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A privacy-protecting
eggplant disease detection
framework based on the
YOLOv11n-12D model
Jiao Han, Zhenzhen Wu, Yandong Ding, Yantong Guo
and Rui Fu*

Weifang University of Science and Technology, Weifang, China
The growing global population and rising concerns about food security highlight

the critical need for intelligent agriculture. Among various technologies, plant

disease detection is vital but faces challenges in balancing data privacy and

model accuracy. To address this, we propose a novel privacy-preserving

eggplant disease detection system with high accuracy. First, we introduce a

lightweight 3D chaotic cube-based image encryption method that ensures

security with low computational cost. Second, a streamlined YOLOv11n-12D

framework is employed to optimize detection performance on resource-

constrained devices. Finally, the encryption and detection modules are

integrated into a real-t ime, secure, and accurate ident ificat ion

system.Experimental results show our framework achieves near-ideal encryption

security (entropy=7.6195, Number of Pixel Change Rate(NPCR)=99.63%, Unified

Average Changing Intensity(UACI)=32.85%) with 23× faster encryption (0.0127s)

versus existing methods. The distilled YOLOv11n-12D model maintains teacher-

level accuracy (mAP@0.5=0.849) at 3.6× the speed of YOLOv12s (2.7ms/

inference), with +6.5% mAP improvement for small disease detection (e.g.,

thrips). This system balances privacy and real-time performance for smart

agriculture applications.
KEYWORDS

image encryption, eggplant disease detection, YOLOv11n-12D, privacy protection,
intelligent agriculture
1 Introduction

With the rapid advancement of agricultural digitalization, crop disease detection has

become critical for ensuring food security and improving agricultural productivity (Elijah

et al., 2018; Cornia, 1985). In many remote or underdeveloped regions, due to the lack of

professional expertise and detection equipment, farmers often transmit crop images to

external agricultural centers for manual or automated analysis (Baldi and La Porta, 2020).

However, existing methods frequently struggle to balance model accuracy with data privacy
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protection. In addition, the detection systems must operate

efficiently on resource-constrained devices typical of rural

environments, while ensuring secure handling of sensitive data

during transmission and storage. Consequently, the development

of efficient, automated, and privacy-preserving disease detection

systems that are both lightweight and reliable is crucial for

promoting smart agriculture.

In recent years, deep learning-based object detection algorithms

have achieved remarkable progress in plant disease recognition

(Senthil Pandi et al., 2024; Ravì et al., 2017; Zhang et al., 2017).

Lightweight models, particularly the YOLO series, have attracted

considerable attention for their fast detection speeds and high

accuracy (Zhang et al., 2024; He et al., 2024; Liu et al., 2022).

Sangaiah et al. (2024) proposed T-YOLO-Rice, based on YOLOv4,

to improve small-target detection such as rice leaf spots,

outperforming YOLOv7 but remaining limited to a single task. To

address diverse diseases and class imbalance, Roy and Bhaduri (2022)

developed Dense-YOLOv4 by integrating DenseNet and an enhanced

PANet, achieving 96.20% mAP and 93.61% F1-score for mango

disease detection, and demonstrating generalization to grape and

tomato diseases. Lin et al. (2023) built YOLO-Tobacco based on

YOLOX-Tiny by adding HMU and CBAM modules, improving

outdoor tobacco leaf detection (80.56% AP, 69 FPS), although its

adaptability to multiple diseases remains limited. Building upon these

advances, Li et al. (2023a) introduced MG-YOLO, integrating multi-

head self-attention, BiFPN, and GhostCSP modules, achieving 98.3%

accuracy at 0.009 seconds per image and surpassing YOLOv5 by 6.8%

in complex environments. In addition to single-task detection, recent

studies have explored joint detection and tracking paradigms (Li

et al., 2023b, 2024), leveraging reinforcement learning to achieve

object recognition and continuous tracking in dynamic

environments. For example, Li et al. (2025) proposed a

reinforcement learning-based joint detection and tracking paradigm

for compact HFSWR target detection and tracking, which effectively

improves detection probability and tracking performance.

In image tasks related to object detection, image enhancement

has also emerged as an important research direction in recent years.

For example, researchers have proposed a reinforcement learning-

based human visual perception-driven image enhancement method

(Luo, 2024). Liu et al. (2025a) introduced a framework that cascades

an aerial image enhancement module with AC3Net, while Xiao

et al. (2024) proposed a neuromorphic computing-based

underwater image enhancement network (UIEN), which

simulates visual system perception and employs unsupervised

learning to address multiple types of underwater image

degradation and validate its effectiveness. Despite these significant

advances in image enhancement, most existing studies still overlook

data privacy issues, as unencrypted images transmitted over

networks are vulnerable to theft or misuse. This further highlights

the necessity of integrating image encryption with recognition.

Therefore, with increasing emphasis on data privacy,

researchers have begun integrating image encryption with disease

detection to achieve end-to-end security without compromising

performance. Qin et al. (2014) proposed SecSIFT, a method that

performs SIFT feature extraction directly within the encrypted
Frontiers in Plant Science 02
domain, effectively safeguarding sensitive image data while

maintaining high detection accuracy and computational

efficiency. Building on this idea, Man et al. (2021) integrated

convolutional neural networks with chaotic encryption, enabling

intelligent privacy protection for both image and text data, and

laying the foundation for secure image processing in agriculture.

Kumar et al. (2021) introduced SP2F, a privacy-preserving

framework combining blockchain and deep learning, with a two-

level privacy engine and stacked LSTM networks to improve UAV

data authentication and resilience. Furthermore, Kethineni and

Gera (2023) proposed an IoT security model that integrates

sparse capsule autoencoders and attention-based GRUs for

lightweight detection and data protection, achieving 99.9%

accuracy and F1 score, highlighting its potential for agricultural

data security.

Our work aims to develop a lightweight deep learning model for

precise crop disease detection and robust image-level privacy

protection. Optimized for resource-constrained edge devices, it

ensures real-time, high-precision identification of various disease

types. Additionally, to secure data transmission, we integrate a

novel image encryption scheme based on a 3D chaotic cube,

effectively preventing unauthorized access without compromising

detection performance. Our model has been comprehensively

evaluated on real-world datasets and outperforms existing

methods in detection accuracy, computational overhead, and

privacy protection. This solution offers a practical and secure

pathway for smart agriculture applications. Our approach

addresses two key challenges in plant disease detection: data

privacy and detection accuracy.

Our main contributions are as follows:
• We propose an encryption model combining SHA-256, a

3D Logistic Map, pixel permutation, and XOR operations,

ensuring both strong security and high efficiency.

Compared to traditional Advanced Encryption Standard

(AES) and Rivest-Shamir-Adleman(RSA), our method

offers a larger key space, enhanced attack resistance, and

millisecond-level encryption speeds, making it well-suited

for edge and mobile devices in agriculture. Security

evaluations using entropy, Structural Similarity Index

Measure(SSIM), Number of Pixel Change Rate(NPCR),

and Unified Average Changing Intensity(UACI) confirm

its balanced performance.

• We present a knowledge distillation framework with

YOLOv12s as the teacher and YOLOv11n as the student.

The distilled student model, YOLOv11n-12D, inherits

enhanced detection capabilities while maintaining a

lightweight structure. To address class imbalance and

improve small lesion detection, Focal Loss and CIoU Loss

are incorporated during training. Experimental results show

that YOLOv11n-12D outperforms existing lightweight

models in precision, recall, F1 score, and mAP, while

achieving real-time inference speed.

• We develop an end-to-end system in which farmers encrypt

images locally, transmit them wirelessly to a diagnostic
frontiersin.org
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Fron
center, and receive encrypted detection results. This

framework ensures data security and scalability across

various crop scenarios, effectively integrating deep

learning and encryption technologies. The overall

architecture is shown in Figure 1.
The rest of this paper is organized as follows: Section 2 reviews

related work. Section 3 details the encryption method. Section 4

introduces the detection model. Section 5 describes data processing

and optimization. Section 6 presents experiments and analysis.

Section 7 concludes the paper.Section 8 highlights the system’s

significance, practical value, and limitations.
2 Related work

Traditional encryption algorithms such as AES and DES are

inadequate for real-time protection of agricultural images due to

high dimensionality, redundancy, and computational overhead

associated with such data. Although deep learning has achieved

success in plant disease detection tasks, most existing studies

overlook privacy concerns during image transmission and

processing. To contextualize the proposed integrated system, this

section reviews key image encryption techniques and plant disease

detection approaches.
2.1 Data encryption techniques

In response to the need for secure image transmission in

agriculture, several encryption techniques have been developed,

each aiming to balance security and efficiency. Key representative

methods are summarized below. Niyat et al. (2017) proposed an

encryption scheme based on non-uniform cellular automata (CA)
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and hyper-chaotic mapping, enhancing key space and attack

resistance. Kulalvaimozhi et al. (2020) introduced a method

combining homomorphic encryption (NHE) and enhanced

discrete wavelet transform (EDWT), improving both security and

compression efficiency. Priyanka et al. (2024) employed 3D chaotic

mapping and Huffman coding for medical image encryption. Sha

et al. (2024) developed an IoT-oriented image encryption scheme

utilizing graph data structures and logic gate mechanisms to

strengthen attack protection. Ding et al. (2022) proposed a GAN-

based key generation model, significantly improving key security.

Devi et al. (2024) proposed a DWT-SVD watermarking and

PSMD symmetric encryption scheme to enhance UAV image

security. While effective, its reliance on symmetric keys may pose

challenges in key management and attack resistance. Zhou et al.

(2024) applied compressed sensing and a two-dimensional

hyperchaotic coupled Fourier oscillator system (2D-HCFOS) to

improve encryption speed and security, achieving promising

simulation results. Chen et al. Zhou et al. (2025) introduced a 2D

super-attractor Logistic coupled chaotic model (2D-SALC),

outperforming existing methods in chaos and security metrics.

However, further validation, including integration with YOLO

models and assessment of encryption impact on detection

accuracy, remains needed.
2.2 Deep learning-based disease
monitoring

Deep learning has shown strong results in plant disease

detection Attri et al. (2023), with notable performance across

crops like rice, wheat, tomato, and grape. Jia et al. (2023)

improved YOLOv7 for rice pest detection by integrating

MobileNetV3 and coordinate attention, achieving 92.3% accuracy

and 93.7% mAP@0.5. However, its performance in complex
FIGURE 1

Overview of the process.
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backgrounds still faces challenges. To address this, Deng et al.

(2023) enhanced YOLOv5s and YOLOv7-tiny models for better

accuracy and speed, enabling mobile deployment. Liu and Wang

(2020) optimized YOLOv3 with an image pyramid for better multi-

scale detection in tomato disease recognition. Zhang et al. (2023)

proposed RYWD and SSA networks for wheat Fusarium head blight

detection, improving accuracy and precision by 11.8% and 10.7%.

Wu et al. (2023) combined YOLOv5 with HRNet for grape stem

localization, achieving 92% accuracy in bunch detection and 90.2%

in stem recognition. While these methods show improvements,

their performance under complex field conditions still requires

further refinement.

For eggplant disease detection, Liu et al. (2025b) enhanced

YOLOv8n with the YOLO-RDM model, improving accuracy and

robustness. Huang et al. (2024) proposed YOLOv8-E, which

enhanced detection accuracy and small target recognition while

reducing computational complexity. MR et al. Haque and Sohel

(2022) used a dual-stream architecture combining CNN-SVM and

CNN-Softmax, outperforming traditional models. Despite these

advances, challenges remain in achieving high accuracy,

robustness, and data security.

Despite significant progress in image encryption and plant

disease detection, several critical gaps remain. Most existing

studies treat encryption and detection as separate processes,

lacking a unified solution that simultaneously ensures privacy

protection and detection accuracy. Moreover, few works consider

the resource constraints of real-time processing on edge devices.

Many YOLO-based methods either overlook the impact of

encryption on feature extraction or employ models that are too

heavy for mobile deployment. Therefore, there is a need for a

unified lightweight framework that guarantees image security while

enabling efficient disease detection. To address this gap, we propose

an integrated system that combines 3D chaotic cube encryption
Frontiers in Plant Science 04
with the YOLOv11n-12D detection model, aiming to enhance both

detection performance and data security.
3 3D chaotic cube encryption scheme

In eggplant disease detection, image encryption is essential for

data security by preventing unauthorized access, tampering, and

maintaining integrity. Ciphertext transmission enhances system

security and reduces the risk of cyberattacks. This section

presents a novel image encryption method based on a 3D Chaotic

Cube Encryption Scheme, which consists of four steps: preparation

of the key and image, generation of 3D key and index array,

permutation encryption and XOR operation, and save the

encrypted image and key. Compared to frequency- and chaos-

based methods (Jui-Cheng and Guo, 2000; Armand Eyebe Fouda

et al., 2014; Jammula et al., 2022), the proposed scheme offers

stronger resistance to attacks and superior performance. Figure 2

illustrates the encryption framework, and Figure 3 shows the

original and encrypted eggplant images.
3.1 Preparation of the key and image

Prior to encryption, a 64-bit hexadecimal key and the target

image are provided. The key is then processed using a hash function

to generate the initial values for the chaotic system. The provided

64-bit hexadecimal string key hex is first converted into binary, and

its SHA-256 hash value is computed: HK=SHA-256(key_hex).

Assume the original image img has a size of 128 × 128. Extract

the R, G, and B channels separately as R(i,j), G(i,j), and B(i,j), where

i,j ∈ {0,127}. The result is as shown in Equations 1–3. Then expand

the image into a 128 × 128 × 128 3D cube and K ∈ {0,127}:
FIGURE 2

Encryption flowchart.
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CR(i, j, k) = R(i, j) (1)

CG(i, j, k) = G(i, j) (2)

CB(i, j, k) = B(i, j) (3)

The three channel cubes are concatenated into a one-

dimensional bitstream. The image hash is then computed as

shown in Equation 4:

HI = SHA−256(img) (4)

To initialize the chaotic system, extract the first, middle, and last 64

bits from the bitstream, convert them into decimal values x0,y0,z0, and

normalize each to the range (0,1). These values are used as initial

conditions for the chaotic system, x0,y0,z0 as defined in Equations 5–7:

x0 =
int(HK ½0 : 16�, 16)

264
(5)

y0 =
int(HK ½16 : 32�, 16)

264
(6)

z0 =
int(HK ½48 : 64�, 16)

264
(7)
3.2 Generation of 3D key and index array
Fron
• To generate chaotic sequences, the 3D Logistic Map is

employed with the following initial conditions, as defined in

Equations 8–10:
tiers in Plant Science 05
x1 = rx · x0 · (1 − x0) + b · y0 · z0 (8)

y1 = ry · y0 · (1 − y0) + g · x0 · z0 (9)

z1 = rz · z0 · (1 − z0) + a · x0 · y0 (10)

Then use x1, y1, z1 in the equations again to calculate the next

values of x2,y2,z2 repeat this process to generate a chaotic sequence

array as shown in Equations 11–13:

xn+1 = rx · xn · (1 − xn) + b · yn · zn (11)

yn+1 = ry · yn · (1 − yn) + g · xn · zn (12)

zn+1 = rz · zn · (1 − zn) + a · xn · yn (13)

Here, rx,ry,rz ∈ (3, 57, 4), Take the values from the chaotic

interval. These a, b, g control the coupling degree of the system. The

3D Logistic Map is iterated one million times, and the initial steps

are discarded to eliminate transient effects. This process generates

three long chaotic sequences. Figure 4 shows the resulting random

sequences, chaotic sequences as defined in Equations 14–16:

X = x1, x2,…, xNf g (14)

Y = y1, y2,…, yNf g (15)

Z = z1, z2,…, zNf g (16)

Map the values to the range [0, 255] to form the 3D key: K(x,y,z)

= [X(x,y,z) × 256].
FIGURE 3

(A-D) show the original images, (E-H) display the encrypted images.
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• To construct the index arrays, X is sorted to obtain A =

argsort(X), and Y is sorted to obtain B = argsort(Y), Z is

normalized to the range [0, 3], which is used for rotation: C

= [Z × 4].
3.3 Permutation encryption and XOR
operation
• First, apply index-based permutation to the 3D cube using

arrays A and B to reorder rows and columns, respectively.

Specifically, perform row permutation as: CR → ( :,A, : ),

CG → ( :,A, : ), CB → ( :,A, : ), and column permutation: CR

→ (B, :, : ), CG → (B, :, : ), CB → (B, :, : ). and rotation based

on the value of C, rotate each layer C(i, j) times 90∘. The

result as shown in Equations 17–19:
CR( :, :, i) = Rotate(CR( :, :, i),C(i, j)) (17)

CG( :, :, i) = Rotate(CG( :, :, i),C(i, j)) (18)

CB( :, :, i) = Rotate(CB( :, :, i),C(i, j)) (19)
• Next, complete the encryption by performing a bitwise

XOR operation between the permuted 3D cube and the

3D key: C0
R = CR ⊕ K , C0

G = CG ⊕ K , C0
B = CB ⊕ K
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3.4 Save the encrypted image and key

The encrypted 3D cube is converted back into a 2D color image

by mapping the corresponding values to the RGB channels as

shown in Equations 20–22:

R0(i, j) = C0
R(i, j, 0), (20)

G0(i, j) = C0
G(i, j, 0), (21)

B0(i, j) = C0
B(i, j, 0) (22)

These channels are combined to generate the final encrypted

image enc_img, which is saved to a file. The index arrays A, B, C,

along with the key file key_bin, are stored for decryption.

3.5 Decryption process

To enable proper visualization and subsequent detection, the

encrypted image must be decrypted. The decryption process

involves four steps: load the key and encrypted image, reconstruct

the 3D cube, decrypt each channel, and rebuild the 2D image.

3.5.1 Load the key and encrypted image
The decryption process begins by loading the 3D key and index

arrays (A, B, C) from the file system, along with the encrypted

image file.
FIGURE 4

Random sequence numbers.
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3.5.2 Reconstruct the 3D cube
Each color channel (R, G, B) of the image is reshaped into a 128 ×

128 × 128 3D cube, where the first two dimensions represent pixel

positions and the third dimension corresponds to the stacked

image layers.

3.5.3 Decrypt each channel
For each color channel’s 3D cube, two operations are applied:
Fron
• Bitwise XOR Restoration: The cube is first restored by

applying a bitwise XOR operation with the original 3D

key used during encryption.

• Reverse Rotation: Then, reverse rotations are performed

based on the index arrays A and B. Array A controls the

reversal along rows, and B controls the columns. The

rotation direction is opposite to the encryption process.

The number of 90° rotations is determined by the values in

array C, applied in reverse order to maintain symmetry.
3.5.4 Rebuild the 2D image
The decrypted 3D cubes of the R, G, and B channels are

converted back into 2D images. These channels are then merged

to reconstruct the final color image, which is output as the

decrypted result.
4 YOLOV11N-12D model

Deep learning-based object detection has demonstrated remarkable

performance in disease recognition, with the YOLO series widely used

for its speed and accuracy (Dai et al., 2022; Wang et al., 2024; Xie et al.,

2024). However, traditional YOLO models struggle when dealing with

small objects and class imbalance (Obu et al., 2023; A.N. and A.P.,

2022). To address these issues, we propose an enhanced lightweight

model, YOLOv11n-12D. As shown in Figure 5, the architecture consists

of four components: Stem, Backbone, Neck, and Head. In our model,

YOLOv11n serves as the student model, while YOLOv12s acts as the

teacher. By leveraging knowledge distillation and detection loss, we

enhance recall, reduce missed detections, and maintain efficiency,

making it suitable for large-scale agricultural applications. The

distillation process is detailed in Figure 6.

The following are the steps of the distillation process:
a. The pre-trained YOLOv11n is used as the student model,

and YOLOv12s as the teacher. Z_t and Z_s are defined as

shown in Equations 23, 24: Augmented samples are input

into both models to compute their respective logits:
Zt = TeacherModel(X) (23)

Zs = StudentModel(X) (24)

Since logits vary significantly in magnitude, a temperature

parameter T = 4.0 is applied to smooth them, stabilize gradients,

and generate soft labels for distillation.
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b. Temperature scaling (T = 4.0) is applied to smooth the logits

and obtain softened probability distributions for effective

knowledge transfer as shown in Equations 25, 26:
Pt = softmax 
Zt

T

� �
(25)

Ps = softmax 
Zs

T

� �
(26)

When T = 1.0, the distribution reduces to standard softmax,

limiting the ability to learn from the teacher. We adopt Kullback-

Leibler divergence as the distillation loss: Distillation Loss = T2 × KL

(p t ∥ ps). Here, T2 offsets the gradient scaling effect caused

by smoothing. A smaller KL value indicates better alignment

between the student and teacher outputs, KL as defined in

Equation 27:

KL(pt ∥ ps) =oi(pt)i · log 
(pt)i
(ps)i

� �
(27)
c. The student model is trained to balance knowledge from the

teacher and performance on the original task. To achieve

this, the detection loss and distillation loss are combined

with a weighted sum: TotalLoss = (1 − a) × (Detection

Loss) + a × (Distillation Loss). Mixed precision training,

learning rate scheduling, and early stopping strategies are

employed to improve efficiency and convergence.

d. The detection loss consists of a weighted sum of

classification loss (Focal Loss) and regression loss (CIoU

Loss):Detection Loss=Focal Loss + CIoU Loss, A weight of

a = 0.7 is used to emphasize the distillation loss. The

learning rate is adjusted using the OneCycleLR policy as

shown in Equation 28:
LR(t) =

LRmax � t
tup

if  t ≤ tup

LRmax � 1 −
t − tup
tdown

� �
if  t > tup

8<
: (28)
e. Training is terminated using an early stopping strategy

when the condition specified in Equation 29 is met.
if  Patience Count ≥ 10, stop training (29)

After each epoch,the validation set is evaluated using mAP,

Precision, and Recall to monitor the effectiveness of the distillation

strategy on student model performance.
5 Materials preparation and
optimization methods

To ensure high efficiency and accuracy in eggplant disease

detection, a large-scale dataset was constructed, encompassing

four categories: eggplant rot, fruit borer, healthy samples, and

thrips. All images were annotated in YOLO format with
frontiersin.org
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standardized bounding boxes and precise class labels. The

annotations were reviewed by agricultural experts to ensure high-

quality and consistent labeling.The dataset was collected from

multiple eggplant cultivation bases, encompassing various growth

cycles, diverse lighting conditions, and all developmental stages of

pest/disease infestation (from initial infection to characteristic

symptom manifestation). Specifically, the test set comprises 745

representative images (containing 1516 annotated instances), while

the remaining 7520 images were partitioned into training (5264

images) and validation (2256 images) sets at a 7:2:1 ratio. This

scientifically designed partitioning scheme ensures both sufficient

training data volume and reliable evaluation of model

generalization capability. Sample differences between healthy and

diseased eggplants are shown, highlighting the visual variability

between categories (Figure 7). To address the limited quantity and
Frontiers in Plant Science 08
variable quality of the collected raw images, we employed the

Albumentations data augmentation library to enhance dataset

diversity and improve model generalization and robustness

(Buslaev et al., 2020; Korra et al., 2022). The overall workflow for

material preparation and optimization is illustrated (Figure 8), and

the specific data augmentation strategies are detailed as follows:
• Random Flip: Applies horizontal and vertical flips to

simulate different viewing angles, enhancing feature

recognition and robustness.

• Color Jitter: Alters brightness, contrast, and saturation to

mimic various lighting conditions.

• Random Crop: Generates new samples by cropping image

regions, helping reduce reliance on specific areas.
FIGURE 5

Detection model architecture.
FIGURE 6

Knowledge distillation process flow.
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Fron
• Random Rotation: Rotates images within ±30° to improve

viewpoint diversity and reduce angle bias.

• Random Noise Addition: Introduces Gaussian or salt-and-

pepper noise to improve performance under degraded

image conditions.

• Mosaic Augmentation: Merges multiple images to enrich

contextual and visual diversity in complex scenes.

• MixUp Augmentation: Blends two images and labels to

promote smooth label transition and mitigate overfitting.
The applied augmentation techniques significantly enhance the

model’s robustness and generalization, allowing more reliable

recognition of eggplant disease features under diverse conditions.

Furthermore, the integration of Focal Loss and CloU Loss improves

detection accuracy, achieving a final accuracy of 99.1% and effectively

reducing the miss detection rate, thereby improving applicability in real-

world agricultural scenarios.
5.1 Focal loss

Focal Loss is designed to address class imbalance, especially in

single-stage detectors like RetinaNet. Traditional cross-entropy is

dominated by easy negatives, causing unstable training. Focal Loss
tiers in Plant Science 09
introduces a modulation factor to focus learning on hard examples,

improving detection of minority classes.The construction of this

function is shown in part (a) of Figure 8. For a binary label: y ∈ {0,1}

(0 for positive class and 1 for negative class), the predicted

probability pt is defined as Equation 30:

pt =
p if  y = 1

1 − p if  y = 0

(
(30)

The standard cross-entropy loss is: CE = −log(pt), Calculate the

weight decay factor (1 − pt)
g, g is Hyperparameters, Typically takes

values of 2 or 3, when pt is small,the decay factor approaches 1 when

p is small; otherwise, it approaches 0. A balancing factor is

introduced to control the ratio of positive to negative samples.

The final Focal Loss as presented in Equation 31:

FL = −a(1 − pt)
g  log (pt) (31)

To compute the average Focal Loss for all samples in a batch,

the classification loss is: Focal Loss = 1
NoN

i=1FL(p
(i)
t )

5.2 CIoU loss

CIoU Loss is primarily used for object bounding box regression,

especially in the context of rotated object detection. It optimizes the
FIGURE 7

(A-D) are healthy eggplant images, (E-H) are diseased eggplant images.
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accuracy of the bounding box’s location, size, and angle. CIoU Loss was

introduced to improve the detection accuracy of rotated objects, as

traditional bounding box regression methods typically only consider

rectangular boxes, while CloU Loss also accounts for the angle of the

rotated boxes. CloU Loss optimizes the bounding box regression of

object detectionmodels by considering the center point error, size error

(width and height), and rotation angle error. The construction of this

function is shown in part (b) of Figure 8. Calculate the Intersection over

Union (IoU) between the predicted box b and the ground truth box bg.

As shown in Equation 32:

IoU =
Intersection Area

Union Area
(32)

Calculate the Euclidean distance between the center of the

predicted box and the center of the ground truth box, as defined

in Equation 33:

r2(b, bg) = (x − xg)2 + (y − yg)2 (33)

c can represent the diagonal distance of the smallest enclosing

box that contains both the predicted box and the ground truth box

as shown in Equation 34: Distance penalty term:

r2(b, bg)
c2

(34)

Measure the difference in aspect ratio between the predicted box

and the ground truth box, as defined in Equation 35:

V =
4
p2 arctan 

wg

hg
− arctan 

w
h

� �2

(35)

Adaptive weight a is primarily used to balance the contribution

of the aspect ratio loss term v in the overall CIoU loss. The result as

shown in Equation 36:
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a =
v

(1 − IoU) + v
(36)

By combining IoU, center distance, and aspect ratio, the final

CIoU Loss is obtained as shown in Equation 37:

LCIoU = 1 − IoU +
r2(b, bɡ)

c2
+ av (37)
6 Performance analysis

This section presents the evaluation metrics used to assess the

performance of the two core components of the proposed system:

the 3D chaotic cube-based encryption scheme for image security,

and the YOLOv11n-12D-based detection model for eggplant

disease diagnosis.
6.1 Analysis of the proposed encryption
scheme

To evaluate our encryption scheme, we developed a

quantitative assessment system for image encryption security

(Table 1). It uses seven key indicators: contrast and mean square

error (positively correlated) indicate pixel perturbation;

information entropy shows randomness; while structural

similarity (SSIM), energy value, homogeneity, and structural

content (negatively correlated) assess structural damage, pattern

concealment, and pixel disorder. This framework is based on

research by Gupta and Chauhan (2021); Rahman et al. (2025),

and Karmakar et al. (2021).
FIGURE 8

Diagram of materials analysis and optimization. (A) Focal loss. (B) CIoU loss. (C) Material preparation and optimization.
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Table 2 shows that our method outperforms existing

technologies (Huang et al., 2025; Xu et al., 2024; Ullah et al.,

2025) in encryption quality, security, and efficiency. By

integrating chaotic sequence generation, pixel permutation, and

XOR encryption, our solution maintains consistent performance

metrics for all test samples (both healthy and diseased eggplants).

The entropy value is 7.6195 (close to the theoretical maximum of 8),

and the pixel correlation coefficient is −0.0084 (close to 0). Our

method achieves high image fidelity (40.26 dB) and fast encryption

speed (0.0127 seconds), which is 23 times faster than the fastest

comparative method. It also preserves key features for disease

identification, meeting smart agriculture’s requirements for real-

time performance, security, and feature preservation.
6.2 Key space analysis

The key space, representing the total number of possible keys, is

a critical factor in resisting brute-force attacks. In this scheme, the

user key is a 64-character hexadecimal string, corresponding to 256

bits. As each hex character encodes 4 bits, the key space size is: 2256

≈ 1.16 × 1077. Such a vast key space is computationally infeasible to

exhaust. Even at 1018 keys per second, a brute-force search would

take: 1:16�1077

1018�60�60�24�356 ≈ 3:67� 1050 year. These results confirm

that the proposed key space is computationally infeasible to exhaust

via brute-force attacks.
6.3 Attack resistance analysis

6.3.1 Known-Plaintext attack
The proposed scheme uses a 3D Logistic Map, which exhibits

strong sensitivity to initial conditions—tiny variations lead to

drastically different outputs. The chaotic system evolves as shown

in Equation 38:
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xn+1 = r · xn · (1 − xn) + b · yn · zn (38)

Chaotic behavior is verified by the Lyapunov exponent, as

defined in Equation 39:

l = lim
n→∞

1
no

n

i=1
ln 

df (xi)
dxi

����
���� (39)

A positive exponent l > 0, indicates exponential divergence. In our

experiments, l = 0.89 confirms high sensitivity, making it extremely

difficult to reverse-engineer the key, even with known plaintext–

ciphertext pairs. This divergence is described as defined in Equation 40:

Dxn = Dx0 · e
ln (40)

To initialize the chaotic system, we apply the SHA-256 hash

function to the user key. With its strong collision resistance and

irreversibility, the probability of a successful brute-force match is

negligible, as defined in Equation 41:

P =
1

2256
(41)
6.3.2 Differential attack: NPCR
NPCR evaluates how a minor change in the input affects the

encrypted output. It is defined as: NPCR = oi,jD(i, j)
W�H � 100%. D(i,j)

as defined in Equation 42:

D(i, j) =
1 if  C1(i, j) ≠ C2(i, j)

0 if  C1(i, j) = C2(i, j)

(
(42)

Here, C1(i,j) and C2(i,j) denote the pixel values of two encrypted

images with slight input differences. The ideal NPCR approaches 100%.

6.3.3 Differential attack: UACI
UACI quantifies the average intensity difference between two

encrypted images, as shown in Equation 43:
TABLE 1 Evaluation parameters and their relation with image encryption security.

P. M.E. R.W.S.S. V.E.

Contrast Contrast =oa,b a − bj j2 O(a, b) Contrast ∝ S.S Higher contrast reduces predictability and enhances security.

SSIM SSIM = (2mxmy + C1)(2sxy + C2)=(m
2
x + m2

y + C1)(s
2
x + s 2

y + C2) SSIM ∝
1

S : S
Lower SSIM prevents structural leakage, improving security.

MSE MSE =
1
No

N

i=1

I1(i) − I2(i)ð Þ2 MSE ∝ S.S Higher MSE increases difference, making decryption harder.

Entropy Entropy = −o
255

i=0

pi � log2 (pi) Entropy ∝ S.S Higher entropy means more randomness, improving security.

Energy Energy = o
a,b

½O(a, b)�2 Energy ∝
1

S : S
Lower energy hides patterns, strengthening security.

Homogeneity Homogeneity = o
a,b

O(a, b)
1 + a − bj j Homogeneity ∝

1
S : S

Lower homogeneity increases pixel chaos, improving security.

SC SC = o(original image2)

o(original − encrypted)2
SC ∝

1
S : S

Lower SC means less similarity to the original, enhancing
security.
P, Parameter; M.E., Mathematical Equation; R.W.S.S., Relationship with Strong Security (S.S); V.E., Variable Explanation.
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UACI =
1

W � H o
i,j

C1(i, j) − C2(i, j)j j
255

� 100% (43)

The ideal value should be close to 33%. Experimental results show:

NPCR = 99.63%, UACI = 32.85%, These values confirm high resistance

to differential attacks and strong sensitivity to input perturbations.

Figure 9 compares the pixel distribution: the original image (left) shows

structured patterns, while the encrypted image (right) displays uniform

randomness, demonstrating visual and statistical security.
6.4 Statistical analysis

6.4.1 Histogram analysis
Figure 10 illustrates the grayscale distributions of the original

and encrypted images. The original image shows a clear peak in

pixel intensity, while the encrypted image exhibits a nearly uniform

distribution with no apparent structure. This indicates that the

encryption process effectively randomizes the statistical properties

of the original image, eliminating pixel concentration and

preventing histogram-based attacks.
6.4.2 Pixel autocorrelation analysis
The Pearson correlation coefficient measures the linear

relationship between adjacent pixel values and defined as in

Equation 44:
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r = o(xi − mx)(yi − my)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(xi − mx)

2o(yi − my)
2

q (44)

Ideally, r ≈ 0 indicates no correlation. In our experiment,

r =0.005, confirming that the encrypted image lacks linear pixel

dependencies, which enhances its resistance to statistical attacks.
6.5 Detection performance evaluation

This study evaluated the YOLOv11n-12D model using Tables 3,

4, confirming its innovative breakthroughs. Table 3 highlights the

model’s superior performance in detecting four eggplant diseases:

rot (mAP@0.5=0.861), fruit borer (0.872), healthy plants (0.911),

and notably thrips (0.753), a 6.5% improvement over the baseline. It

achieves accuracy comparable to YOLOv12s (gap <2%) via

knowledge distillation while remaining lightweight. Table 4

provides a comprehensive performance comparison. The model

maintains near-teacher accuracy (1.2% mAP@0.5 difference) and

achieves a 2.7ms inference speed—3.6× faster than YOLOv12s

(9.6ms) and 3.2× faster than YOLOv8n (8.7ms). Its F1-Score

(0.804) outperforms YOLOv10n (0.764) and YOLOv8n (0.785),

with a 4.5% improvement in the stricter mAP@0.5:0.95 metric,

demonstrating stability in multi-scale detection.

Comprehensive analysis of data from both tables demonstrates

that YOLOv11n-12D, through the synergistic optimization of
TABLE 2 Comparative performance analysis of eggplant image encryption methods.

Proposed work (encrypted images)

Image type Homogeneity SC Entropy Correlation Energy Contrast Execution time (s)

Healthy 1 0.0158 0.6381 7.6195 −0.0084 0.0001 4905.8639 0.0160

Healthy 2 0.0158 0.8239 7.6195 −0.0084 0.0001 4905.8639 0.0124

Healthy 3 0.0158 0.4249 7.6195 −0.0084 0.0001 4905.8639 0.0131

Healthy 4 0.0158 0.3750 7.6195 −0.0084 0.0001 4905.8639 0.0127

Diseased 1 0.0158 0.9212 7.6195 −0.0084 0.0001 4905.8639 0.0111

Diseased 2 0.0158 0.5680 7.6195 −0.0084 0.0001 4905.8639 0.0119

Diseased 3 0.0158 0.6245 7.6195 −0.0084 0.0001 4905.8639 0.0112

Diseased 4 0.0158 0.6458 7.6195 −0.0084 0.0001 4905.8639 0.0131

Mean 0.0158 0.6277 7.6195 -0.0084 0.0001 4905.8639 0.0127

Existing methods comparison

Method MSE PSNR Entropy Correl. Energy Contrast
Execution Time

(s)

15 5170.0723 10.9958 7.1346 −0.0707 0.0001 2706.7328 2.0395

41 8778.5593 8.6966 7.6232 0.2083 0.0001 3970.8332 0.2992

45 8256.4317 8.9629 7.7475 −0.0854 0.0000 6158.4497 0.8220

Ours 0.158 40.2623 7.6195 -0.0084 0.0001 4905.8639 0.0127
Bold values are representative or key results.
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knowledge distillation and Focal Loss, successfully overcomes the

traditional trade-off between accuracy and efficiency, achieving the

innovative breakthrough of “teacher-level accuracy with edge-level

efficiency” and providing reliable technical support for real-time

disease detection in smart agriculture.
6.6 Information entropy analysis

The formula for information entropy as defined in Equation 45:

H(X) = −o
255

i=0
p(xi) log2 p(xi)     (Information entropy (unit :  bit))

(45)

The entropy of the original image ranges from 5 to 7, while the

encrypted image’s entropy is close to 8 (theoretical maximum),
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showing a more uniform and random pixel distribution. Our

calculated entropy value is 7.6195, indicating high information

entropy, which helps prevent information leakage and statistical

analysis attacks.
7 Conclusion

This paper proposes an integrated system for eggplant disease

detection that combines image encryption and deep learning-based

recognition. The system employs a lightweight encryption scheme

based on 3D chaotic mapping and pixel permutation to secure

image transmission with low computational overhead. It then

utilizes an optimized YOLOv11n-12D model to process the

decrypted images, achieving high detection accuracy and real-

time performance. A teacher–student knowledge distillation
FIGURE 9

Pixel analysis diagram.
FIGURE 10

Image grayscale distribution.
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strategy is incorporated to further enhance model robustness.

Experimental results demonstrate that the system not only

safeguards data privacy but also outperforms existing methods in

accuracy, speed, and stability, offering a reliable solution for smart
Frontiers in Plant Science 14
agriculture. At the same time,our future research will focus on

enabling disease detection directly on encrypted images to eliminate

the risk of data leakage during decryption. This will involve

exploring privacy-preserving techniques like homomorphic
TABLE 3 Performance comparison of YOLO models for eggplant disease detection.

Model Category
Dataset Performance metrics

Images Instances Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv11n-12D

Eggplant Rot 117 544 0.838 0.814 0.861 0.565

Eggplant Fruit 237 323 0.861 0.819 0.872 0.407

Healthy 216 331 0.871 0.886 0.911 0.725

Eggplant Thrips 175 318 0.752 0.643 0.753 0.442

YOLOv11n-12D
Unencrypted
(Baseline)

Eggplant Rot 117 544 0.838 0.814 0.861 0.565

Eggplant Fruit 237 323 0.861 0.819 0.872 0.407

Healthy 216 331 0.871 0.886 0.911 0.725

Eggplant Thrips 175 318 0.752 0.643 0.753 0.442

yolov11n

Eggplant Rot 117 544 0.838 0.724 0.822 0.552

Eggplant Fruit 237 323 0.826 0.807 0.850 0.395

Healthy 216 331 0.861 0.891 0.924 0.728

Eggplant Thrips 175 318 0.810 0.575 0.707 0.411

yolov12s

Eggplant Rot 117 544 0.852 0.827 0.873 0.582

Eggplant Fruit 237 323 0.879 0.831 0.884 0.418

Healthy 216 331 0.883 0.901 0.922 0.741

Eggplant Thrips 175 318 0.765 0.659 0.767 0.456

yolov10n

Eggplant Rot 117 544 0.805 0.706 0.781 0.502

Eggplant Fruit 237 323 0.821 0.768 0.826 0.384

Healthy 216 331 0.852 0.904 0.910 0.719

Eggplant Thrips 175 318 0.770 0.505 0.672 0.397

yolov8n

Eggplant Rot 117 544 0.820 0.750 0.817 0.524

Eggplant Fruit 237 323 0.859 0.794 0.857 0.408

Healthy 216 331 0.815 0.907 0.917 0.717

Eggplant Thrips 175 318 0.781 0.566 0.697 0.399
Bold values are representative or key results.
TABLE 4 Comprehensive performance comparison.

Model version Precision Recall mAP@0.5 mAP@0.5:0.95 F1-score Inference speed (ms)

YOLOv11n-12D 0.831 0.791 0.849 0.535 0.804 2.7

YOLOv11n 0.834 0.749 0.826 0.522 0.789 3.3

YOLOv12s 0.845 0.804 0.861 0.549 0.812 9.6

YOLOv10n 0.812 0.721 0.797 0.501 0.764 3.1

YOLOv8n 0.819 0.754 0.822 0.512 0.785 8.7
Bold values are representative or key results.
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encryption and designing lightweight models that can operate

effectively in the encrypted domain.
8 Discussion

Our study proposes a framework that integrates image

encryption with deep learning based object detection for real

time, privacy-preserving crop disease monitoring. The designed

3D chaotic cube encryption scheme demonstrates strong security

performance, achieving high entropy (7.6195), low pixel correlation

(0.0084), and strong resistance to statistical and differential attacks

(NPCR = 99.63%, UACI = 32.85%). Meanwhile, the YOLOv11n-

12D model retains the detection performance of the teacher model

while achieving fast inference speed (2.7 ms), with a notable mAP

improvement of +6.5% in small-object detection such as eggplant

thrips. This solution offers a promising approach for advancing

smart agriculture in rural or resource limited areas. By encrypting

images before transmission and decrypting them only during model

inference, the framework strikes a practical balance between data

security and operational efficiency. Its compatibility with edge

devices further supports deployment in real world scenarios,

where data privacy, bandwidth limitations, and low computing

resources are common challenges. Despite the promising results,

the current framework still requires decryption before detection,

which introduces a temporary risk of data exposure. Future work

will focus on privacy preserving deep learning techniques that

support inference directly in the encrypted domain, such as

homomorphic encryption or secure multi party computation.

Further validation on larger and more diverse crop datasets is

also needed to assess generalization. Enhancing the interpretability

of both the detection model and the encryption process will help

improve transparency and user trust in practical applications.
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