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Reducing greenhouse gas
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management in eucalyptus
afforestation on Brazilian
sandy soils
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Frederico Costa Beber Vieira2, Josiléia Acordi Zanatta3,
Elias Frank Araujo4, Juscilaine Gomes Martins5,
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and Luciano Kayser Vargas1*

1Department of Agricultural Research and Diagnosis, Department of Agriculture, Livestock,
Sustainable Production and Irrigation of Rio Grande do Sul, Porto Alegre, Brazil, 2Universidade Federal
do Pampa, São Gabriel, Brazil, 3Embrapa Floretas, Colombo, Brazil, 4CMPC, Celulose Riograndense,
Guaı́ba, Brazil, 5Brazilian Institute of Environment and Renewable Natural Resources, Porto
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Introduction: The greenhouse gas balance is a central theme in discussions

related to forest ecosystems. In this context, the present study evaluated the

impact of five eucalyptus harvest residue management systems on atmospheric

C-CO2 retention in soil, greenhouse gas (GHG) emissions, and the global

warming potential (GWP) in Eucalyptus saligna plantations.

Methods: The management systems examined were: AR - all harvest residues

retained on soil; NB - harvest residues kept on soil, except bark; NBr - harvest

residues kept on soil, except branches; NR - all harvest residues (bark, branches,

leaves) removed; NRs - all residues from the previous rotation and new plantation

litter removed using shade cloth. Soil emissions of nitrous oxide (N2O) and

methane (CH4) weremonitored over 12months (October 2016 to October 2017).

Soil samples were collected to a depth of one meter to assess atmospheric C-

CO2 retention.

Results and discussion: Annual N2O emissions were low (0.11–0.23 kg N-N2O

ha−1 year−1) and showed no clear relationship with the amount of nitrogen added

through residues. The soil consistently functioned as a methane sink across all

management systems, with CH4 fluxes ranging from –2.56 to –3.91 kg C-CH4

ha−1 year−1. The highest rate of C-CO2 retention in soil (–5,540 kg C-CO2 ha−1

year−1) was observed under the ARmanagement system, while the lowest (–1,752

kg C-CO2 ha−1 year−1) occurred under the NRs system. AR management also

resulted in the lowest global warming potential (–33,946 kg C-CO2 ha
−1 year−1),

primarily due to soil C-CO2 retention (15.43%) and carbon accumulation in
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biomass and wood products (84.57%). These findings demonstrate that retaining

eucalyptus harvest residues in subtropical sandy soils, in conjunction with carbon

sequestration in wood products, constitutes an effective forest management

strategy for mitigating global warming.
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1 Introduction

Forest ecosystems are recognized for their efficiency in fixing

atmospheric CO2 and storing substantial amounts of carbon (Lal,

2005). They also play a pivotal role in the greenhouse gas (GHG)

balance, generally acting as sources of CO2 and N2O while serving

as sinks for CH4 (Walkiewicz et al., 2025). In this context, while

forest degradation and deforestation are major contributors to the

rise in atmospheric GHG concentrations (van der Werf et al., 2009;

Reygadas et al., 2023), planted forests offer a potential mitigation

strategy (Waring et al., 2020). Worldwide, planted forests occupy

approximately 294 million hectares across the five continents (FAO,

2020). Of this total, eucalyptus plantations occupy approximately

25 million hectares in tropical and subtropical regions (Mao et al.,

2024), with 7.8 million of this area located in Brazil (IBÁ, 2024).

In recent years, there has been a growing economic interest in

using forest harvesting residues as a source of renewable energy

(Udali et al., 2024). In Brazil, it is projected that roughly 6.4 million

tons of wood residues are generated annually in the eucalyptus and

pine harvesting processes (Pincelli et al., 2017). From this

perspective, several forestry companies worldwide are adopting

the whole-tree harvesting system, which collects, in addition to

wood, other components such as branches, bark, and leaves to

facilitate the removal of these materials from the field (Nieminen

et al., 2016).

However, the removal of these residues in eucalyptus areas can

have adverse effects on soil quality. Possible consequences include

reduced soil fertility (Menegale et al., 2016), increased susceptibility

to erosion (Wichert et al., 2018), negative influence on biological

activity (Chaer and Tótola, 2007) and reduced soil organic C stocks

(Rocha et al., 2018). Removing eucalyptus harvesting residues can

be even more impacting in sandy soils, with drastic decreases in soil

organic C stocks and soil C retention rates (Epron et al., 2015; São

José et al., 2023).

A further aspect that should be considered and studied is the

impact of removing eucalyptus harvest residues on GHG emissions.

In crop areas, recent studies have evaluated the influence of residue

management on N2O and CH4 emissions (Pitombo et al., 2017;

Vasconcelos et al., 2018; Langeroodi et al., 2019; Mirzaei et al.,

2024), and such studies have generally found that maintaining crop

residues contributes to reducing emissions of these two gases. In

forest areas, the information is scarcer.
02
The major source of N2O emissions in agriculture is the

application of nitrogen fertilizers, but the N present in plant residues

also contributes substantially to the emissions (Syakila and Kroeze,

2011). The magnitude of this contribution depends on the chemical

composition of the residue added to the soil (Li et al., 2016). Residues

with a low C/N ratio increase N2O emissions (Chen et al., 2013). In

contrast, residues with a high C/N ratio favor nitrogen immobilization,

resulting in lower emissions (Muhammad et al., 2011).

Forest soils are recognized as significant CH4 sinks due to the

oxidation of this GHG by methanotrophic microorganisms (Wigley

et al., 2024). However, factors such as soil temperature, moisture,

fertilization, and residue management determine whether the soil

will act as a source or sink of CH4 (Vasconcelos et al., 2018).

Generally, the input of organic substrates under anaerobic

conditions promotes methanogenesis, resulting in high CH4

emissions (Zhang et al., 2015). On the other hand, increased soil

porosity facilitates the transport of CH4 to methanotrophs,

enhancing its oxidation and leading to lower net emissions

(Prajapati and Jacinthe, 2014).

The GHG emissions can be used to calculate the global warming

potential (GWP) of different eucalyptus harvest residue

management. The GWP compares the warming potential of each

gas to that of CO2, which is taken as a reference (Bayer et al., 2016).

Specifically, CH4 and N2O have a 100-year global warming

potential 34 and 298 times higher than CO2, respectively (Zhou

et al., 2023). Studies in subtropical regions have demonstrated the

potential of reforestation to reduce GWP values (de Godoi et al.,

2016; Martins et al., 2015); however, these studies did not consider

the effects of eucalyptus harvest residue management on soil carbon

stocks and GHG emissions. Therefore, this study aimed to evaluate

the influence of eucalyptus harvest residue and litter management

on the GHG balance in sandy soil in the Brazilian subtropics.
2 Materials and methods

2.1 Experimental area and treatments

The experimental area was in the city of Barra do Ribeiro, in Rio

Grande do Sul, the southernmost state of Brazil. The site lies near

the coordinates 30°23’S and 51°07’W, at an altitude of

approximately 30 m above sea level. The local climate is classified
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as humid subtropical (Cfa) according to the Köppen classification,

with an average annual precipitation of approximately 1400 mm

and no distinct dry season. The highest average monthly

temperature does not exceed 25 °C, while the lowest is around 14

°C, with occasional light frosts. The local soil is classified as

Quartzipsamment, characterized by a sandy texture, weak

structure, low water storage capacity, and low cation exchange

capacity (Supplementary Table S1). More details about the

experimental area can be found in São José et al. (2020; 2022;

2023). The experiment was established in 2010 using Eucalyptus

saligna (clone 2864). Each plot measured 30 × 30 m and was planted

with 100 trees arranged in a grid of 10 rows by 10 plants per row.

For the analyses, we considered an inner subplot measuring 18 × 18

m, consisting of 6 rows by 6 plants. The experimental design was a

completely randomized block with four replicates and five

treatments. The treatments involved five different eucalyptus

residue management practices, described as follows:
Fron
1. AR – All forest residues were left on the soil (i.e., bark,

branches, leaves, and the litter layer from the previous

rotation), with only the trunk wood removed.

2. NB – Same as AR, but the bark was also removed.

3. NBr – Same as AR, but branches were also removed.

4. NR – All eucalyptus residues (including bark, branches,

leaves, and litter) were removed.

5. NRs – Same as NR, but a shade net was also used to prevent

litter from the new plantation from reaching the

soil surface.
2.2 C and N input by crop residues and
litter

The input of C and N was assessed at the beginning of the

experiment. Branches, bark, and leaves from the previous crop were

collected, their mass quantified, ground, and analyzed for C and N

content to estimate the amounts contributed by each component.

The accumulation of litter up to the sixth year of the current

cultivation, as well as the addition of C and N through residue

management, were estimated as described by São José et al. (2023).
2.3 Soil organic C stocks

Disturbed and undisturbed soil samples were collected in July

2016, in the 6th year of cultivation, to determine organic C content

and soil density, respectively. Samples were collected from the

following soil layers: 0–2.5, 2.5–5, 5–10, 10–20, 20–30, 30–50, 50–

75, and 75–100 cm. Carbon stocks were calculated for the 0–100 cm

profile based on equivalent soil mass, using as a reference the system

in which all harvest residues and litter from the current crop were

removed (NRs). Annual rates of atmospheric C–CO2 retention in

the soil (Mg ha−1 year−1) were calculated as the ratio between the

difference in soil C stocks relative to the reference system (NRs) and
tiers in Plant Science 03
the duration of cultivation, as shown in the equation:

C − CO2   anual   retention   rate

=
Treatment   soil  C   stock  −  NRs  C   stock

6   years
2.4 C accumulation in wood products

The accumulation of C in wood products (WPs) under different

residue management treatments was estimated based on the forest

productivity. In the 6th year of afforestation, the diameter at 1.30

meters height (DBH) was measured using a tape measure, and the

total height (h) of the experimental trees was measured using a

hypsometer. Forest productivity was estimated by the average

annual increase (AAI, m3 ha-1 year-1), based on the volume

obtained after six years using the volume equation with bark,

using the model by Leite et al. (1995) presented below:

V   =   0:000048� DBH1:720483 � h1:180736 � e(−3:00555)  �   (tx=DBH)  

�   1 − (
d

DBH
)1+0:228531  �d

� �
+  Є

where DBH represents the diameter at 1.3 meters height; h the

total height; tx equals to 0, for volume with shell, or 1, for volume

without shell; d is the upper commercial diameter; ands Єis the

experimental error.

As for the estimation of soil C stocks, the productivity of the

NRs (195 m³ ha−1) at six years of age was used as a reference,

allowing an estimate of WP contributions in the other treatments

relative to this baseline. WPs have short- and medium-term

potential for carbon sequestration. We assumed a basic wood

density of 458 kg m-3 (Londero et al., 2015) and a C content of

446.1 g kg-1 of dry wood (Ribeiro et al., 2015) for the calculations.
2.5 Assessment of N2O and CH4 emissions
from soil

To evaluate N2O and CH4 emissions, we used the closed static

chamber method described by Mosier (1989). In each plot, a metal

base (0.24 m² area) was inserted into the soil to a depth of 5 cm. A

galvanized steel chamber [60 × 40 × 30 cm (L × W × H), 0.072 m³]

was placed over a gutter fitted to the base, and water was added to

the gutter to seal the system (Zanatta et al., 2010). Two internal fans,

a septum connected to a three-way valve, and a digital skewer

thermometer were installed in the upper part of the chamber to

monitor internal temperature. The fans were powered by a battery

and activated for 30 seconds immediately before sampling to

homogenize the air inside the chamber. Air samples were

collected using a 20 mL polypropylene syringe through the

septum via the three-way valve.

The collections were performed at intervals of approximately 21

days between October 2016 and October 2017, totaling 18

collections. The samples were collected between 09:00 and 11:00
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in the morning at 0, 20, 40, and 60 minutes after closing the

chamber on the base. After collection, the samples were stored in

exetainers and kept in a refrigerator at 4°C until analysis. The N2O

and CH4 contents in the air samples were analyzed by gas

chromatography in a GC-14 Greenhouse model equipped with an

electron capture detector (ECD) and flame ionization detector

(FID), using N2 as the carrier gas.

The N2O and CH4 fluxes were calculated based on the following

equation:

f =
DQ
Dt

 
PV
RT

 
M
A

where f is the gas flux (mg m−2 h−1), DQ/Dt is the change in gas

concentration (N2O or CH4), P is the atmospheric pressure inside

the chamber (assumed to be 1 atm), V is the chamber volume (m³),

R is the universal gas constant (0.08205 atm L mol−1 K−1), T is the

temperature inside the chamber (K),M is the molar mass of the gas

(g mol−1), and A is the chamber base area (m²).

The gas fluxes were measured between 9:00 and 11:00 a.m., a

time interval considered the most representative of daily average

GHG fluxes (Alves et al., 2012; Costa et al., 2008; Jantalia et al.,

2008). Annual cumulative soil emissions of N2O and CH4 were

calculated using the trapezoidal rule of integration based on the

fluxes measured over one year.

The global warming potential (GWP), expressed in Mg C-CO2

equivalents, was estimated based on the annual emissions of C-CO2,

N-N2O, and C-CH4 from the soil. Annual C-CO2 emissions were

derived from changes in soil organic carbon (SOC) stocks for each

treatment, using the NRs treatment as a reference. The rate of

carbon retention in the soil was calculated as previously described.

The GWP of the eucalyptus harvest residue management systems

was determined by summing the annual emissions of the three

greenhouse gases (GHGs), considering their respective global

warming potentials relative to CO2 (N2O = 298, CH4 = 34, CO2 =

1), according to the following equation:

GWP   (kg  CO2eq   ha
−1   year−1

= (N2O� 298) + (CH4 � 34) +   (DCO2) +WPs  C

where GWP is the global warming potential; N2O and CH4

represent the annual emissions of N2O and CH4 from the soil in the

respective harvest residue management systems, multiplied by their

respective global warming potentials relative to CO2, considering a

time horizon of 100 years (IPCC, 2006); DCO2 is the variation in

soil C stocks in the other treatments in comparison with NRs, which

was assumed to have remained similar to the stock before

afforestation; WPs C is the amount of C stored in wood products.
2.6 Soil and weather parameters

Simultaneously with the gas flux assessments, we collected soil

samples from the 0–10 cm layer to monitor ammonium (NH4
+) and

nitrate (NO3
-) levels (Tedesco et al., 1995), and water-filled pore

space (WPS) (Anderson et al., 2019). Particle density was
Frontiers in Plant Science 04
determined from disturbed soil samples collected from the 0–10

cm layer at three random points in each treatment (Embrapa, 1997).

Soil temperature was measured at a depth of 5 cm using a digital rod

thermometer. Air temperature and rainfall data during the study

period were obtained from an automatic meteorological station

approximately 7 km from the experiment.
2.7 Statistical analysis

The variation of soil N2O and CH4 fluxes was expressed

through the standard error of the mean. The CH4 and N2O flux

data and soil parameters were correlated through Pearson’s

correlation analysis. Linear regression analyses were used to verify

the relationship between the input of C and N in the different

eucalyptus harvest residue management systems and annual

greenhouse gas (GHG) emissions. The GWP data were subjected

to analysis of variance using the MIXED procedure (SAS, 2014)

with the means compared by Tukey’s test at 10% significance.
3 Results

Soil N2O fluxes ranged from -13.90 to 11.15 μg N-N2O m-2 h-1

in the different eucalyptus harvest management systems,

characterizing a low intensity of fluxes in all treatments in this

sandy soil (Figure 1a). Since no agricultural practices occurred

during the sampling period, soil N2O fluxes remained practically

constant without evident influence from eucalyptus harvest

residues. N2O fluxes showed a low but significant correlation with

soil NH4
+ contents (Table 1).

Soil CH4 flux ranged from -104.22 to 9.33 μg C ha-1 h-1, with a

strong predominance of CH4 influx into the soil. As observed in

N2O fluxes, there was no difference in CH4 influxes between

eucalyptus harvest residue management systems (Figure 1b).

However, there was a tendency for AR and NBr management to

present higher CH4 oxidation rates compared to NRs in almost all

evaluation periods.

To assess the impact of different management systems on soil

C-CO2 retention, we used the system in which both harvest residues

and litter were removed (NRs) as the reference. Based on this, the

contributions of the other management systems to SOC retention

were calculated relative to the NRs system. This approach — using

the system with minimal organic input as a baseline — has been

adopted by several authors in agricultural and forest systems (de

Godoi et al., 2016; dos Santos et al., 2011; Dietz et al., 2024; Souza

et al., 2023).

A significant linear relationship was observed between the

annual soil C-CO2 retention rates and the amount of carbon

added through eucalyptus harvest residues and litter (r² = 0.81, p

= 0.03) (Figure 2a). The highest retention rate (–5,540 kg C-CO2

ha−1 year−1) was recorded under the management system that

retained both the previous crop’s residues and the current crop’s

litter (AR). In contrast, the lowest rate (–1,752 kg C-CO2 ha−1

year−1) occurred under the system where only the current crop’s
frontiersin.org
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litter was retained, while the previous crop’s residues were removed

(NR). Retention values similar to those in the AR system were

observed in the two systems that maintained either bark or branches

(NB and NBr).

Annual soil N2O emissions ranged from 0.11 to 0.23 kg N-N2O

ha−1 year−1 and did not show a direct relationship with the amount

of N added by eucalyptus harvest residues and litter (r² = 0.28; p =

0.35) (Figure 2b). Regarding methane during the one-year

evaluation period, the soil showed an annual uptake of -2.56 to

-3.91 kg C-CH4 ha
−1 year−1, with a weak direct correlation with the

amount of C added by harvest residues and litter (Figure 2c).

All treatments demonstrated potential for mitigating global

warming. The GWP values ranged from –24,424 to –33,946 kg

CO2eq ha−1 year−1 (Figure 3). The main contributors to this

atmospheric carbon sequestration were the carbon added to the

soil and the carbon stored in wood products, which offer medium-

and long-term sequestration potential.

The management system that retained eucalyptus harvest

residues (AR) showed the lowest GWP (–33,946 kg CO2eq ha−1

year−1), representing a significant reduction in greenhouse gas

emissions compared to the NRs system (p< 0.10). AR was
Frontiers in Plant Science 05
followed by NBr (–31,879 kg CO2eq ha−1 year−1), NB (–30,619 kg

CO2eq ha−1 year−1), and NRs (–28,416 kg CO2eq ha
−1 year−1), with

no significant differences among these three treatments.

In the reference system (NRs), nearly all the GWP value was

attributable to carbon stored in wood. In contrast, wood carbon

contributed approximately 85% of the total GWP on average in the

systems with partial or complete retention of eucalyptus residues.

The remaining share was associated with the influence of harvest

residue management on soil organic carbon retention.
4 Discussion

The N2O fluxes we observed are consistent with recent studies

in eucalyptus areas in tropical Brazilian soils. Cuer et al. (2018)

found values below 10 mg N-N2O m−2 h−1. Silveira et al. (2022)

observed that eucalyptus forests emitted up to 5.5 mg N-N2O m−2

h−1 during the rainy spring, but acted as a N2O sink during the dry

winter periods.

In general, eucalyptus plantations established in sandy soils

have low nitrogen availability and, consequently, low N2O

emissions (Livesley et al., 2009). In addition to the low levels of

N-NH4
+ and N-NO3

- in the soil, we also observed low WPS values,

which may have contributed to the low N2O emission

(Supplementary Figure S1). The WPS values were below 25%, an

unfavorable condition for N2O production by denitrification, which

occurs at WPS values above 60% (Bateman and Baggs, 2005). In

sandy soils, such as the one examined in this study, oxygen diffusion

rates are higher than in clay soils, avoiding anaerobic conditions for

a prolonged period, a key requirement for denitrification (Rochette
FIGURE 1

N2O (a) and CH4 (b) fluxes from a Quartzipsamment under different eucalyptus harvest residue management practices at six years of age, in Barra
do Ribeiro, Brazil, over a one-year period.
TABLE 1 Pearson correlation between soil NO3and CH4+ fluxes, soil
temperature (ST), air temperature (AT), NO₃⁻ and NH₄⁺ concentrations,
and water-filled pore space (WFPS).

GHG ST AT NO3− NH4+ WPS

N2O 0,06ns 0,09ns 0,08ns 0,14* 0,09ns

CH4 -0,06ns -0,09ns -0,06ns 0,03ns 0,06ns
*ns: not significant; correlation coefficient (r) with p<0.05.
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et al., 2008). The lack of relationship between N2O fluxes and soil

N-NO3
- levels reinforces this hypothesis. On the other hand, the

correlation with N-NH4
+ contents suggests that the nitrification

process may have contributed significantly to N2O fluxes. During

nitrification, a process favored under aerobic conditions,
Frontiers in Plant Science 06
intermediate compounds may lead to non-obligatory N2O

production (Zhang et al., 2025).

The impact of plant residues on N2O emissions depends on the

composition of these residues, especially their C/N ratio (Li et al.,

2016). In general, emissions are negatively correlated with the C/N
FIGURE 2

Annual rates of C-CO 2 retention in the soil as a function of C input from eucalyptus harvest residues (a); annual soil N-N 2O emission as a function
of mineral N input from eucalyptus harvest residues (b); and annual C-CH₄ influx into the soil as a function of C input from eucalyptus harvest
residues (c).
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ratio, meaning that the presence of residues with a high C/N ratio

promotes N immobilization, reducing net mineralization and N2O

production (Pilegaard et al., 2006). In this context, our results

support the idea that the input of forest residues with a C/N ratio

greater than 30 has a low contribution to N2O emissions (Fest et al.,

2015) due to the rapid immobilization and limited availability of N

for nitrification and denitrification processes (Livesley et al., 2009).

The C/N ratio values in our treatments ranged from 111.7 to 162.7,

accompanied by high lignin/N ratios, 58.1 to 69.1 (São José et al.,

2023), which favor microbial nitrogen immobilization.

Additionally, the low-organic-matter sandy soil was fertilized only

during forest establishment (São José et al., 2020), contributing to

low nitrogen availability and, consequently, low N2O emissions.

However, since we did not observe differences between

treatments, our results differ from other studies involving

agricultural residue management (Gonzaga et al., 2018; Maris

et al., 2018; Vasconcelos et al., 2018; Reeves et al., 2024). These

differences are possibly related to the period between the

application of residues and the collection of gas samples. In those

studies, the highest N2O emissions occurred immediately after the

addition of plant residues, with a reduction after a few months and

remaining constant over time. In our study, the evaluations only

occurred six years after the experiment started. Thus, we believed

that N2O emissions in the management of eucalyptus harvest

residues were already reduced and stabilized, and possibly the

highest emissions must have occurred at the initial time of the

experiment installation.

The negative CH4 fluxes we observed are consistent with other

studies conducted in eucalyptus areas (Fest et al., 2017; Fialho et al.,

2018; Silva et al., 2024). In our case, the influxes were possibly
Frontiers in Plant Science 07
favored by the sandy texture of the soil, which, regardless of the

management adopted, allowed greater oxygen diffusion and,

consequently, created conditions for CH4 oxidation. This

assumption is supported by the findings of Livesley et al. (2011)

and Grover et al. (2012), who observed similar CH4 dynamics in

low-nutrient sandy soils of northern Australian Eucalypt

savanna woodlands.

Methane influxes may also be related to low WPS values that

favor CH4 oxidation (Liu et al., 2019). In such a condition, the

improved soil porosity and gas diffusivity facilitate the transport of

CH4 to methanotrophic bacteria that oxidize CH4 to CO2. CH4

influxes are usually inversely related to soil moisture (Fest et al., 2017;

Liu et al., 2019). Despite this, in the present study, no relationship was

observed between CH4 influxes and WPS, probably due to the

reduced water retention capacity of the sandy soil. CH4 influx is

enhanced in sandy soils, where rapid drainage occurs, preventing the

maintenance of high soil water contents for prolonged periods that

could determine soil reduction conditions (Walkiewicz et al., 2025).

Our results were similar to recent studies on agricultural residue

management (Wegner et al., 2018; Langeroodi et al., 2019) and in

harvesting and soil preparation operations in eucalyptus areas (Fialho

et al., 2018). As in our study, these authors also attributed the low

effect of plant residues on CH4 fluxes to the small variation in soil

moisture between residue managements.

Removing eucalyptus harvest residues has been widely

considered a management that reduces C-CO2 retention in the

soil (Rocha et al., 2018). This practice is more relevant in soils with

lower clay contents, which have a lower capacity for physical

protection of soil organic matter (Dieckow et al., 2009), causing

reductions in soil C compared to the maintenance of eucalyptus
FIGURE 3

Cumulative emissions and global warming potential of the soil under eucalyptus harvest residue management. Means followed by the same letter do
not differ from each other according to Tukey’s test at 10%.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1633436
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
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harvest residues (Oliveira et al., 2018). The results obtained in this

study corroborate these considerations. In addition, the capacity of

the soil to function as a CO2 sink depends on the biomass input

(Conceição et al., 2013). This dependence is evidenced by the

correlation between C-CO2 retention rates in the soil and the

amount of C contributed by eucalyptus harvest residues and litter

(Figure 2a), reinforcing the importance of maintaining eucalyptus

harvest residues to promote C additions, mainly in sandy soils in

tropical regions (Epron et al., 2015).

On the other hand, annual N2O emissions were not correlated

with the amount of N added by plant residues. Much of the N

present in the residues may have already been released in the first

months of implementation of the experiment, as observed by Rocha

et al. (2016). The authors evaluated the decomposition and release

of nutrients in different management systems of eucalyptus harvest

residues, observing that the management system with the

maintenance of all residues released approximately 130 kg ha-1 of

N after 300 days from the beginning of the experiment. In addition,

the high C/N ratio of the bark and branches of the residues (110 and

316, respectively) and the low N content of the litter could be

causing the immobilization of N by the soil microbial population.

Studies evaluating annual N2O emissions in reforestation areas

in subtropical regions have shown variable results. The annual N2O

emissions in our study were lower than those observed in areas with

Acacia mearsii (0.24 ± 1.25 kg N ha-1 year-1) (de Godoi et al., 2016),

Acacia auriculiformis (2.3 ± 3.1 kg N ha-1 year-1), and Eucalyptus

urophylla (1.9 ± 2.1 kg N ha-1 year-1) (Zhang et al., 2014). However,

our results were quite similar to those obtained by van Delden et al.

(2018), who observed annual N2O emissions ranging from 0.08 to

0.09 kg N ha-1 year-1 in eucalyptus areas grown in subtropical sandy

soils in Australia. Our results demonstrate the low potential for N2O

emissions in the different management of eucalyptus harvest

residues in this Brazilian sandy soil.

Despite the low linear relationship between eucalyptus harvest

residue input and CH4 influxes, we observed a trend of lower influx

in the NRs and NR systems, which may be related to lower soil

quality compared to the AR system (São José et al., 2022). The loss

of soil quality results in a lower capacity to oxidize CH4 (Bayer et al.,

2013). Wu et al. (2019) obtained similar results. The authors

observed that litter removal reduced the CH4 oxidation capacity

by approximately 30% compared to areas that maintained litter in

coniferous forests in the Chinese subtropics. This reduction was

attributed to the lower abundance of methanotrophic

microorganisms due to the poor availability of low-molecular-

weight organic compounds caused by litter removal.

Carbon sequestration is considered one of the main factors

controlling GWP in agricultural systems (Schönbach et al., 2012),

which was confirmed by our results. Furthermore, our results

demonstrate that N2O and CH4 fluxes made a negligible

contribution to the final GWP result, as typically observed in

forests (Saggar et al., 2008; Walkiewicz et al., 2025). Our results

are similar to those obtained by Zhang et al. (2015), who observed

that the contributions of N2O and CH4 to GWP were less than 3%
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in forest areas in the subtropical region of China. In our study,

however, the contribution of these gases was even lower, not

reaching 1% (Supplementary Table S2).

Few studies have related the effects of forest management

impacts with GWP, and there is no standardization in the

calculations of this variable, which makes it difficult to compare

results. Martins et al. (2015) observed a 76% reduction in GWP in

Eucalyptus saligna areas in Australia compared to pasture areas.

However, these authors did not consider the soil C retention rate

and included only CH4, N2O, and CO2 emissions. Wang et al.

(2022) also adopted this approach, excluding soil carbon retention

rates and considering only CH4, N2O, and CO2 emissions in their

calculations. They were among the few, if not the only, researchers

to evaluate the effect of harvest residue management on GHG

emissions in forest ecosystems. However, their study focused on

Cunninghamia lanceolata growing in a soil type markedly different

from ours, with approximately eight times higher organic matter

content. de Godoi et al. (2016), studying Acacia mearnsii areas in

the Brazilian subtropics, found that wood contributed

approximately 70% of the GWP value, while soil carbon retention

accounted for about 30%.

Estimating the GWP of local agricultural and forest systems is

essential for obtaining accurate and context-specific assessments of

environmental impacts. To the best of our knowledge, this is the

first study to evaluate the effects of eucalyptus harvest residue

management on the GHG balance in a Brazilian subtropical

sandy soil. In our research, the management practice that

retained all eucalyptus harvest residues and litter (AR) showed

significantly lower soil-associated GWP values, indicating a greater

potential for carbon sequestration compared to other management

strategies. These results demonstrate that maintaining eucalyptus

harvest residues, besides promoting an increase in forest

productivity, represents an alternative for mitigating GHG

emissions in subtropical sandy soils, both due to the potential for

CH4 oxidation and the storage of soil organic carbon.
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