AUTHOR=Han Jiao , Wu Zhenzhen , Ding Yandong , Guo Yantong , Fu Rui TITLE=A privacy-protecting eggplant disease detection framework based on the YOLOv11n-12D model JOURNAL=Frontiers in Plant Science VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1634408 DOI=10.3389/fpls.2025.1634408 ISSN=1664-462X ABSTRACT=The growing global population and rising concerns about food security highlight the critical need for intelligent agriculture. Among various technologies, plant disease detection is vital but faces challenges in balancing data privacy and model accuracy. To address this, we propose a novel privacy-preserving eggplant disease detection system with high accuracy. First, we introduce a lightweight 3D chaotic cube-based image encryption method that ensures security with low computational cost. Second, a streamlined YOLOv11n-12D framework is employed to optimize detection performance on resource-constrained devices. Finally, the encryption and detection modules are integrated into a real-time, secure, and accurate identification system.Experimental results show our framework achieves near-ideal encryption security (entropy=7.6195, Number of Pixel Change Rate(NPCR)=99.63%, Unified Average Changing Intensity(UACI)=32.85%) with 23× faster encryption (0.0127s) versus existing methods. The distilled YOLOv11n-12D model maintains teacher-level accuracy (mAP@0.5=0.849) at 3.6× the speed of YOLOv12s (2.7ms/inference), with +6.5% mAP improvement for small disease detection (e.g., thrips). This system balances privacy and real-time performance for smart agriculture applications.