. Given

that this study fuses spectral and RGB image data in image format

for classification, more complex preprocessing techniques such as

SNV or MSC normalization-which may distort curve shapes or

introduce redundancy were deliberately avoided. Instead, SG

filtering is selected as the sole preprocessing method due to its

simplicity, low computational cost, and excellent shape-preserving

capability, ensuring the physical and visual integrity of the spectral

data for image fusion and model input.

Subsequently, a new two-dimensional spectral fusion dataset

was constructed by horizontally concatenating the RGB images with

the preprocessed spectral curve images. As shown in Figure 4c, the

original RGB image with size 224*224*3 and the grayscale spectral

curve image with size 224*224*1 were first aligned in format. To

address the channel mismatch, the grayscale image was replicated

across the R, G, and B channels to form a pseudo-color image with

size 224*224*3, maintaining the visual appearance while ensuring

structural compatibility. The two images were then stitched side by
Frontiers in Plant Science 05
side to form a unified fusion image with a final resolution of

224*448*3 This fusion strategy preserves the intuitive visual

information of the RGB image while incorporating the key

spectral features from the hyperspectral data. It ensures structural

consistency in the fused input and enhances the expressive power of

the data, providing a richer and more integrated multi-modal

representation for deep learning-based classification.
2.2 Building the model

Gradient degradation and gradient vanishing issues frequently

arise during the training phase of convolutional neural networks

(CNNs) as their depth grows, impacting the model’s convergence

rate and ultimate accuracy (Wenchao and Zhi, 2022). Although the

gradient vanishing and the ResNet family of networks somewhat

mitigate explosion issues in deep neural networks, performance

deterioration may still occur during deep model training (Traore

et al., 2018). This paper introduces the attention mechanism into

the network structure to improve sorghum seeds’ recognition

performance and classification accuracy. It replaces some

standard convolutions with depth-separable convolutions to

enhance the model’s ability to extract key information. In order

to create a fast and nondestructive variety classification method

based on sorghum seed image data and hyperspectral data, this

experiment will use deep learning algorithms for eight different

types of sorghum seeds (ResNet18, ResNet34, ResNet50,

ResNet101, SENet-ResNet50, CBAM-ResNet50, ECA-ResNet50,

CBAM-ResNet50-DSC, eight residual network models).

2.2.1 ResNet model
(He et al., 2016) proposed the deep neural network structure

known as ResNet. While increasing the network layers, this network
FIGURE 4

(a) Raw hyperspectral curves (b) Preprocessed hyperspectral curves (c) Fusion of RGB data and hyperspectral data.
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successfully addresses the gradient vanishing issue and enhances

parameter consumption efficiency by implementing the residual

connection mechanism. ResNet is a popular model choice for

sorghum seed detection tasks because of its strong learning ability

for complicated features and rapid inference speed, which allows it

to perform better while maintaining good generalization

performance. The Residual Block, the fundamental unit structure

of the residual network, is seen in Figure 5a. The structure uses a

Skip Connection and a primary path to implement feature learning

and transfer. By applying two convolutional transforms to the input

feature x and utilizing the ReLU activation function following each

convolution, the main path determines the residual F(x). The input

feature x is then sent straight to the output by the bypass

connection, where it is combined with the residuals F(x) that the

primary path has learned to create the final output F(x)+x. This

design successfully increases the network’s performance capability

and training efficiency by preserving the information of the input

features and resolving the gradient vanishing issue in the deep

network. The residual block is the fundamental building element of

ResNet, which introduces skip connections and identity mapping to

address the gradient vanishing and gradient explosion issues in

deep neural networks. Figure 5b illustrates the overall architecture

of the residual network using ResNet50 as an example. This

network adopts a fully convolutional structure and does not

include any fully connected layers that enforce fixed input

dimensions during the feature extraction stage, thereby exhibiting

strong adaptability to varying input sizes. As long as the input image

maintains valid spatial dimensions after multiple convolution and

pooling operations, the network can operate stably with consistent

output structure. Accordingly, this study uses a concatenated input

image with dimensions of 224*224*3, which can be directly fed into

the ResNet50 model for feature extraction and classification without

any structural modifications. In the first stage, a 7*7 convolutional

layer followed by a 3*3 max pooling layer downsamples the input to

reduce its spatial resolution. Then, in the second stage, the residual

modules Conv2, Conv3, Conv4, and Conv5 are introduced

sequentially to extract higher-level semantic features. Throughout

this process, the spatial dimensions of the feature maps gradually

decrease from 56 to 7 in height and from 112 to 14 in width, while

the number of channels increases from 256 to 2048. In the third

stage, global average pooling compresses the feature map to
Frontiers in Plant Science 06
1*1*2048, and the final classification result is obtained through a

fully connected layer.
2.2.2 Attention mechanisms
2.2.2.1 Squeeze-and-excitation networks

SENet (Squeeze-and-Excitation Networks) is a deep learning

model based on the attention mechanism, which dynamically

models the channel relationship of feature maps by introducing

the Squeeze-and-Excitation (SE) module to enhancing the attention

to the essential features and suppressing the irrelevant features (Li

et al., 2020). The input feature maps are constantly adjusted by

SENet’s Squeeze-and-Excitation module in three stages: Squeeze,

Excitation, and Reweighting. The global description of each channel

is first obtained in the Squeeze stage by using Global Average

Pooling (GAP) to compress the input feature map H �W � C in

the spatial dimension. In particular, each channel’s global feature zc
is calculated using Equation 1.

zc =
1

H�Wo
H

i=1
o
H

j=1
Xc(i, j) (1)

A vector with dimensions of 1×1×C is the end product.

A two-layer Fully Connected Network (FC) captures the

nonlinear interaction between channels and generates dynamic

channel weights in the Excitation step. The nonlinear changes are

introduced using the ReLU activation function after the first layer of

the fully linked network decreases the number of channels to r times

the initial number (often r = 16, or dimensionality reduction). The

second layer of the completely linked network then uses the

Sigmoid activation function to create the normalized weight s,

which has a size of 1� 1� C and returns the number of

channels to its initial size.

The final output feature map is created by multiplying the

generated channel weights by the input feature map channel by the

channel during the Reweighting stage. In particular, the output

feature Xc is calculated as shown in Equation 2:

Xc = sc · Xc (2)

Where the weight of channel c is denoted by s​c. The SE

module can enhance the expressiveness and classification

performance of the model by emphasizing significant features and
FIGURE 5

Structure of the residual block and structure of the Resnet50 network. (a) the residual block (b) ResNet50 structure diagram.
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suppressing unimportant ones through a dynamic weighting

technique. Figure 6 displays the SE module diagram.

2.2.2.2 Convolutional block attention module

CBAM (Convolutional Block Attention Module) is a

lightweight and efficient attention mechanism that can

significantly improve the performance of Convolutional Neural

Networks (Woo et al., 2018). Applying channel and spatial

attention to the input feature maps highlights significant channels

and crucial spatial locations. While the Spatial Attention module

creates spatial weights using pooling and convolution operations,

the Channel Attention module uses global average pooling and

maximum pooling to extract global context information and build

channel weights. In Figure 7, the CBAM structure is displayed.

The output  MC   (F) of the channel attention module can be

calculated using Equation 3:

MC   (F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F))) (3)

MLP stands for multilayer perceptual machine, s for sigmoid

activation function, F for input feature map, and AvgPool and

MaxPool for global average pooling and maximum pooling

operations, respectively, in Eq.

And the loss MS(F) of the spatial attention module can be

calculated by Equation 4:

MS(F) =  s   (   f 7�7(½AvgPool(F);MaxPool(F)�)) (4)
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½AvgPool(F);MaxPool(F)� indicates sewing together the average
pooling and maximum pooling results along the channel axis,

whereas f 7�7 indicates a 7×7 convolution operation.

2.2.2.3 Efficient channel attention

ECA (Efficient Channel Attention) is an effective channel

attention method that dramatically lowers the computational

complexity by eliminating the fully connected layer from the

conventional SE module and utilizing 1D convolution to capture

the local interactions between channels (Wang et al., 2019). Using an

adjustable convolution kernel size that dynamically interacts with the

number of channels, ECA can guarantee that the model is

lightweight while significantly enhancing network performance.

The construction of ECA is depicted in Figure 8, where a channel

description vector Fgp ∈ RC is obtained by first undergoing Global

Average Pooling (GAP) on the input feature map F ∈ RC � H � W 

and then extracting the global semantic information of each channel.

Instead of using a fully connected layer, ECA dynamically

determines the size k of the one-dimensional convolution kernel

based on the number of channels C, which is calculated using

Equation 5. This allows for the realization of local cross-channel

interactions without dimensionality compression and, in the end,

generates the channel attention weights. This allows for the efficient

modeling of the interrelationships between channels.

k = ½ log2(C)g   +  b � (5)
FIGURE 7

CBAM module diagram.
FIGURE 6

SE module diagram.
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Where the hyperparameters are b and g, the local interactions
between channels are then captured by a 1D convolution operation

using k, which produces the channel weights MC ∈ RC using a

Sigmoid activation function. Lastly, the improved feature maps F’

are obtained by multiplying the weights MC by the input feature

maps channel by channel.

2.2.2.4 Introduction of attention mechanisms

The architecture of the ResNet50 network improved with

attention mechanisms is shown in Figure 9. In order to increase

its emphasis on significant characteristics and boost classification

performance, this model incorporates attention modules at many

critical stages compared to the standard ResNet50 framework. The

network’s first convolutional layer (Conv1) extracts low-level

information. Following Conv2 and Conv3, attention modules are

added in the convolutional stages (Stage 2). For comparison study,

these modules (designated as *Attention*) stand for SENet, CBAM,

and ECA, which are separately included in ResNet50. Lastly, the

network uses a fully connected layer (FC), a Softmax layer, and

global average pooling (AvgPool) to classify. The residual network’s

performance in complex tasks can be improved by better focusing

on important feature areas by incorporating attention processes.

2.2.3 Depthwise separable convolution
Additionally, we added depth-separable convolution to the

sorghum seed recognition model’s later, residual blocks to lower the
Frontiers in Plant Science 08
network model’s computational expense and time consumption. As

illustrated in Figure 10, the Depthwise Separable Convolution

comprises depth and point-by-point convolution (Chollet, 2017). By

breaking down the computational process, depthwise separable

convolution drastically lowers the computational cost and parameter

count compared to traditional convolution. Conventional

convolution, which has a high computational cost, combines

channel feature fusion and spatial feature extraction into a single

operation. Each convolution kernel acts on all input channels to

produce an output channel. Deep separable convolution, on the other

hand, divides this process into two steps: the first stage uses deep

convolution to extract spatial features by performing the convolution

operation independently on each channel, and the second stage uses

point-by-point convolution in the channel dimension for weighted

combination to realize channel feature fusion. This independent

design reduces the amount of computation while maintaining the

feature extraction capability of the model, which is an essential

component of lightweight models.
2.2.4 Proposed model
The final process of classifying sorghum seeds by the improved

network is shown in Figure 11. Depth separable convolution (DSC)

at various convolutional layers and the CBAM attention mechanism

are introduced in this network design to maximize the model

performance. Through the weighting mechanism of channel

attention and spatial attention, the CBAM module, which is
FIGURE 9

ResNet50 model with integrated attention mechanism.
FIGURE 8

ECA module diagram.
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inserted explicitly after the Conv2 and Conv3 convolutional layers,

enhances the model’s capacity to concentrate on essential features

and lessens interference from background noise. Furthermore, by

breaking down the standard convolution into depth convolution

and point-by-point convolution, depth separable convolution

(DSC), which is employed in the Conv4 convolutional layer, not

only lowers the computational complexity and number of

parameters but also enhances computational efficiency while

ensuring the feature extraction capability. This strategy greatly

optimizes the model’s resource usage while increasing the

classification accuracy of sorghum seeds by enabling the network

to fuse multi-modal input from RGB images and spectral curves

more effectively.
2.3 Overall flow chart

Figure 12 shows a general flow chart. The entire image

processing and model-building procedure for sorghum seeds is

depicted in this figure. First, an industrial camera and hyperspectral

acquisition equipment gather RGB and hyperspectral data from

seeds. The appearance features of the RGB images are extracted
Frontiers in Plant Science 09
using a seed segmentation module, and the spectral features of each

pixel are extracted from the hyperspectral data using a spectral

curve. In order to increase the accuracy of classification and

recognition, the RGB and hyperspectral data are fused to create a

feature map that blends spectral and spatial information. An

attention mechanism and deep separable convolution were added

to the model design using the ResNet residual network to further

improve the classification and recognition performance of sorghum

seeds. In order to accomplish practical and precise seed recognition,

the entire approach focuses on multi-modal data fusion and

lightweight model construction.
2.4 Indicators for model evaluation

The model’s classification performance was thoroughly

evaluated in this work using five widely used assessment metrics:

accuracy, specificity, recall, Precision, and F1-score. A

comprehensive evaluation of the model across various class

distributions is provided by the F1-score, which is the reconciled

mean of Precision and Recall. Accuracy, on the other hand, reflects

the overall correctness of the model’s classification; Specificity
FIGURE 10

Structure of the depthwise separable convolution.
FIGURE 11

Classification process.
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measures the model’s ability to identify negative class samples and

emphasizes the importance of reducing false alarms; Recall

indicates the model’s sensitivity to positive class samples and

focuses on lowering underreporting; and Precision is used to

assess the model’s accuracy in predicting positive classes,

reflecting the reliability of the classification results. By properly

evaluating the model’s strengths and weaknesses locally and overall,

combining these metrics enables a thorough examination of the

model’s performance in the classification task. It serves as a

foundation for additional optimization.
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2.5 Experimental procedures

The following experimental environment was used for this

study: Windows 11 as the operating system, the 12th generation

Intel® Core™ i9-12900K (3.20 GHz) as the processor, the NVIDIA

GeForce RTX 3090Ti as the graphics configuration, and Pycharm

2021 Community Edition as the integrated development

environment. The PyTorch deep learning framework was used to

build and train the sorghum seed categorization model. During the

model training process, the SGD (Stochastic Gradient Descent)
TABLE 1 Comparison of results before and after fusion.

Data Model Accuracy Specificity Recall Precision F1-score

RGB ResNet18 0.7602 0.9659 0.7607 0.7608 0.7609

ResNet34 0.8055 0.9722 0.8056 0.8055 0.8054

ResNet50 0.8664 0.9817 0.8664 0.8662 0.8650

ResNet101 0.7148 0.9593 0.7148 0.7148 0.7148

HSI ResNet18 0.7749 0.9679 0.7750 0.7774 0.7748

ResNet34 0.8438 0.9776 0.8430 0.8441 0.8417

ResNet50 0.8812 0.9833 0.8827 0.8865 0.8825

ResNet101 0.7679 0.9682 0.7754 0.7840 0.7752

RGB&HSI ResNet18 0.8117 0.9758 0.8263 0.8333 0.8260

ResNet34 0.8656 0.9808 0.8656 0.8657 0.8648

ResNet50 0.8961 0.9852 0.8961 0.8969 0.8959

ResNet101 0.8086 0.9727 0.8086 0.8072 0.8072
FIGURE 12

Overall flow chart.
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optimizer was selected, with the initial learning rate set to 0.001, and

the weight parameters were adjusted to optimize the network loss

function. Each epoch represents a complete training cycle for the

entire sorghum seed dataset, and its maximum number of rounds

was set to 50 in order to obtain the optimal value of the loss function

during the training process. In addition, the minimum batch size

was set to 8, the momentum parameter was set to 0.9, and the

weight decay coefficient was set to 0.01 to enhance the

generalization ability of the model and suppress overfitting.
3 Results and discussions

3.1 Fusion of RGB image data with
hyperspectral data

The classification performance of RGB, hyperspectral, and RGB &

HSI data on several ResNet models is displayed in Table 1. The

findings demonstrate that combining RGB and hyperspectral data can

significantly enhance classification accuracy. In particular, the

ResNet50 model achieves the highest accuracy (0.8961), Precision

(0.8969), recall (0.8961), and F1-score (0.8959) with fused data,
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demonstrating that fused data (RGB & HSI) significantly improves

the classification performance in all models. With fused data, other

models like ResNet34 also saw notable performance gains.

Furthermore, the fused data showed enhanced Specificity and

Recall, suggesting that the model could lower the false detection rate

and recognize seed classes more accurately by merging RGB and HSI

information. Data fusion significantly improved the classification

model’s performance by combining the complementary nature of

spectral and spatial information. ResNet50 performed best in both

data cases, indicating that it can be used as the preferred model for

classifying sorghum seeds.

We compare the visual confusion matrix for the model before and

after fusion in Figure 13 to further confirm that the fusion can

enhance the model’s performance. The confusion matrix data

describes the sample’s actual categories and the categories that the

classifier predicted. Usually, there are four metrics: false positives (FP),

false negatives (FN), true positives (TP), and true negatives (TN)

(Javanmardi et al., 2021). The fused models (a2-d2) demonstrated a

significant increase in the number of correct classifications on the

diagonal and a substantial decrease in misclassifications compared to

the unfused models (a-d, a1-d1). This suggests that fusing multi-

modal data can improve the models’ feature differentiation ability.
FIGURE 13

Confusion matrix before and after fusion. Confusion matrix: (a) RGB-ResNet18, (b) RGB-ResNet34, (c) RGB-ResNet50, (d) RGB-ResNet101; (a1) HSI-
ResNet18, (b1) HSI-ResNet34, (c1) HSI-ResNet50, (d1) HSI-ResNet101; (a2) RGB&HSI-ResNet18, (b2) RGB&HSI-ResNet34, (c2) RGB&HSI-ResNet50,
(d2) RGB&HSI-ResNet101.
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3.2 Introduction of an attention
mechanism

Three distinct attentional processes are added to the ResNet50

network independently for comparison in order to determine the

best network model because of its high performance. After

combining RGB and HSI data, Table 2 shows how adding various

attention methods (SE, CBAM, and ECA) affects the ResNet50

model’s classification performance. Adding the attention

mechanisms enhances the model’s overall classification

performance, with CBAM-ResNet50 exhibiting the best results.

With an accuracy of 93.20%, recall and Precision of 92.63% and

92.71%, respectively, and an F1-score of 92.43%, CBAM-ResNet50

specifically outperforms the others in every category. While the

performance of the residual network with the SE module added is

marginally worse than that of the CBAM and ECA modules, it is

sti l l far better than the model without the attention

mechanism included.

Adding the attention mechanism can significantly increase the

model’s capacity to identify important features and enhance

classification performance, particularly following the fusing of

multi-modal data (RGB & HSI). In this experiment, the

combination with the best classification effect is CBAM-ResNet50.

The confusion matrix in Figure 14 also shows that adding

various attention strategies enhances the model’s classification

performance. The mechanism can effectively focus on the

important information in the spatial dimension to improve

accuracy, as evidenced by the Resnet50 model with the addition

of CBAM having the clearest diagonal of the confusion matrix and a

further decrease in misclassifications.
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3.3 Introducing depth separable
convolution

The comparison of classification performance outcomes

following the addition of depth separable convolution (DSC) to

the RGB & HSI-CBAM-ResNet50 models is shown in Table 3. The

model combines the optimal design of CBAM and DSC based on

merging RGB and HSI data to produce good performance in all

measures. In particular, the model’s accuracy of 94.84% indicates a

high level of classification precision overall; its specificity of 99.20%

shows that it can effectively lower the false detection rate; and its

recall and precision of 94.39% and 94.52%, respectively, show that it

can identify every category in real classification. The capacity of

actual classification to identify each category is more balanced.

Furthermore, the model’s outstanding performance in striking a

balance between recall and Precision is further confirmed by the F1-

score, which reaches 94.38%.

The confusion matrix before and after the implementation of

DSC is contrasted in Figure 15. It is evident from this confusion

matrix that the model can correctly identify samples of every

category because the diagonal in Figure 15b has the great

majority of correct classifications. Further evidence is that the

CBAM-ResNet50-DSC model has greatly improved in feature

extraction, and the critical area of emphasis is the low

misclassifications in non-diagonal locations. Furthermore, the

confusion matrix’s balanced classification performance for many

categories demonstrates the model’s excellent generalization and

stability, which offers a solid foundation for further applications.

The model maintains effective feature extraction capabilities

while drastically lowering the computational cost thanks to deep
FIGURE 14

Confusion matrix of the result of introducing the attention mechanism after fusion Confusion matrix: (a) RGB&HSI-SE-ResNet50, (b) RGB&HSI-
CBAM-ResNet50, (c) RGB&HSI-ECA-ResNet50.
TABLE 2 Results of RGB&HSI data after introducing the attention mechanism.

Data Model Accuracy Specificity Recall Precision F1-score

RGB&HSI SE-ResNet50 0.9125 0.9886 0.9192 0.9193 0.9190

CBAM-ResNet50 0.9320 0.9890 0.9263 0.9271 0.9243

ECA-ResNet50 0.9203 0.9885 0.9199 0.9238 0.9197
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separable convolution. Higher accuracy and robustness in the

classification job are achieved by the model’s increased attention

to the important feature regions when combined with the channel

and spatial attention mechanism of CBAM. The design

considerably improves the application value of multi-modal data

fusion techniques and offers a superior solution for the sorghum

seed classification job.
3.4 Results

Table 4 shows that, compared to the previous model, the

modified model improved several metrics for each of the eight

sorghum seed types. Accuracy increased by 8.75%, 0.63%, 3.13%,

30.63%, 3.12%, 5.00%, 8.75%, and 5.62% for every sorghum seed.

The corresponding improvements in recall were 8.75%, 0.62%,

3.12%, 27.12%, 3.13%, 5.00%, 6.91%, and 5.62%. The

corresponding improvements in Precision were 10.02%, 5.39%,

11.49%, 12.79%, 3.13%, 12.13%, 0.10%, and 14.06%. Furthermore,

there was a 0.0941, 0.0305, 0.0747, 0.2031, 0.0313, 0.0856, 0.0013,

and 0.0963 improvement in the F1 scores, respectively. These

findings suggest that the enhanced network performs better in

recognition when categorizing maize seeds’ photos.

As can be observed from the radargram in Figure 16a, the

RGB&HSI-CBAM-ResNet50-DSC model has the largest overall

encompassing area and the strongest sorghum seed recognition
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ability. It also achieves the best results in all five performance

metrics: Accuracy, Specificity, Recall, Precision, and F1-score. The

RGB&HSI-CBAM-ResNet50 model, on the other hand, came in

second, suggesting that the DSC module’s addition improved the

model’s performance even further. The RGB&HSI-ResNet50 model

outperformed the RGB-ResNet50 or HSI-ResNet50 models

individually, suggesting that adding the attention mechanism and

combining multi-modal information enhanced the model

recognition effect. Regarding metrics like recall and F1-score,

RGB-ResNet50 performs the lowest among them, indicating its

limitations when tackling hyperspectral fine classification jobs.

Therefore, multi-modal fusion and model optimization are crucial

for improving model robustness and recognition.

The validation data loss for each epoch is displayed in

Figure 16b. The loss value comparison graphs show that all five

models’ loss values gradually decrease as the number of training

rounds increases. This indicates that the models gradually converge

during the training process. In the model performance comparison

experiments, we compared the accuracy and loss values of the five

models with the number of training rounds. With the lowest loss

value, the RGB&HSI-CBAM-ResNet50-DSC model exhibits

superior optimization and more effective training.

The accuracy of the validation data for every epoch is displayed

in Figure 16c. The RGB&HSI-CBAM-ResNet50-DSC model attains

the highest accuracy of over 90% at the late stage of training. Still,

the accuracy of all the models rises with the number of training
FIGURE 15

Comparison of introducing depth-separable convolution. Confusion matrix: (a) RGB&HSI-CBAM-ResNet50, (b) RGB&HSI-CBAM-ResNet50-DSC.
TABLE 3 Comparison of introducing depth-separable convolution.

Data Model Accuracy Specificity Recall Precision F1-score

RGB&HSI CBAM-ResNet50 0.9320 0.9890 0.9263 0.9271 0.9243

RGB&HSI CBAM-ResNet50-DSC 0.9484 0.9920 0.9439 0.9452 0.9438
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rounds, as seen in the accuracy comparison graph. This finding

implies that the model’s classification performance can be

considerably enhanced by integrating RGB and HSI information

and adding CBAM and DSC methods. It suggests that enhanced

network structure and greater feature information are necessary for

the model to perform well on the job.

In conclusion, the findings demonstrate that the RGB&HSI-

CBAM-ResNet50-DSC model achieves the best accuracy and loss

values, confirming the usefulness of enhancing the model’s

structure and combining multi-modal features.

To comprehensively evaluate the improvement in model

performance and its statistical robustness, each model in this study

was independently trained and tested ten times to ensure result stability

and reproducibility. Based on these repeated experiments, a systematic

statistical analysis was conducted using 95% confidence intervals and

one-way analysis of variance (ANOVA) to assess classification

performance across different models. The results indicate that with

the gradual integration of hyperspectral information, multi-modal

fusion strategies, the attention mechanism (CBAM), and depthwise

separable convolution (DSC), the model accuracy steadily increased

from 0.86596 for the baseline RGB-ResNet50model (95% CI: [0.86513,

0.86679]) to 0.94779 for the final RGB&HSI-CBAM-ResNet50-DSC

model (95% CI: [0.94727, 0.94831]). Furthermore, the narrowing of the
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confidence intervals indicates not only higher accuracy but also

improved performance stability.

The subsequent ANOVA analysis revealed that the performance

differences among the models were statistically highly significant (with

p-values far below 0.05) across all five core evaluation metrics:

Accuracy, F1-score, Recall, Precision, and Specificity. Additionally,

three key indicators—Accuracy, F1-score, and Recall—were visualized

using boxplots, as shown in Figure 17. These plots intuitively illustrate

themedian values and interquartile ranges of eachmodel’s performance

on different metrics. The results further confirm the trend of consistent

performance improvement as the model architecture is gradually

optimized. The final model demonstrated the best and most stable

performance across all metrics. In summary, the combined statistical

analysis and visualizations validate the effectiveness, robustness, and

practical value of the proposed multi-modal fusion and structural

optimization strategies in the classification task of sorghum seeds.
3.5 Ablation experiments

Using ResNet50 as the backbone, we conducted a series of

ablation experiments to assess the impact of spectral fusion,

attention mechanisms, and depthwise separable convolution
FIGURE 16

(a) Radar chart (b) Comparison of model losses (c) Comparison of model accuracy.
TABLE 4 Performance comparison of single-species models.

Seed category Accuracy Recall Precision F1-score

Before After Before After Before After Before After

127 0.8500 0.9375 0.8500 0.9375 0.8144 0.9146 0.8318 0.9259

136 0.9875 0.9938 0.9875 0.9937 0.9461 1.0000 0.9664 0.9969

141 0.9625 0.9938 0.9625 0.9937 0.8851 1.0000 0.9222 0.9969

159 0.6625 0.9688 0.6625 0.9337 0.7681 0.8960 0.7114 0.9145

160 0.9688 1.0000 0.9687 1.0000 0.9687 1.0000 0.9687 1.0000

177 0.7875 0.8375 0.7875 0.8375 0.7545 0.8758 0.7706 0.8562

186 0.9125 1.0000 0.9125 0.9816 0.9799 0.9800 0.9450 0.9463

187 0.8000 0.8562 0.8000 0.8562 0.8108 0.9514 0.8050 0.9013
frontiersin.org

https://doi.org/10.3389/fpls.2025.1632698
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2025.1632698
(DSC) on model performance. The incorporation of the

Convolutional Block Attention Module (CBAM) significantly

improved classification accuracy by enhancing the model’s focus

on critical spatial and channel-wise features. However, this

enhancement came at the cost of increased parameter count and

computational complexity, resulting in a slight rise in inference

time. To mitigate this, DSC was introduced to replace standard

convolutions, substantially reducing both the model size and

computational load. Specifically, the number of parameters was

reduced from 26.9 million to 17.4 million, while FLOPs decreased

from 4.31G to 2.62G. When CBAM and DSC were combined, the

model achieved the best trade-off between performance and

efficiency-reaching the highest classification accuracy with only

18.3 million parameters and 2.92G FLOPs. Remarkably, the
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inference time remained comparable to or even slightly lower

than the baseline model, highlighting the excellent potential of

the proposed architecture for deployment in resource-constrained

agricultural environments, as shown in Table 5.
3.6 Validation of model generalization
ability

To further assess the generalization ability and robustness of the

proposed model, three publicly available seed image datasets from the

Kaggle platform were selected for validation. As most public datasets

contain only RGB images and lack corresponding hyperspectral data,

only RGB-based evaluation was conducted in this section. The selected
TABLE 5 Comparison of ResNet50 experimental models with different module combinations.

ResNet50 Fusion cbam dsc Accuracy Params (M) FLOPs (G) Time (s)

✓ 0.8664 25.6 4.10 0.0024

✓ ✓ 0.8961 25.6 4.10 0.0024

✓ ✓ 0.9107 26.9 4.31 0.0027

✓ ✓ 0.9024 17.4 2.62 0.0020

✓ ✓ ✓ 0.9375 26.9 4.31 0.0027

✓ ✓ ✓ 0.9389 17.4 2.62 0.0020

✓ ✓ ✓ 0.9196 18.3 2.92 0.0023

✓ ✓ ✓ ✓ 0.9484 18.3 2.92 0.0023
✓ Indicates the presence of the corresponding module in the model. This setup is used to facilitate comparative analysis in the ablation study.
RE 17FIGU

Boxplots of accuracy, F1-score, and recall for different models.
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datasets include seven rice seed varieties, three maize seed varieties,

and five soybean seed varieties. For each dataset, the performance of

the proposed CBAM-ResNet50-DSC model was compared with two

widely used baseline models, VGG16 and DenseNet121.As shown in

Table 6, the proposed CBAM-ResNet50-DSC consistently achieved

the highest classification accuracy across all three datasets-89.62% for

rice seeds, 89.69% for maize seeds, and 94.73% for soybean seeds-

outperforming both VGG16 and DenseNet121. These results

demonstrate that the proposed model not only exhibits strong

robustness and cross-dataset generalization but also adapts well to

different categories of seed samples. Furthermore, the model shows

broad applicability and practical value for real-world scenarios

involving heterogeneous RGB image data from diverse sources.
4 Conclusions

This study proposes a sorghum seed variety classification

approach based on RGB and hyperspectral (HSI) data fusion and

an enhanced deep residual convolutional network (ResNet) for

quick, nondestructive, and highly accurate seed identification.

ResNet50 was utilized as the base network for model optimization

by combining image data fusion with spectral data, the attention-

based mechanism (CBAM), and the deep separable convolution

(DSC). The spectral fusion dataset included 12,800 seeds from eight

different varieties of sorghum seeds.

The experiment’s findings indicate that:
Fron
1. Multi-modal data fusion (RGB&HSI) can improve the

model’s classification performance. The classification

accuracy of the fused data is increased to 89.61%, and the

F1-score is improved to 0.8959 compared with single data.

2. The model’s capacity to collect important features is further

improved by adding the CBAM attention mechanism,

raising the classification accuracy to 93.75%—4.14%

higher than the base ResNet50.
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3. The model’s computational efficiency is further maximized

by combining it with depth separable convolution (DSC).

In addition to lowering the number of model parameters

and computational complexity, introducing DSC based on

the CBAM-ResNet50 structure improves the final

classification accuracy to 94.84%, a 1.09% improvement

over the CBAM-ResNet50 model. This confirms the

efficacy of the lightweight design.
Data fusion, attention mechanism optimization, and network

lightweight design were used in this study to build an accurate and

efficient sorghum seed classification model successfully. This model

has high agricultural application value and offers a scientific

foundation for variety screening and seed quality detection.

Although the proposed CBAM-ResNet50-DSC model based on

2D spectrogram fusion demonstrates excellent classification

accuracy and robustness under experimental conditions, several

challenges remain for real-world agricultural applications. First, the

quality of RGB and hyperspectral images collected in field

environments may be significantly affected by uncontrolled

factors such as lighting variations, seed placement angles, image

focus, and surface contamination (e.g., dust or aging). These factors

can lead to instability in model predictions, thereby limiting

practical effectiveness. Second, although this study simplifies the

multi-modal fusion process at the model level, acquiring both RGB

and hyperspectral images in practice still requires additional

imaging equipment. This introduces extra hardware costs and

operational complexity, which may hinder large-scale deployment

in real field scenarios.

To address these issues, future research will focus on robustness

enhancement strategies, domain adaptation techniques, and more

cost-effective imaging solutions (e.g., compact multispectral

sensors). Furthermore, incorporating multi-temporal or multi-

angle data may further improve feature consistency and model

stability, thus promoting the practical application of this method in

precision agriculture.
TABLE 6 Sources and classification accuracy of different public seed datasets.

Data Source Link Model Accuracy

https://data.mendeley.com/datasets/v6vzvfszj6 VGG16 0.8452

DenseNet121 0.8562

CBAM-ResNet50-DSC 0.8962

https://doi.org/10.34740/kaggle/dsv/8681789 VGG16 0.8576

DenseNet121 0.8745

CBAM-ResNet50-DSC 0.8969

https://doi.org/10.34740/kaggle/dsv/6457847 VGG16 0.8838

DenseNet121 0.9174

CBAM-ResNet50-DSC 0.9473
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