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A privacy-protecting
eggplant disease detection
framework based on the
YOLOv11n-12D model

Jiao Han, Zhenzhen Wu, Yandong Ding, Yantong Guo
and Rui Fu*

Weifang University of Science and Technology, Weifang, China

The growing global population and rising concerns about food security highlight
the critical need for intelligent agriculture. Among various technologies, plant
disease detection is vital but faces challenges in balancing data privacy and
model accuracy. To address this, we propose a novel privacy-preserving
eggplant disease detection system with high accuracy. First, we introduce a
lightweight 3D chaotic cube-based image encryption method that ensures
security with low computational cost. Second, a streamlined YOLOv11n-12D
framework is employed to optimize detection performance on resource-
constrained devices. Finally, the encryption and detection modules are
integrated into a real-time, secure, and accurate identification
system.Experimental results show our framework achieves near-ideal encryption
security (entropy=7.6195, Number of Pixel Change Rate(NPCR)=99.63%, Unified
Average Changing Intensity(UACI)=32.85%) with 23X faster encryption (0.0127s)
versus existing methods. The distilled YOLOv11n-12D model maintains teacher-
level accuracy (mAP@0.5=0.849) at 3.6x the speed of YOLOv12s (2.7ms/
inference), with +6.5% mAP improvement for small disease detection (e.g.,
thrips). This system balances privacy and real-time performance for smart
agriculture applications.

KEYWORDS

image encryption, eggplant disease detection, YOLOv11n-12D, privacy protection,
intelligent agriculture

1 Introduction

With the rapid advancement of agricultural digitalization, crop disease detection has
become critical for ensuring food security and improving agricultural productivity (Elijah
et al,, 2018; Cornia, 1985). In many remote or underdeveloped regions, due to the lack of
professional expertise and detection equipment, farmers often transmit crop images to
external agricultural centers for manual or automated analysis (Baldi and La Porta, 2020).
However, existing methods frequently struggle to balance model accuracy with data privacy
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protection. In addition, the detection systems must operate
efficiently on resource-constrained devices typical of rural
environments, while ensuring secure handling of sensitive data
during transmission and storage. Consequently, the development
of efficient, automated, and privacy-preserving disease detection
systems that are both lightweight and reliable is crucial for
promoting smart agriculture.

In recent years, deep learning-based object detection algorithms
have achieved remarkable progress in plant disease recognition
(Senthil Pandi et al.,, 2024; Ravi et al,, 2017; Zhang et al., 2017).
Lightweight models, particularly the YOLO series, have attracted
considerable attention for their fast detection speeds and high
accuracy (Zhang et al,, 2024; He et al, 2024; Liu et al, 2022).
Sangaiah et al. (2024) proposed T-YOLO-Rice, based on YOLOv4,
to improve small-target detection such as rice leaf spots,
outperforming YOLOV7 but remaining limited to a single task. To
address diverse diseases and class imbalance, Roy and Bhaduri (2022)
developed Dense-YOLOV4 by integrating DenseNet and an enhanced
PANet, achieving 96.20% mAP and 93.61% Fl-score for mango
disease detection, and demonstrating generalization to grape and
tomato diseases. Lin et al. (2023) built YOLO-Tobacco based on
YOLOX-Tiny by adding HMU and CBAM modules, improving
outdoor tobacco leaf detection (80.56% AP, 69 FPS), although its
adaptability to multiple diseases remains limited. Building upon these
advances, Li et al. (2023a) introduced MG-YOLO, integrating multi-
head self-attention, BiFPN, and GhostCSP modules, achieving 98.3%
accuracy at 0.009 seconds per image and surpassing YOLOV5 by 6.8%
in complex environments. In addition to single-task detection, recent
studies have explored joint detection and tracking paradigms (Li
et al, 2023b, 2024), leveraging reinforcement learning to achieve
object recognition and continuous tracking in dynamic
environments. For example, Li et al. (2025) proposed a
reinforcement learning-based joint detection and tracking paradigm
for compact HFSWR target detection and tracking, which effectively
improves detection probability and tracking performance.

In image tasks related to object detection, image enhancement
has also emerged as an important research direction in recent years.
For example, researchers have proposed a reinforcement learning-
based human visual perception-driven image enhancement method
(Luo, 2024). Liu et al. (2025a) introduced a framework that cascades
an aerial image enhancement module with AC3Net, while Xiao
et al. (2024) proposed a neuromorphic computing-based
underwater image enhancement network (UIEN), which
simulates visual system perception and employs unsupervised
learning to address multiple types of underwater image
degradation and validate its effectiveness. Despite these significant
advances in image enhancement, most existing studies still overlook
data privacy issues, as unencrypted images transmitted over
networks are vulnerable to theft or misuse. This further highlights
the necessity of integrating image encryption with recognition.

Therefore, with increasing emphasis on data privacy,
researchers have begun integrating image encryption with disease
detection to achieve end-to-end security without compromising
performance. Qin et al. (2014) proposed SecSIFT, a method that
performs SIFT feature extraction directly within the encrypted
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domain, effectively safeguarding sensitive image data while
maintaining high detection accuracy and computational
efficiency. Building on this idea, Man et al. (2021) integrated
convolutional neural networks with chaotic encryption, enabling
intelligent privacy protection for both image and text data, and
laying the foundation for secure image processing in agriculture.
Kumar et al. (2021) introduced SP2F, a privacy-preserving
framework combining blockchain and deep learning, with a two-
level privacy engine and stacked LSTM networks to improve UAV
data authentication and resilience. Furthermore, Kethineni and
Gera (2023) proposed an IoT security model that integrates
sparse capsule autoencoders and attention-based GRUs for
lightweight detection and data protection, achieving 99.9%
accuracy and F1 score, highlighting its potential for agricultural
data security.

Our work aims to develop a lightweight deep learning model for
precise crop disease detection and robust image-level privacy
protection. Optimized for resource-constrained edge devices, it
ensures real-time, high-precision identification of various disease
types. Additionally, to secure data transmission, we integrate a
novel image encryption scheme based on a 3D chaotic cube,
effectively preventing unauthorized access without compromising
detection performance. Our model has been comprehensively
evaluated on real-world datasets and outperforms existing
methods in detection accuracy, computational overhead, and
privacy protection. This solution offers a practical and secure
pathway for smart agriculture applications. Our approach
addresses two key challenges in plant disease detection: data
privacy and detection accuracy.

Our main contributions are as follows:

*  We propose an encryption model combining SHA-256, a
3D Logistic Map, pixel permutation, and XOR operations,
ensuring both strong security and high efficiency.
Compared to traditional Advanced Encryption Standard
(AES) and Rivest-Shamir-Adleman(RSA), our method
offers a larger key space, enhanced attack resistance, and
millisecond-level encryption speeds, making it well-suited
for edge and mobile devices in agriculture. Security
evaluations using entropy, Structural Similarity Index
Measure(SSIM), Number of Pixel Change Rate(NPCR),
and Unified Average Changing Intensity(UACI) confirm
its balanced performance.

* We present a knowledge distillation framework with
YOLOVI12s as the teacher and YOLOvl1n as the student.
The distilled student model, YOLOv11n-12D, inherits
enhanced detection capabilities while maintaining a
lightweight structure. To address class imbalance and
improve small lesion detection, Focal Loss and CIoU Loss
are incorporated during training. Experimental results show
that YOLOv11In-12D outperforms existing lightweight
models in precision, recall, F1 score, and mAP, while
achieving real-time inference speed.

*  We develop an end-to-end system in which farmers encrypt
images locally, transmit them wirelessly to a diagnostic
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center, and receive encrypted detection results. This
framework ensures data security and scalability across
various crop scenarios, effectively integrating deep
learning and encryption technologies. The overall
architecture is shown in Figure 1.

The rest of this paper is organized as follows: Section 2 reviews
related work. Section 3 details the encryption method. Section 4
introduces the detection model. Section 5 describes data processing
and optimization. Section 6 presents experiments and analysis.
Section 7 concludes the paper.Section 8 highlights the system’s
significance, practical value, and limitations.

2 Related work

Traditional encryption algorithms such as AES and DES are
inadequate for real-time protection of agricultural images due to
high dimensionality, redundancy, and computational overhead
associated with such data. Although deep learning has achieved
success in plant disease detection tasks, most existing studies
overlook privacy concerns during image transmission and
processing. To contextualize the proposed integrated system, this
section reviews key image encryption techniques and plant disease
detection approaches.

2.1 Data encryption techniques

In response to the need for secure image transmission in
agriculture, several encryption techniques have been developed,
each aiming to balance security and efficiency. Key representative
methods are summarized below. Niyat et al. (2017) proposed an
encryption scheme based on non-uniform cellular automata (CA)

10.3389/fpls.2025.1634408

and hyper-chaotic mapping, enhancing key space and attack
resistance. Kulalvaimozhi et al. (2020) introduced a method
combining homomorphic encryption (NHE) and enhanced
discrete wavelet transform (EDWT), improving both security and
compression efficiency. Priyanka et al. (2024) employed 3D chaotic
mapping and Huffman coding for medical image encryption. Sha
et al. (2024) developed an IoT-oriented image encryption scheme
utilizing graph data structures and logic gate mechanisms to
strengthen attack protection. Ding et al. (2022) proposed a GAN-
based key generation model, significantly improving key security.

Devi et al. (2024) proposed a DWT-SVD watermarking and
PSMD symmetric encryption scheme to enhance UAV image
security. While effective, its reliance on symmetric keys may pose
challenges in key management and attack resistance. Zhou et al.
(2024) applied compressed sensing and a two-dimensional
hyperchaotic coupled Fourier oscillator system (2D-HCFOS) to
improve encryption speed and security, achieving promising
simulation results. Chen et al. Zhou et al. (2025) introduced a 2D
super-attractor Logistic coupled chaotic model (2D-SALC),
outperforming existing methods in chaos and security metrics.
However, further validation, including integration with YOLO
models and assessment of encryption impact on detection
accuracy, remains needed.

2.2 Deep learning-based disease
monitoring

Deep learning has shown strong results in plant disease
detection Attri et al. (2023), with notable performance across
crops like rice, wheat, tomato, and grape. Jia et al. (2023)
improved YOLOvV7 for rice pest detection by integrating
MobileNetV3 and coordinate attention, achieving 92.3% accuracy
and 93.7% mAP®@0.5. However, its performance in complex
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backgrounds still faces challenges. To address this, Deng et al.
(2023) enhanced YOLOv5s and YOLOv7-tiny models for better
accuracy and speed, enabling mobile deployment. Liu and Wang
(2020) optimized YOLOV3 with an image pyramid for better multi-
scale detection in tomato disease recognition. Zhang et al. (2023)
proposed RYWD and SSA networks for wheat Fusarium head blight
detection, improving accuracy and precision by 11.8% and 10.7%.
Wu et al. (2023) combined YOLOv5 with HRNet for grape stem
localization, achieving 92% accuracy in bunch detection and 90.2%
in stem recognition. While these methods show improvements,
their performance under complex field conditions still requires
further refinement.

For eggplant disease detection, Liu et al. (2025b) enhanced
YOLOvV8n with the YOLO-RDM model, improving accuracy and
robustness. Huang et al. (2024) proposed YOLOV8-E, which
enhanced detection accuracy and small target recognition while
reducing computational complexity. MR et al. Haque and Sohel
(2022) used a dual-stream architecture combining CNN-SVM and
CNN-Softmax, outperforming traditional models. Despite these
advances, challenges remain in achieving high accuracy,
robustness, and data security.

Despite significant progress in image encryption and plant
disease detection, several critical gaps remain. Most existing
studies treat encryption and detection as separate processes,
lacking a unified solution that simultaneously ensures privacy
protection and detection accuracy. Moreover, few works consider
the resource constraints of real-time processing on edge devices.
Many YOLO-based methods either overlook the impact of
encryption on feature extraction or employ models that are too
heavy for mobile deployment. Therefore, there is a need for a
unified lightweight framework that guarantees image security while
enabling efficient disease detection. To address this gap, we propose
an integrated system that combines 3D chaotic cube encryption
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with the YOLOv11n-12D detection model, aiming to enhance both
detection performance and data security.

3 3D chaotic cube encryption scheme

In eggplant disease detection, image encryption is essential for
data security by preventing unauthorized access, tampering, and
maintaining integrity. Ciphertext transmission enhances system
security and reduces the risk of cyberattacks. This section
presents a novel image encryption method based on a 3D Chaotic
Cube Encryption Scheme, which consists of four steps: preparation
of the key and image, generation of 3D key and index array,
permutation encryption and XOR operation, and save the
encrypted image and key. Compared to frequency- and chaos-
based methods (Jui-Cheng and Guo, 2000; Armand Eyebe Fouda
et al, 2014; Jammula et al, 2022), the proposed scheme offers
stronger resistance to attacks and superior performance. Figure 2
illustrates the encryption framework, and Figure 3 shows the
original and encrypted eggplant images.

3.1 Preparation of the key and image

Prior to encryption, a 64-bit hexadecimal key and the target
image are provided. The key is then processed using a hash function
to generate the initial values for the chaotic system. The provided
64-bit hexadecimal string key hex is first converted into binary, and
its SHA-256 hash value is computed: Hx=SHA-256(key_hex).
Assume the original image img has a size of 128 x 128. Extract
the R, G, and B channels separately as R(i,), G(i,j), and B(i,f), where
i,j € {0,127}. The result is as shown in Equations 1-3. Then expand
the image into a 128 x 128 x 128 3D cube and K € {0,127}:
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FIGURE 2
Encryption flowchart.
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CR(l:]: k) = R(l>_]) (1)
Cg(isjo k) = G(i, ) 2
CB(I)]’ k) = B(l>]) (3)

The three channel cubes are concatenated into a one-
dimensional bitstream. The image hash is then computed as
shown in Equation 4:

H; = SHA-256(img) (4)

To initialize the chaotic system, extract the first, middle, and last 64
bits from the bitstream, convert them into decimal values xo,y,,29, and
normalize each to the range (0,1). These values are used as initial
conditions for the chaotic system, Xo,y0,Z as defined in Equations 5-7:

int(Hg|0:16|, 16
xo:% (5)

int(H, 132,
y":w ()

int(H, 164/,
.- int( K[ii 64],16) -

3.2 Generation of 3D key and index array
* To generate chaotic sequences, the 3D Logistic Map is

employed with the following initial conditions, as defined in
Equations 8-10:

Frontiers in Plant Science

xp=1x0 - (L=x0) + By 2 (8)
=ty 1=y +v-x-% )
z1=1,29- (1 —2) + 0% - g (10)

Then use x3, y;, z; in the equations again to calculate the next
values of x,,y,,z, repeat this process to generate a chaotic sequence
array as shown in Equations 11-13:

xn+1:rx'xn'(l_xn)"'ﬁ'yn'zn (11)
yn+1=ry'yn'(1_yn)+7'xn'zn (12)
zn+l=rz'zn'(1_zn)+a'xn'yn (13)

Here, ror,r, € (3, 57, 4), Take the values from the chaotic
interval. These o, 3, ycontrol the coupling degree of the system. The
3D Logistic Map is iterated one million times, and the initial steps
are discarded to eliminate transient effects. This process generates
three long chaotic sequences. Figure 4 shows the resulting random
sequences, chaotic sequences as defined in Equations 14-16:

X = {x1,%, ..., Xn } (14)
Y ={yiy2n} (15)
7= {Zl,Zz,...,ZN} (16)

Map the values to the range [0, 255] to form the 3D key: K(x,y,z)
= [X(x,y,2) x 256].
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X-sequence (first 200 points)
1.0
0.5
0‘ 0 L T T T T T T T T T
0 2 50 75 100 125 150 175 200
Y-sequence (first 200 points)
1.0 1
0.5
0' 0 L T T T T T T T T T
0 % 50 7 100 125 150 175 200
Z-sequence (first 200 points)
1.0
0.5
0' 0 i T T T T T T T T T
0 25 50 75 100 125 150 175 200
FIGURE 4

Random sequence numbers.

* To construct the index arrays, X is sorted to obtain A =
argsort(X), and Y is sorted to obtain B = argsort(Y), Z is
normalized to the range [0, 3], which is used for rotation: C
=[Z x 4].

3.3 Permutation encryption and XOR
operation

 First, apply index-based permutation to the 3D cube using
arrays A and B to reorder rows and columns, respectively.
Specifically, perform row permutation as: Cp — (:,4,:),
Cs — (1, 4,:),Cy — (3, A,1), and column permutation: Cy
— (B,:,:), C; — (B,:,:), Cyg — (B,:,:). and rotation based
on the value of C, rotate each layer C(i,j) times 90°. The
result as shown in Equations 17-19:

Cg(: 1) = Rotate(Cg(:, 3, 1), C(1, 7)) 17)
Cq(:,, 1) = Rotate(Cq (5, 3, 1), C(4, 7)) (18)
Cp(:,:, 1) = Rotate(Cgp(:,:, 1), C(4, /) (19)

e Next, complete the encryption by performing a bitwise
XOR operation between the permuted 3D cube and the
3D key: C,R:CRQK, CIG:CGQK, C,B:CBQK

Frontiers in Plant Science

3.4 Save the encrypted image and key

The encrypted 3D cube is converted back into a 2D color image
by mapping the corresponding values to the RGB channels as
shown in Equations 20-22:

R'(i,j) = C'r(i,}, 0), (20)
G'(i,j) = C'4(i,j,0), (21)
B'(i,j) = C'(i,},0) (22)

These channels are combined to generate the final encrypted
image enc_img, which is saved to a file. The index arrays A, B, C,
along with the key file key_bin, are stored for decryption.

3.5 Decryption process

To enable proper visualization and subsequent detection, the
encrypted image must be decrypted. The decryption process
involves four steps: load the key and encrypted image, reconstruct
the 3D cube, decrypt each channel, and rebuild the 2D image.

3.5.1 Load the key and encrypted image

The decryption process begins by loading the 3D key and index
arrays (A, B, C) from the file system, along with the encrypted
image file.

06 frontiersin.org
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3.5.2 Reconstruct the 3D cube

Each color channel (R, G, B) of the image is reshaped into a 128 x
128 x 128 3D cube, where the first two dimensions represent pixel
positions and the third dimension corresponds to the stacked
image layers.

3.5.3 Decrypt each channel

For each color channel’s 3D cube, two operations are applied:

» Bitwise XOR Restoration: The cube is first restored by
applying a bitwise XOR operation with the original 3D
key used during encryption.

* Reverse Rotation: Then, reverse rotations are performed
based on the index arrays A and B. Array A controls the
reversal along rows, and B controls the columns. The
rotation direction is opposite to the encryption process.
The number of 90° rotations is determined by the values in
array C, applied in reverse order to maintain symmetry.

3.5.4 Rebuild the 2D image

The decrypted 3D cubes of the R, G, and B channels are
converted back into 2D images. These channels are then merged
to reconstruct the final color image, which is output as the
decrypted result.

4 YOLOV1IN-12D model

Deep learning-based object detection has demonstrated remarkable
performance in disease recognition, with the YOLO series widely used
for its speed and accuracy (Dai et al., 2022; Wang et al,, 2024; Xie et al,,
2024). However, traditional YOLO models struggle when dealing with
small objects and class imbalance (Obu et al, 2023; AN. and AP,
2022). To address these issues, we propose an enhanced lightweight
model, YOLOv11n-12D. As shown in Figure 5, the architecture consists
of four components: Stem, Backbone, Neck, and Head. In our model,
YOLOvl1n serves as the student model, while YOLOvV12s acts as the
teacher. By leveraging knowledge distillation and detection loss, we
enhance recall, reduce missed detections, and maintain efficiency,
making it suitable for large-scale agricultural applications. The
distillation process is detailed in Figure 6.

The following are the steps of the distillation process:

a. The pre-trained YOLOvl11n is used as the student model,
and YOLOv12s as the teacher. Z_t and Z_s are defined as
shown in Equations 23, 24: Augmented samples are input
into both models to compute their respective logits:

Z, = TeacherModel(X) (23)

Z, = StudentModel(X) (24)

Since logits vary significantly in magnitude, a temperature
parameter T = 4.0 is applied to smooth them, stabilize gradients,
and generate soft labels for distillation.
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b. Temperature scaling (T = 4.0) is applied to smooth the logits
and obtain softened probability distributions for effective
knowledge transfer as shown in Equations 25, 26:

P, = softmax (%> (25)

Z
P, = softmax (?s) (26)

When T = 1.0, the distribution reduces to standard softmax,
limiting the ability to learn from the teacher. We adopt Kullback-
Leibler divergence as the distillation loss: Distillation Loss = T* x KL
(p ¢ || ps). Here, T* offsets the gradient scaling effect caused
by smoothing. A smaller KL value indicates better alignment
between the student and teacher outputs, KL as defined in
Equation 27:

KL(pt || ps) = Di(pt); - log (ggi) (27)

c. The student model is trained to balance knowledge from the
teacher and performance on the original task. To achieve
this, the detection loss and distillation loss are combined
with a weighted sum: TotalLoss = (1 — &) x (Detection
Loss) + a x (Distillation Loss). Mixed precision training,
learning rate scheduling, and early stopping strategies are
employed to improve efficiency and convergence.

d. The detection loss consists of a weighted sum of
classification loss (Focal Loss) and regression loss (CloU
Loss):Detection Loss=Focal Loss + CIoU Loss, A weight of
o = 0.7 is used to emphasize the distillation loss. The
learning rate is adjusted using the OneCycleLR policy as
shown in Equation 28:

LR oy X i if t <t

LR(f) = . (28)
LR, X (1—TW“:) if £ >

e. Training is terminated using an early stopping strategy
when the condition specified in Equation 29 is met.

if Patience Count > 10, stop training (29)

After each epoch,the validation set is evaluated using mAP,
Precision, and Recall to monitor the effectiveness of the distillation
strategy on student model performance.

5 Materials preparation and
optimization methods

To ensure high efficiency and accuracy in eggplant disease
detection, a large-scale dataset was constructed, encompassing
four categories: eggplant rot, fruit borer, healthy samples, and
thrips. All images were annotated in YOLO format with
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FIGURE 5
Detection model architecture.

standardized bounding boxes and precise class labels. The
annotations were reviewed by agricultural experts to ensure high-
quality and consistent labeling.The dataset was collected from
multiple eggplant cultivation bases, encompassing various growth
cycles, diverse lighting conditions, and all developmental stages of
pest/disease infestation (from initial infection to characteristic
symptom manifestation). Specifically, the test set comprises 745
representative images (containing 1516 annotated instances), while
the remaining 7520 images were partitioned into training (5264
images) and validation (2256 images) sets at a 7:2:1 ratio. This
scientifically designed partitioning scheme ensures both sufficient
training data volume and reliable evaluation of model
generalization capability. Sample differences between healthy and
diseased eggplants are shown, highlighting the visual variability
between categories (Figure 7). To address the limited quantity and

on

Backbone

Up
. sampling

variable quality of the collected raw images, we employed the
Albumentations data augmentation library to enhance dataset
diversity and improve model generalization and robustness
(Buslaev et al., 2020; Korra et al., 2022). The overall workflow for
material preparation and optimization is illustrated (Figure 8), and
the specific data augmentation strategies are detailed as follows:

* Random Flip: Applies horizontal and vertical flips to
simulate different viewing angles, enhancing feature
recognition and robustness.

* Color Jitter: Alters brightness, contrast, and saturation to
mimic various lighting conditions.

* Random Crop: Generates new samples by cropping image
regions, helping reduce reliance on specific areas.

Forward

Propagation
YOLOvVI12s
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FIGURE 6
Knowledge distillation process flow.
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FIGURE 7
(A-D) are healthy eggplant images, (E-H) are diseased eggplant images.

* Random Rotation: Rotates images within +30° to improve
viewpoint diversity and reduce angle bias.

* Random Noise Addition: Introduces Gaussian or salt-and-
pepper noise to improve performance under degraded
image conditions.

* Mosaic Augmentation: Merges multiple images to enrich
contextual and visual diversity in complex scenes.

* MixUp Augmentation: Blends two images and labels to
promote smooth label transition and mitigate overfitting.

The applied augmentation techniques significantly enhance the
model’s robustness and generalization, allowing more reliable
recognition of eggplant disease features under diverse conditions.
Furthermore, the integration of Focal Loss and CloU Loss improves
detection accuracy, achieving a final accuracy of 99.1% and effectively
reducing the miss detection rate, thereby improving applicability in real-
world agricultural scenarios.

5.1 Focal loss
Focal Loss is designed to address class imbalance, especially in

single-stage detectors like RetinaNet. Traditional cross-entropy is
dominated by easy negatives, causing unstable training. Focal Loss

Frontiers in Plant Science

introduces a modulation factor to focus learning on hard examples,
improving detection of minority classes.The construction of this
function is shown in part (a) of Figure 8. For a binary label: y € {0,1}
(0 for positive class and 1 for negative class), the predicted
probability pt is defined as Equation 30:

p ify=1
Pt:{ . (30)
1-pify=0

The standard cross-entropy loss is: CE = —log(p,), Calculate the
weight decay factor (1 — p,)”, yis Hyperparameters, Typically takes
values of 2 or 3, when p, is small,the decay factor approaches 1 when
p is small; otherwise, it approaches 0. A balancing factor is
introduced to control the ratio of positive to negative samples.
The final Focal Loss as presented in Equation 31:

FL = —o(1 - p,)" log (p,) (31)

To compute the average Focal Loss for all samples in a batch,
the classification loss is: Focal Loss = ﬁEﬁlFL(pEO)

5.2 CloU loss

CIoU Loss is primarily used for object bounding box regression,
especially in the context of rotated object detection. It optimizes the
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Diagram of materials analysis and optimization. (A) Focal loss. (B) CloU loss. (C) Material preparation and optimization.

accuracy of the bounding box’s location, size, and angle. CIoU Loss was
introduced to improve the detection accuracy of rotated objects, as
traditional bounding box regression methods typically only consider
rectangular boxes, while CloU Loss also accounts for the angle of the
rotated boxes. CloU Loss optimizes the bounding box regression of
object detection models by considering the center point error, size error
(width and height), and rotation angle error. The construction of this
function is shown in part (b) of Figure 8. Calculate the Intersection over
Union (IoU) between the predicted box b and the ground truth box b*.
As shown in Equation 32:

Intersection Area

To (32)

Union Area

Calculate the Euclidean distance between the center of the
predicted box and the center of the ground truth box, as defined
in Equation 33:

P*(b,6°) = (x = x%)* + (y = )

¢ can represent the diagonal distance of the smallest enclosing

(33)

box that contains both the predicted box and the ground truth box
as shown in Equation 34: Distance penalty term:
2
p*(b,b%)

= (34)

Measure the difference in aspect ratio between the predicted box
and the ground truth box, as defined in Equation 35:

(35)

Ve (arctan ¥ _arctan Y
= —5 | arctan —— — arctan —
n? h h

Adaptive weight & is primarily used to balance the contribution

of the aspect ratio loss term v in the overall CIoU loss. The result as
shown in Equation 36:
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v

U ToU) +v (36)

By combining IoU, center distance, and aspect ratio, the final
CIoU Loss is obtained as shown in Equation 37:

Leciou =1-ToU + ov

2
AL (b;bg) + (37)
C

6 Performance analysis

This section presents the evaluation metrics used to assess the
performance of the two core components of the proposed system:
the 3D chaotic cube-based encryption scheme for image security,
and the YOLOvI11n-12D-based detection model for eggplant
disease diagnosis.

6.1 Analysis of the proposed encryption
scheme

To evaluate our encryption scheme, we developed a
quantitative assessment system for image encryption security
(Table 1). It uses seven key indicators: contrast and mean square
error (positively correlated) indicate pixel perturbation;
information entropy shows randomness; while structural
similarity (SSIM), energy value, homogeneity, and structural
content (negatively correlated) assess structural damage, pattern
concealment, and pixel disorder. This framework is based on
research by Gupta and Chauhan (2021); Rahman et al. (2025),
and Karmakar et al. (2021).
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TABLE 1 Evaluation parameters and their relation with image encryption security.

P. M.E. R.W.S.S. V.E.
Contrast Contrast =", |a— b|* O(a, b) Contrast « S.S Higher contrast reduces predictability and enhances security.
SSIM SSIM = (2 i, + C1)(20,, + Cy)/ (2 + ,u§ +C)(op + Gyz +C,) | SSIM o< i Lower SSIM prevents structural leakage, improving security.
S.S
MSE MSE = %NE( 16) - () MSE « S.S Higher MSE increases difference, making decryption harder.
i=1
Entropy Entropy = *E‘fpi x log, (p;) Entropy o 8.5 Higher entropy means more randomness, improving security.
i=0
Energy Energy = 3'[O(a, b)? Energy < L Lower energy hides patterns, strengthening security.
S.S
ab
Homogenei ) O(a, b) . 1 h oo ixel chaos, i . .
geneity Homogeneity = E Homogeneity o — Lower homogeneity increases pixel chaos, improving security.
S l+]a-b| S.S
sC SC = > (original image?) s o 1 Lowef SC means less similarity to the original, enhancing
> (original - encrypted)? S.S security.

P, Parameter; M.E., Mathematical Equation; R.W.S.S., Relationship with Strong Security (S.S); V.E., Variable Explanation.

Table 2 shows that our method outperforms existing
technologies (Huang et al., 2025; Xu et al, 2024; Ullah et al,
2025) in encryption quality, security, and efficiency. By
integrating chaotic sequence generation, pixel permutation, and
XOR encryption, our solution maintains consistent performance
metrics for all test samples (both healthy and diseased eggplants).
The entropy value is 7.6195 (close to the theoretical maximum of 8),
and the pixel correlation coefficient is —0.0084 (close to 0). Our
method achieves high image fidelity (40.26 dB) and fast encryption
speed (0.0127 seconds), which is 23 times faster than the fastest
comparative method. It also preserves key features for disease
identification, meeting smart agriculture’s requirements for real-
time performance, security, and feature preservation.

6.2 Key space analysis

The key space, representing the total number of possible keys, is
a critical factor in resisting brute-force attacks. In this scheme, the
user key is a 64-character hexadecimal string, corresponding to 256
bits. As each hex character encodes 4 bits, the key space size is: 2256
~ 1.16 x 10”7, Such a vast key space is computationally infeasible to
exhaust. Even at 10'® keys per second, a brute-force search would
take: 1.16x10”

1018 x60x 60x 24 x 356
that the proposed key space is computationally infeasible to exhaust

= 3.67 x 10°° year. These results confirm

via brute-force attacks.

6.3 Attack resistance analysis

6.3.1 Known-Plaintext attack

The proposed scheme uses a 3D Logistic Map, which exhibits
strong sensitivity to initial conditions—tiny variations lead to
drastically different outputs. The chaotic system evolves as shown
in Equation 38:
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xn+1:r'xn'(1_xn)+ﬁ'yn'zn (38)

Chaotic behavior is verified by the Lyapunov exponent, as
defined in Equation 39:

A= lim lEln = (39)

n—oo 11 = dx;
i=1 1

< ‘df ()

A positive exponent A > 0, indicates exponential divergence. In our
experiments, A = 0.89 confirms high sensitivity, making it extremely
difficult to reverse-engineer the key, even with known plaintext-
ciphertext pairs. This divergence is described as defined in Equation 40:

Ax, = Axy - € (40)

To initialize the chaotic system, we apply the SHA-256 hash
function to the user key. With its strong collision resistance and
irreversibility, the probability of a successful brute-force match is
negligible, as defined in Equation 41:

1

P:ﬁ

(41)

6.3.2 Differential attack: NPCR

NPCR evaluates how a minor change in the input affects the

;PG j)

encrypted output. It is defined as: NPCR = =5

% 100 %. D(i,j)
as defined in Equation 42:

1 if C,(,7) = C,(4,j
D(i,j):{ if C,(i,j) # C,(i,j) )

0 if C,(4,5) = C,(4,))

Here, C,(i,f) and C,(i,f) denote the pixel values of two encrypted
images with slight input differences. The ideal NPCR approaches 100%.

6.3.3 Differential attack: UACI
UACI quantifies the average intensity difference between two
encrypted images, as shown in Equation 43:

frontiersin.org


https://doi.org/10.3389/fpls.2025.1634408
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Han et al.

10.3389/fpls.2025.1634408

TABLE 2 Comparative performance analysis of eggplant image encryption methods.

Proposed work (encrypted images)

Image type Homogeneity SC Entropy  Correlation Energy Contrast = Execution time (s)
Healthy 1 0.0158 0.6381 7.6195 ~0.0084 0.0001 4905.8639 0.0160
Healthy 2 0.0158 0.8239 7.6195 ~0.0084 0.0001 4905.8639 0.0124
Healthy 3 0.0158 0.4249 7.6195 ~0.0084 0.0001 4905.8639 0.0131
Healthy 4 0.0158 03750 7.6195 ~0.0084 0.0001 4905.8639 0.0127
Diseased 1 0.0158 0.9212 7.6195 ~0.0084 0.0001 4905.8639 0.0111
Diseased 2 0.0158 0.5680 7.6195 ~0.0084 0.0001 4905.8639 0.0119
Diseased 3 0.0158 0.6245 7.6195 ~0.0084 0.0001 4905.8639 0.0112
Diseased 4 0.0158 0.6458 7.6195 ~0.0084 0.0001 4905.8639 0.0131
Mean 0.0158 0.6277 7.6195 -0.0084 0.0001 4905.8639 0.0127

Existing methods comparison

Entropy

Execution Time

Correl. Contrast

Energy

(s)
15 5170.0723 10.9958 7.1346 -0.0707 0.0001 2706.7328 2.0395
41 8778.5593 8.6966 7.6232 0.2083 0.0001 3970.8332 0.2992
45 8256.4317 8.9629 7.7475 —0.0854 0.0000 6158.4497 0.8220
Ours 0.158 40.2623 7.6195 -0.0084 0.0001 4905.8639 0.0127
Bold values are representative or key results.
1 C1(o ) — Co(6o ) 20— ) (i — 1y)

UACI = % 100 % (43)

WXH% 255

The ideal value should be close to 33%. Experimental results show:
NPCR = 99.63%, UACI = 32.85%, These values confirm high resistance
to differential attacks and strong sensitivity to input perturbations.
Figure 9 compares the pixel distribution: the original image (left) shows
structured patterns, while the encrypted image (right) displays uniform
randomness, demonstrating visual and statistical security.

6.4 Statistical analysis

6.4.1 Histogram analysis

Figure 10 illustrates the grayscale distributions of the original
and encrypted images. The original image shows a clear peak in
pixel intensity, while the encrypted image exhibits a nearly uniform
distribution with no apparent structure. This indicates that the
encryption process effectively randomizes the statistical properties
of the original image, eliminating pixel concentration and
preventing histogram-based attacks.

6.4.2 Pixel autocorrelation analysis

The Pearson correlation coefficient measures the linear
relationship between adjacent pixel values and defined as in
Equation 44:
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(44)

r =
V- S0 - )

Ideally, r = 0 indicates no correlation. In our experiment,
r =0.005, confirming that the encrypted image lacks linear pixel
dependencies, which enhances its resistance to statistical attacks.

6.5 Detection performance evaluation

This study evaluated the YOLOv11n-12D model using Tables 3,
4, confirming its innovative breakthroughs. Table 3 highlights the
model’s superior performance in detecting four eggplant diseases:
rot (mAP@0.5=0.861), fruit borer (0.872), healthy plants (0.911),
and notably thrips (0.753), a 6.5% improvement over the baseline. It
achieves accuracy comparable to YOLOvI12s (gap <2%) via
knowledge distillation while remaining lightweight. Table 4
provides a comprehensive performance comparison. The model
maintains near-teacher accuracy (1.2% mAP@0.5 difference) and
achieves a 2.7ms inference speed—3.6x faster than YOLOvI2s
(9.6ms) and 3.2x faster than YOLOv8n (8.7ms). Its F1-Score
(0.804) outperforms YOLOv10n (0.764) and YOLOv8n (0.785),
with a 4.5% improvement in the stricter mAP@0.5:0.95 metric,
demonstrating stability in multi-scale detection.

Comprehensive analysis of data from both tables demonstrates
that YOLOv11n-12D, through the synergistic optimization of
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Pixel distribution of the original image

Encrypted image pixel distribution

FIGURE 9
Pixel analysis diagram.

knowledge distillation and Focal Loss, successfully overcomes the
traditional trade-off between accuracy and efficiency, achieving the
innovative breakthrough of “teacher-level accuracy with edge-level
efficiency” and providing reliable technical support for real-time
disease detection in smart agriculture.

6.6 Information entropy analysis

The formula for information entropy as defined in Equation 45:

255
H(X) = ->p(x;) log, p(x;) (Information entropy (unit: bit))
i=0

(45)

The entropy of the original image ranges from 5 to 7, while the
encrypted image’s entropy is close to 8 (theoretical maximum),

showing a more uniform and random pixel distribution. Our
calculated entropy value is 7.6195, indicating high information
entropy, which helps prevent information leakage and statistical
analysis attacks.

7 Conclusion

This paper proposes an integrated system for eggplant disease
detection that combines image encryption and deep learning-based
recognition. The system employs a lightweight encryption scheme
based on 3D chaotic mapping and pixel permutation to secure
image transmission with low computational overhead. It then
utilizes an optimized YOLOv11n-12D model to process the
decrypted images, achieving high detection accuracy and real-
time performance. A teacher-student knowledge distillation
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FIGURE 10
Image grayscale distribution.
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TABLE 3 Performance comparison of YOLO models for eggplant disease detection.

Dataset Performance metrics
Category
Images Instances Precision Recall mAP@0.5 mAP@0.5:0.95

Eggplant Rot 117 544 0.838 0.814 0.861 0.565

Eggplant Fruit 237 323 0.861 0.819 0.872 0.407
YOLOv11n-12D

Healthy 216 331 0.871 0.886 0.911 0.725

Eggplant Thrips 175 318 0.752 0.643 0.753 0.442

Eggplant Rot 117 544 0.838 0.814 0.861 0.565
YOLOv11n-12D Eggplant Fruit 237 323 0.861 0.819 0.872 0.407
Unencrypted
(Baseline) Healthy 216 331 0.871 0.886 0.911 0.725

Eggplant Thrips 175 318 0.752 0.643 0.753 0.442

Eggplant Rot 117 544 0.838 0.724 0.822 0.552

Eggplant Fruit 237 323 0.826 0.807 0.850 0.395
yolovlin

Healthy 216 331 0.861 0.891 0.924 0.728

Eggplant Thrips 175 318 0.810 0.575 0.707 0.411

Eggplant Rot 117 544 0.852 0.827 0.873 0.582

Eggplant Fruit 237 323 0.879 0.831 0.884 0.418
yolov12s

Healthy 216 331 0.883 0.901 0.922 0.741

Eggplant Thrips 175 318 0.765 0.659 0.767 0.456

Eggplant Rot 117 544 0.805 0.706 0.781 0.502

Eggplant Fruit 237 323 0.821 0.768 0.826 0.384
yolov10n

Healthy 216 331 0.852 0.904 0.910 0.719

Eggplant Thrips 175 318 0.770 0.505 0.672 0.397

Eggplant Rot 117 544 0.820 0.750 0.817 0.524

Eggplant Fruit 237 323 0.859 0.794 0.857 0.408
yolov8n

Healthy 216 331 0.815 0.907 0.917 0.717

Eggplant Thrips 175 318 0.781 0.566 0.697 0.399

Bold values are representative or key results.

strategy is incorporated to further enhance model robustness.  agriculture. At the same time,our future research will focus on
Experimental results demonstrate that the system not only  enabling disease detection directly on encrypted images to eliminate
safeguards data privacy but also outperforms existing methods in  the risk of data leakage during decryption. This will involve
accuracy, speed, and stability, offering a reliable solution for smart  exploring privacy-preserving techniques like homomorphic

TABLE 4 Comprehensive performance comparison.

Model version Precision Recall mAP@O0.5 mAP@0.5:0.95 Fl1-score Inference speed (ms)
YOLOv11n-12D 0.831 0.791 0.849 0.535 0.804 2.7
YOLOv1in 0.834 0.749 0.826 0.522 0.789 33
YOLOVI2s 0.845 0.804 0.861 0.549 0.812 9.6
YOLOv10n 0.812 0.721 0.797 0.501 0.764 3.1
YOLOv8n 0.819 0.754 0.822 0.512 0.785 8.7

Bold values are representative or key results.
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encryption and designing lightweight models that can operate
effectively in the encrypted domain.

8 Discussion

Our study proposes a framework that integrates image
encryption with deep learning based object detection for real
time, privacy-preserving crop disease monitoring. The designed
3D chaotic cube encryption scheme demonstrates strong security
performance, achieving high entropy (7.6195), low pixel correlation
(0.0084), and strong resistance to statistical and differential attacks
(NPCR = 99.63%, UACI = 32.85%). Meanwhile, the YOLOv11n-
12D model retains the detection performance of the teacher model
while achieving fast inference speed (2.7 ms), with a notable mAP
improvement of +6.5% in small-object detection such as eggplant
thrips. This solution offers a promising approach for advancing
smart agriculture in rural or resource limited areas. By encrypting
images before transmission and decrypting them only during model
inference, the framework strikes a practical balance between data
security and operational efficiency. Its compatibility with edge
devices further supports deployment in real world scenarios,
where data privacy, bandwidth limitations, and low computing
resources are common challenges. Despite the promising results,
the current framework still requires decryption before detection,
which introduces a temporary risk of data exposure. Future work
will focus on privacy preserving deep learning techniques that
support inference directly in the encrypted domain, such as
homomorphic encryption or secure multi party computation.
Further validation on larger and more diverse crop datasets is
also needed to assess generalization. Enhancing the interpretability
of both the detection model and the encryption process will help
improve transparency and user trust in practical applications.
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