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Introduction: Rice is an important food crop but is susceptible to diseases.

However, currently available spot segmentation models have high

computational overhead and are difficult to deploy in field environments.

Methods: To address these limitations, a lightweight rice leaf spot segmentation

model (MV3L-MSDE-PGFF-CA-DeepLabv3+, MMPC-DeepLabv3+) was

developed for three common rice leaf diseases: rice blast, brown spot and

bacterial leaf blight. First, the lightweight feature extraction network

MobileNetV3_Large (MV3L) was adopted as the backbone of the model.

Second, based on Haar wavelet downsampling, a multi-scale detail

enhancement (MSDE) module was proposed to improve decision-making

ability of the model in transitional regions such as spot gaps, and to improve

the sticking and blurring problems at the boundary of spot segmentation.

Meanwhile, the PagFm-Ghostconv Feature Fusion (PGFF) module was

proposed to significantly reduce the computational overhead of the model.

Furthermore, coordinate attention (CA) mechanism was incorporated before the

PGFF module to improve robustness of the model in complex environments. A

hybrid loss function integrating Focal Loss and Dice Loss was ultimately

proposed to mitigate class imbalance between disease and background pixels

in rice disease imagery.

Results: Validated on rice disease images captured under natural illumination

conditions, the MMCP-DeepLabv3+ model achieved a mean intersection over

union (MIoU) of 81.23% and mean pixel accuracy (MPA) of 89.79%, with floating-

point operations (Flops) and the number of model parameters (Params) reduced

to 9.695 G and 3.556 M, respectively. Compared to the baseline DeepLabv3+,

this represents a 1.89% improvement in MIoU, a 0.83% increase in MPA, alongside

93.1% and 91.6% reductions in Flops and Params.

Discussion: The MMPC-DeepLabv3+ model demonstrated superior

performance over DeepLabv3+, U-Net, PSPNet, HRNetV2, and SegFormer,

achieving an optimal balance between recognition accuracy and

computational efficiency, which establishes a novel paradigm for rice lesion

segmentation in precision agriculture.
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1 Introduction

As the global leader in rice cultivation and consumption, China

maintains an annual production area of approximately 30 million

hectares with consistent yield outputs exceeding 200 million metric

tons (Chen et al., 2025). Phytopathological threats during vegetative

growth stages, however, persistently compromise both yield

potentials and grain quality indices. Historically, disease

identification was primarily reliant on empirical farmer

observations (Sethy et al., 2020), a methodology constrained by

diagnostic subjectivity, operational inefficiency, and limited

classification accuracy. With the rapid development of computer

technology, traditional agriculture is gradually transforming to

modern agriculture, and computer vision technology can more

accurately and efficiently identify and localize diseases on rice leaves

(Tian et al., 2020).

Current crop disease lesion segmentation based on computer vision

techniques is primarily divided into two research directions: traditional

image processing algorithms and deep learning approaches. However,

the former methodology is constrained by its reliance on manually

predefined feature extractors, predefined features may become invalid

when confronted with phenotypic variations in disease manifestations,

leading to significant performance degradation of systems. More

critically, these algorithms exclusively operate on low-level visual

features, which exhibit limited discriminative capacity in scenarios

involving complex field backgrounds or low lesion-background

chromatic contrast.

In contrast to traditional image processing algorithms,

Convolutional Neural Network (CNN)-based segmentation models

are capable of autonomously extracting hierarchical features from raw

image data, thereby enabling end-to-end disease lesion segmentation.

Notably, with increasing network depth, the extracted features

progressively transition from low-level visual cues to semantic-rich

high-level representations. This hierarchical feature learning

mechanism not only improves the semantic understanding of

pathological patterns in the model but also enhances robustness to

complex agricultural field environments. Therefore, CNN-based

approaches have emerged as the dominant methodology for crop

disease lesion detection in recent literature.

To address the critical need for improving detection accuracy and

operational efficiency in agricultural disease management, CNN-based

crop lesion segmentation models have been widely researched and

refined by global researchers. Ren et al. (2020) extracted features of

tomato leaf diseases using VGG16, utilized skip connections in the

decoder to fuse multiple features and restore image details, and finally

upsampled to the input size through transposed convolution to

achieve the segmentation of tomato disease spots and background.

The mean intersection over union (MIoU) and mean pixel accuracy

(MPA) reached 75.36% and 94.66% respectively. Li et al. (2023)

proposed the MA-Unet model based on the Unet network for

segmenting cucumber disease spots and healthy leaves. By

incorporating hybrid dilated convolution blocks into the encoder of

the Unet network to enlarge the receptive field, and embedding the

Convolutional Block Attention Module (CBAM) in the decoder to

reduce interference from complex backgrounds, precise segmentation
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of disease spots and healthy leaves was achieved. The MIoU index

reached 84.97%. Wang et al. (2023) addressed the challenges of small

lesion areas and blurred boundaries in pear tree leaf diseases by

integrating a multi-feature extraction module and dynamic sparse

attention mechanism into the Unet model. This integration further

improved the ability of the model to capture global features, ultimately

achieving accurate segmentation among disease spots, healthy leaves,

and background regions. The MIoU reached 86.15%. Wang et al.

(2021) designed a cascaded DUNet model combining DeepLabv3+

and Unet to address the poor segmentation of cucumber disease spots

under complex backgrounds. By calculating the proportion of diseased

areas to healthy leaves, the model achieved the determination of

cucumber disease severity. Convolutional neural networks can

automatically learn complex feature representations from large-scale

data, reducing reliance on specialized domain knowledge while

demonstrating better adaptability and robustness under changing

environmental conditions.

Recently, Fu et al. (2024) enhanced the segmentation accuracy of

pear leaf diseases using an improved DeepLabv3+ architecture

integrated with MobileNetV2 and SE attention, demonstrating the

feasibility of lightweight and attention-enhanced networks in

agricultural pathology applications. Pal et al. (2025) proposed a

MAML-based DeepLabv3 framework integrating multi-scale spatial

attention, enabling both lesion segmentation and disease severity

assessment with minimal computational overhead, further

underscoring the relevance of attention mechanisms in agricultural

diagnostics. In addition, Mo et al. (2022)demonstrated that combining

coordinate attention with CBAM within a DeepLabv3+ framework

significantly enhanced lesion boundary detection while retainingmodel

efficiency. These studies collectively affirm the value of lightweight

architectures and attention-based designs, which align with the goals of

our work.

While CNN-based crop disease lesion segmentation has become

the current mainstream approach and achieved substantial

progress, there remain the following challenges: (1) Most existing

studies mainly focus on distinguishing lesion areas from healthy

leaves or backgrounds, failing to precisely differentiate different

disease types. (2) Existing lesion segmentation models typically

feature complex architectures with large parameter sizes and high

computational costs. While these models perform excellently on

high-performance computing devices, they show poor performance

when deployed in real agricultural environments with limited

computational resources. Therefore, there is an urgent need to

develop a more targeted rice lesion segmentation model to address

these issues. To tackle these challenges, this study focuses on three

common rice diseases during growth: bacterial leaf blight, rice blast,

and brown spot:

First, four mainstream crop disease segmentation models were

trained and tested to obtain loss changes and performance metrics

on the training set, confirming the selection of DeepLabv3+ as the

baseline network for rice leaf lesion segmentation in this study.

Next, to address the high computational cost of the DeepLabv3+

model, the Xception network used for feature extraction in the

encoder was replaced with an MobileNetV3_Large (MV3L)

network incorporating dilated convolutions. Secondly, a PagFm-
frontiersin.org
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Ghostconv Feature Fusion (PGFF) module and multi-scale detail

enhancement (MSDE) module were proposed and introduced,

enabling the model to maintain feature extraction capabilities

while significantly reducing the number of model parameters

(Params) and floating-point operations (Flops) of the model.

Thirdly, the coordinate attention (CA) mechanism was

introduced into the decoder to improve the robustness of the

model in segmenting complex scenarios. Fourthly, to address the

imbalance in the proportion of different parts in rice disease images,

a hybrid loss function combining Focal Loss and Dice Loss

was proposed.
2 Materials and methods

2.1 Dataset construction

The rice disease dataset used in this study was compiled from two

primary sources. The first source consisted of 400 rice leaf images with

natural complex backgrounds, including 100 samples for each category

(healthy leaves, brown spot, rice blast, and bacterial blight), which were

captured using a Huawei Mate50 smartphone at a rice cultivation base

in Kunming, Yunnan Province. The second source comprised publicly

available rice disease datasets obtained from Kaggle, containing 350

additional images per class. These included both complex-background

and simple-background scenarios, specifically: brown spot (282

complex, 68 simple), rice blast (150 complex, 200 simple), bacterial

blight (144 complex, 206 simple), and healthy leaves (185 complex,

165 simple).

To ensure dataset reliability, a two-stage quality validation process

was applied. First, all images and their disease annotations were

reviewed and confirmed by experienced agronomy experts to ensure

biological accuracy. Second, all images were manually screened to

eliminate those severely blurred or distorted to the extent that disease

features were unrecognizable to the human eye.

In total, the original dataset contained 1,800 images evenly

distributed across the four disease types and healthy leaves (450 per
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class). The dataset was split into a training set and a validation set at a

9:1 ratio. To improve the robustness and generalization ability of the

model, we employed an online data augmentation strategy exclusively

during the training stage. A flexible augmentation pipeline was

constructed, in which each operation—including geometric

transformations (e.g., rotation, flipping, scaling), color adjustments

(brightness, hue, saturation), and noise injection (Gaussian and salt-

and-pepper noise)—was applied with a specified probability during

each training iteration. This approach dynamically diversifies the

input data, reduces the risk of overfitting, and simulates diverse field

conditions such as lighting changes, leaf deformation, and partial

occlusion. Notably, this strategy has been validated in similar plant

disease segmentation tasks. For example, Jia et al. (2024) applied an

almost identical dynamic augmentation method in their DFMA-

based segmentation framework and demonstrated significant

improvements in performance and generalization under real-world

agricultural environments.

The validation set remained unaugmented to ensure objective

performance evaluation. Grayscale mask labels were generated

using Labelme, assigning five target categories: background (0),

healthy leaves (1), brown spot (2), rice blast (3), and bacterial blight

(4). Figure 1 presents representative examples of images with

different background complexities and their corresponding

labeled masks. All data were converted into PASCAL VOC

format before training.
2.2 DeepLabv3+ model

The DeepLab series of models are semantic segmentation

networks developed by Google (Chen et al., 2014, 2017, 2018a,

2018b), with DeepLabv3+ representing the latest iteration. This

model employs an encoder-decoder architecture. The encoder

module consists of the Xception backbone network and the

Atrous Spatial Pyramid Pooling (ASPP) module. The ASPP

module contains a 1×1 convolutional layer, dilated convolutions

with different dilation rates (6, 12, and 18), and a global average
FIGURE 1

Original images and corresponding mapping mask images.
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pooling layer. The encoder uses Xception for initial feature

extraction, generating high-resolution low-level features

containing edge and texture details, and low-resolution high-level

features rich in semantic information. The obtained high-level

features are aggregated across multiple scales through the ASPP

module to generate the final high-level features. In the decoder

module, low-level image features are upsampled 4× via bilinear

interpolation and fused with high-level image features, followed by

a 3×3 convolution to restore detailed features. Finally, another 4×

upsampling is applied to recover spatial information and achieve

pixel-level segmentation. While DeepLabv3+ extracts high-level

and low-level image features through its encoder-decoder

structure and leverages the ASPP concept to capture clearer

object boundaries, its substantial computational cost, combined

with the dense and small rice disease lesions and complex rice

growth environments, poses new challenges for the model.
2.3 Rice leaf disease classification model
based on MMPC-DeepLabv3+

As delineated in Figure 2, a novel MV3L-MSDE-PGFF-CA-

DeepLabv3+ (MMPC-DeepLabv3+) architecture was developed in

this investigation for rice leaf lesion segmentation through strategic

modifications of the DeepLabv3+ framework.

The principal modifications in the proposed MMPC-DeepLabv3+

architecture are reflected in its four core components, from which the

name “MMPC” is derived:: (1) M – MobileNetV3-Large (MV3L):

Replaces the conventional Xception backbone with a lightweight and

efficient MV3L network, specifically designed to enhance semantic

segmentation performance while significantly reducing computational

complexity.; (2) M – Multi-Scale Detail Enhancement (MSDE):

Introduces a detail enhancement module to improve edge detection

and low-level texture extraction, thereby enabling more accurate

lesion boundary delineation through richer hierarchical

representations. (3) P – PagFM-GhostConv Feature Fusion (PGFF):

Implements an optimized high-low feature fusion module that not
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only preserves critical semantic-spatial information but also reduces

FLOPs and parameter count, promoting lightweight deployment. (4)

C – Coordinate Attention (CA): Applies attention enhancement to

both high- and low-level features prior to concatenation,

strengthening the model’s focus on lesion regions under complex

backgrounds and improving segmentation robustness.

These modular innovations collectively support the lightweight,

accurate, and attention-enhanced segmentation capabilities of

MMPC-DeepLabv3+, making it well-suited for field-level

agricultural applications.

2.3.1 MobileNetV3-large backbone network
MV3L (Howard et al., 2019), developed by Google, is a

lightweight CNN network designed to achieve efficient and

accurate visual recognition while minimizing computational

resource usage, making it suitable for visual recognition tasks in

field environments with limited computational resources. In MV3L,

the Squeeze-and-Excitation (SE) attention mechanism is

incorporated into select bottleneck (Bneck) blocks. The SE

mechanism uses two fully connected layers to capture channel-

wise dependencies and generate channel weights.

In this study, the lightweight network MV3L was selected as the

feature extraction network for DeepLabv3+, but adjustments were

made to MV3L to accommodate the spatial information retention

requirements of semantic segmentation tasks (Figure 3).

Specifically, to preserve spatial information, the global average

pooling layer and subsequent fully connected layers—originally

designed for image classification tasks—were removed from the

MV3L network, retaining only the spatial information

downsampled by 32× through MV3L. However, the spatial

information from 32× downsampled features remained

insufficient for the requirements of DeepLabv3+. Consequently,

the downsampling rate in MV3L was adjusted to 16× to address

this limitation.

The specific operation was to set the stride of the 5×5

convolution in the Bneck structure (layer 14 in Table 1) within

the original MV3L, which performs 32× downsampling, to 1.
FIGURE 2

MMPC-DeepLabv3+ architecture diagram.
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Secondly, to compensate for the receptive field, the dilation rate of

the 5×5 convolution in the Bneck of the 14th layer was set to 2 to

make up for the reduction of the receptive field caused by the

decrease of the downsampling rate. Finally, the output from the

16th layer in the MV3L was directly utilized as high-level features

for subsequent processing through the ASPP module.

Following the adjustments and optimizations applied to MV3L,

the model not only retains the strong feature extraction capabilities

inherent to the MV3L architecture but also achieves a reduction in

Params and Flops. As shown in Table 1, the outputs of layer 4 and

layer 16 are used as low-level and high-level features in DeepLabv3+

respectively. Additionally, the output of layer 2 will be utilized in the

subsequent multi-scale detail enhancement module.
2.3.2 Multi-scale detail enhancement module
To improve the capability of the model in capturing fine-

grained details, Haar Wavelet Downsampling (HWD) technology

was incorporated. As shown in Figure 4, the HWD module can

reduce image resolution while effectively preserving detailed

information in three directions: horizontal, vertical, and diagonal

(Xu et al., 2023a). For input feature maps, the process involved three

steps: (1) applying Haar wavelet transform for 2× downsampling,

generating four subbands: Low-Low (LL), Low-High (LH),

High-Low (HL), and High-High (HH); (2) stacking these

subbands along the channel dimension for feature fusion; (3)

adjusting the number of channels via 1×1 convolution to achieve

efficient feature integration.

Based on the information capture and processing capabilities of

the HWD module, this study introduced it into the model to

propose the MSDE module (Figure 5). The module consisted of

three parallel branches that extracted and integrated detailed

information from different levels: Branch 1: Applied the HWD

module twice to achieve 4× downsampling of the input image,

extracting fine details directly from the original input. Branch 2:

First downsampled the input 2× through the feature extraction

network, then applied HWD for an additional 2× downsampling

(total 4×), aiming to capture detailed information from the

medium-depth networks. Branch 3: Directly utilized the 4×

downsampled features from the feature extraction network to

obtain preliminarily abstracted low-level features.
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The final step involved element-wise addition of the three

branch outputs to generate a fused feature map containing multi-

scale detail information. This fusion strategy enriched low-level

features with edge, corner, and texture details, significantly

improving the performance of the model in segmenting lesion

boundaries and small targets.

In implementation details, the input image of size 512×512×3

undergoes two successive HWD transformations: first reducing to

256×256×16 and then further downsampling to 128×128×24.

Simultaneously, the 2× downsampled 256×256×16 feature map from

layer 2 in the MV3L architecture (Table 1) is processed through the

HWD module, yielding a 128×128×24 feature map. These three

identically dimensioned feature maps are combined through

element-wise addition to generate the final low-level features.
2.3.3 Introduction of the coordinate attention
mechanism

To further enhance the feature representation capabilities of the

model, a CA mechanism (Hou et al., 2021) was applied to both the

high-level features from the ASPP module and the low-level

features extracted by the multi-scale detail enhancement module.

This attention mechanism helped the model better understand the

spatial distribution of lesions across the entire leaf surface,

improving its robustness in complex segmentation scenarios.

The CA mechanism introduces explicit coordinate information

based on channel attention to enhance the ability of the model to

understand the spatial distribution information in the input

features. As shown in Figure 6, by obtaining the spatial

information about the width and height of the image to enhance

feature representation, the input feature map is decomposed into

horizontal and vertical directions through global average pooling,

and two global context features are generated.

Subsequently, the two global context features are concatenated

along the channel axis. By applying a 1×1 convolution, the number

of channels is adjusted to C=r (where C is the number of channels,

and in this paper, the hyperparameter. is set to 16, meaning the

number of intermediate channels is 1/16 of the number of input

channels). Then, the stacked feature vectors are separated into the

height and width directions. Next, the number of channels is

adjusted back to the number of input channels using a 1×1
FIGURE 3

Optimized MV3L architecture.
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TABLE 1 MobileNetV3-Large feature extraction network configuration.

Number of layers Shape Form Dilation rate Output channels SE Activation function Stride

1 512×512×3 conv2d — 16 — HS 2

2 256×256×16 Bneck — 16 — Relu 1

3 256×256×16 Bneck 64 24 — Relu 2

4 128×128×24 Bneck 72 24 — Relu 1

5 128×128×40 Bneck 72 40 ✓ Relu 2

6 64×64×40 Bneck 120 40 ✓ Relu 1

7 64×64×40 Bneck 120 40 ✓ Relu 1

8 64×64×40 Bneck 240 80 — HS 2

9 32×32×80 Bneck 200 80 — HS 1

10 32×32×80 Bneck 184 80 — HS 1

11 32×32×80 Bneck 184 80 — HS 1

12 32×32×80 Bneck 480 112 ✓ HS 1

13 32×32×112 Bneck 672 112 ✓ HS 1

14 32×32×112 Bneck 672 160 ✓ HS 1

15 32×32×160 Bneck 960 160 ✓ HS 1

16 32×32×160 Bneck 960 160 ✓ HS 1
F
rontiers in Plant Science
 06
The "✓" denotes whether the Squeeze-and-Excitation (SE) attention module is integrated into each specified layer of the MobileNetV3-Large feature extraction network.
FIGURE 4

HWD module.
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convolution. Through the sigmoid function, the feature values are

mapped to the range from 0 to 1, generating the attention maps in

the height and width directions.

Finally, the original input and the attention maps in the H and

W directions are multiplied element by element to complete the

feature recalibration, which highlights the important features and

suppresses the unimportant regions.

2.3.4 Lightweight high-low feature fusion module
A novel PGFFmodule was proposed for this study, inspired by the

Pixel-attention-guided Fusion Module (PagFM) architecture

described in (Xu et al., 2023b). Specifically, the module integrates
Frontiers in Plant Science 07
high-level semantic features and low-level spatial features through a

two-stage processing pipeline. As illustrated in Figure 7, the shapes of

multi-scale feature maps were first aligned. To reduce parameters, a

1×1 convolution was applied to halve the number of channels. Then

the similarity derived from sigmoid mapping was multiplied element-

wise. This result was employed as weighting coefficients for feature

interaction. The preliminary fused features were subsequently

synthesized through weighted summation, followed by final feature

generation via 3×3 Ghost convolution operations. Notably, the PagFM

component employs dimensionality reduction via 1×1 convolution to

mitigate computational overhead during feature interaction. Table 2

presents a comparative analysis demonstrating that the proposed
FIGURE 5

MSDE module.
FIGURE 6

CA mechanism.
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module reduced Params and Flops compared to the original

fusion methods.

2.3.5 Improvement of the loss function
In preliminary experiments, the segmentation model trained

using only the Dice loss function failed to achieve satisfactory

results due to the class imbalance in the rice leaf image dataset

(Table 3), where healthy tissues and background regions occupied

the majority of pixels, while disease lesions accounted for only a

small proportion. The resulting masks exhibited severe under-

segmentation, especially in small or indistinct lesion regions. This

highlighted the necessity of guiding the attention of the model

toward hard-to-classify and underrepresented categories. To

address this issue, Focal Loss (Lin et al., 2017) was adopted

Specifically, as formulated in Equation 1, a modulating factor (1 −

pt)
g was added by introducing the method modifies the cross-

entropy loss function, where pt denotes the predicted probability for

each class and g serves as a hyperparameter controlling the degree

of focus. This formulation effectively down-weights the loss

contribution from easy-to-classify samples, thereby shifting the

attention of the model toward hard-to-classified samples. The

mathematical expression of Focal Loss is defined as follows:
Frontiers in Plant Science 08
Focal Loss  ¼   − at(1 − pt)
g log (pt) (1)

Where, at enotes a class-specific weight parameter designed to

treat the imbalance of categories.

Category weight parameters at were computed based on pixel

distribution statistics across dataset categories, with values

presented in the final column of Table 3. Although Focal Loss

partially mitigates class imbalance, as a cross-entropy loss function,

it chiefly focuses on pixel-wise classification accuracy, limiting its

ability to resolve complex lesion morphologies. To address this

limitation, Dice Loss (Milletari et al., 2016)was integrated into the

framework. This loss function explicitly targets segmentation

accuracy by comparing the similarity between model-predicted

segmentation results and truth labels, as defined in Equation 2:

Dice Loss  ¼  1 −
2� X ∩ Yj j + smooth

Xj j + Yj j + smooth
(2)

Where, X and Y represent the predicted and true labels,

re spec t ive ly ; smooth i s a non-zero va lue to avo id a

zero denominator.

The final composite loss function in this study is formulated in

Equation 3:

Loss = Focal Loss + Dive Loss (3)

This Loss function strategy, which combines pixel-level Focal

Loss and region-level Dice Loss, not only improves the model ability

to identify and process difficult-to-classify pixels, but also ensures

accurate segmentation of the lesion area.
2.4 Model training and testing

2.4.1 Model training environment
In this study, based on the constructed model, tasks such as

model training and evaluation were carried out to verify the

effectiveness of the improved model proposed herein. The

configurations of the software and hardware environments for the

experiments are presented in Table 4.

PyTorch played a pivotal role in the subsequent segmentation

tasks. Through the Application Programming Interfaces (APIs) it

provided, the model architecture could be rapidly defined and

adjusted, enabling fine control over the model. Notably, PyTorch

supported GPU acceleration, and when used in conjunction with

CUDA and CuDNN, it significantly shortened the experimental
FIGURE 7

PGFF module.
TABLE 3 Pixel quantity and category weight of each class.

Categories Label values Number of Pixels Weights

Background 0 515499053 0.0174

Healthy Leaf 1 85752875 0.0669

Brown Spot 2 2327595 1

Rice Blast 3 4321519 0.6287

Bacterial Blight 4 6882958 0.4435
TABLE 2 Comparison of parameter and computational cost between
two feature fusion methods.

Feature fusion method Params/M Flops/G

Original model stack fusion 1.293 42.39

PagFM-Ghostconv fusion 0.14 4.702
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cycle. To avoid package conflicts, Anaconda was employed to

construct a Python virtual environment and manage various

package dependencies.

2.4.2 Test setups
Transfer learning (Yosinski et al., 2014) allows researchers to

apply existing knowledge to new tasks by utilizing pre-trained

weights obtained from large-scale datasets, thereby enhancing the

learning efficiency and performance of the new tasks. Therefore, in

this paper, the model training was conducted based on transfer

learning. Firstly, the weights of the feature extraction network were

initialized using the weights of the pre-trained model. Secondly,

during the initial stage of training, the feature extraction network

was frozen, and only the custom layers were trained. Finally, the

feature extraction network was unfrozen, allowing it to update its

weights, and the network was fine-tuned. In this paper, the total

number of training iterations was set to 300 epochs, among which

50 epochs were for the frozen training and 250 epochs were for the

unfrozen training.

During the frozen stage, the batch size was set to 16 and the

initial learning rate was set to 5×10-4. During the unfrozen stage,

considering the increased memory load due to backpropagation

through the backbone, the batch size was reduced to 8. A cosine

annealing learning rate scheduler was employed throughout to

gradually decay the learning rate, with the minimum learning rate

set to 5×10-6. The optimizer used was Adam, with a momentum

coefficient of 0.9. The input images were resized to a fixed resolution

of 512×512 and processed as standard 3-channel RGB images. The

loss function adopted was a hybrid combination of Focal Loss and

Dice Loss, which balances pixel-level focus with region-level

consistency to handle class imbalance and improve lesion

segmentation accuracy.

To ensure the reliability of model performance and reduce the

impact of random fluctuations during training, the model weights

were saved every 5 epochs throughout the 300 training epochs.

After training, the model checkpoint with the highest MIoU on the

training set was selected, and its performance was evaluated on the

validation set. This procedure was uniformly applied to all models
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in the comparison experiments, ensuring consistency and fairness

across evaluations.

2.4.3 Model evaluation metrics
In this study, to comprehensively evaluate the segmentation

accuracy of the model, the MIoU and the MPA were adopted as the

primary evaluation metrics. These two metrics assess the segmentation

performance of the model from both the overall and pixel levels

respectively. Furthermore, the Params and Flops are adopted as

comprehensive metrics to evaluate performance and computational

efficiency (Xie et al., 2024). In this study, Params is calculated by

aggregating trainable parameters across all architectural layers,

reflecting model complexity and storage requirements. Flops

quantifies the total floating-point operations required during a single

forward pass, serving as a critical indicator of computational load. The

formulas for these metrics are given in Equations 4–11:

MPA =
1
no

n

i=1

pii

o
n

j=1
pij

(4)

MIoU =
1
no

n

i=1

mii

o
n

j=1
mij +o

n

j=1
mji −mii

(5)

paramsconv = (kernelsize � Cin + 1)� Cout (6)

paramsfcl = (fin + 1)� fout (7)

paramsBN = 2� Cin (8)

Params = paramsconv + paramsfcl + paramsBN (9)

Precision =
pii

pii + FP
(10)

mPrecision =
1
no

n
i=1Precision (11)

where, pii represents the number of pixels correctly classified

into category i; pij is the number of pixels that actually belong to

category i but are misclassified into category j; and n is the total

number of categories. mii is the number of pixels that are correctly

predicted, that is, pixels belonging to class i are predicted as class i,

while mij is the number of pixels that are wrongly predicted,

meaning pixels belonging to class i are predicted as class j. param

sconv is the number of parameters in the convolutional layer; para

msfcl is the number of parameters in the fully connected layer; par

amsBN is the number of parameters in the batch normalization

layer; kernelsize is the size of the convolutional kernel; Cin is the

number of input channels; Cout is the number of output channels; fin
is the number of input channels of the fully connected layer; fout is

the number of output channels of the fully connected layer; and
TABLE 4 Experimental environment configuration.

Software and hardware Version

CPU Gen Intel(R) Core(TM) i7-13700K

GPU NVIDIA GeForce RTX 3090(24GB)

Operating system Windows 10

Anaconda 4.3.0

CUDA 11.0

Cudnn 8.0.5

Python 3.8.18

Pytorch 1.7.1
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Params is the total number of parameters; FP is the number of

pixels from other classes j that were misclassified as class i.
3 Results and analysis

3.1 Baseline model determination
experiments

To validate the reliability and accuracy of DeepLabv3+ as the

baseline model in this study, four models, namely DeepLabv3+,

Unet (Ronneberger et al., 2015), PSPNet (Zhao et al., 2017), and

HRNetV2 (Wang et al., 2021), were systematically evaluated

through comparative training and testing on identical datasets.

During the training process, the feasibility of the models was

evaluated by examining the changes in model loss and the

segmentation evaluation metrics of different disease lesions in the

validation set. Figure 8 shows the changes in the loss ratios of the

four models on the training set, and Table 5 presents the results of

the metric evaluation.

As illustrated in Figure 8, all models demonstrated rapid loss

decline during initial training phases, primarily attributed to the
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introduction of pre-trained weight enabling efficient feature

extraction from agricultural imagery. Unfrozen training

commenced at epoch 51, during which weights in the feature

extraction network were updated. Since the parameters had not

yet fully adapted to the dataset at this time, there was a sudden jump

in the loss values of the four models.

Notably, as the training progressed, the losses of all four models

gradually decreased and eventually stabilized. This indicates that all

four architectures are capable of effectively distinguishing disease

types and achieving the segmentation of disease lesions. It is worth

noting that the R50-DeepLabv3+ model reached a relatively low

convergence value for its loss. To some extent, this also

demonstrates a high degree of compatibility between this

architecture and the task of disease lesion segmentation.

As shown in Table 5, all four models performed quite well in the

evaluation of the two accuracy indicators, MIoU and MPA. The

MIoU values exceeded 75%, and the MPA values were around 88%.

The evaluation based on these two indicators once again verified the

feasibility of using encoder-decoder structures for segmenting rice

disease spots. DeepLabv3+ had MIoU and MPA values of 79.8%

and 89.63% respectively, which were the highest among the four

models. In the evaluation of model efficiency and complexity, the
FIGURE 8

Training loss evolution across different models.
TABLE 5 Performance of different models on the validation set.

Model Backbone MIoU/% MPA/% Flops/G Params/M

DeepLabv3+ ResNet50 79.8 89.63 113.27 27.822

Unet ResNet50 79.34 88.96 184.2 43.933

PSPNet ResNet50 75.24 87.41 118.43 46.708

HRNetV2 Hrnet_w32 78.26 88.28 90.972 29.540
Deeplabv3+ represents the baseline model used in this study after balancing the trade-off between accuracy and computational cost. ResNet50 indicates that the backbone used in Deeplabv3+ is
ResNet50. 79.8 value represents the best performance of the MIou metrics. 89.63 value represents the best performance of the MPA metrics. 113.27 value represents the second-lowest Flops
among all compared models. 27.822 value represents the smallest Params among all compared models.
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Params of DeepLabv3+ was 27.822 M, the lowest among the four

models. HRNetV2 had the least amount of Flops, which was 90.972

G, and followed by DeepLabv3+ with 113.27 G Flops. However,

both the MIoU and MPA of DeepLabv3+ were significantly higher

than those of HRNetV2. After comprehensive consideration,

DeepLabv3+ was selected as the baseline model for the

segmentation of rice disease spots in this paper.
3.2 Comparison experiment of different
backbone

To systematically evaluate the impact of different backbone

architectures on DeepLabv3+ performance for rice lesion

segmentation, four feature extraction networks, namely Resnet50,

Xception, MobilenetV3_large, and MobilenetV2, were

comparatively analyzed under the same experimental framework.

These variants were designated as R50_DeepLabv3+,

X_DeepLabv3+, MV3L_DeepLabv3+, and MV2_DeepLabv3+,

respectively. Figure 9 presents the training loss progression
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curves, while Table 6 presents the comparison results of different

feature extraction networks in various indicators.

As shown in Figure 9, the training losses of all models showed a

downward trend as the training progress, indicating that the model

performance was gradually improving. Specifically, X_DeepLabv3+

and MV3L_DeepLabv3+ exhibited faster initial convergence rates,

and R50_DeepLabv3+ andMV2_DeepLabv3+ displayed slower loss

attenuation rates. When approaching the 200th epoch after the

unfrozen training, the loss values of all models gradually decreased

and tended to be stable, indicating that the models had converged.

Among them, MV3L_Deeplabv3+ achieved the lowest loss value,

demonstrating that this feature extraction network has a better

performance in the DeepLabv3+ model. In contrast, the loss values

of X_DeepLabv3+, R50_DeepLabv3+, and MV2_DeepLabv3+ were

slightly higher, but they still showed a good convergence trend.

As shown in Table 6, different backbones have varying impacts

on the performance of the model, especially having a relatively large

influence on the two indicators of the Params and Flops. In terms of

segmentation accuracy, when MV3L is used as the backbone, the

segmentation accuracy is the highest, with the MIoU being 80.08%.
FIGURE 9

Variation in training loss of DeepLabv3+ models utilizing various backbones.
TABLE 6 Comparison of experimental results using different backbones.

Model Backbone MIoU/% MPA/% Flops/G Params/M

R50_DeepLabv3+ ResNet50 79.8 89.63 113.27 27.822

X_DeepLabv3+ Xception 79.34 88.96 141.21 42.181

MV3L_DeepLabv3+ MV3L 80.08 89.66 47.024 4.651

MV2_DeepLabv3+ MobilenetV2 78.58 88.3 48.883 3.856
MV3L_DeepLabv3+ denotes the proposed enhanced model, which improves upon the standard DeepLabv3+ architecture with MV3L as the backbone. MV3L represents the optimal backbone
for DeepLabv3+ in terms of performance. 80.08 value represents the best performance of the MIou metrics. 89.66 value represents the best performance of the MPA metrics. 47.024 value
represents the smallest Flops among all compared models. 4.651 value represents the second-lowest Params among all compared models.
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WhenMobileNetV2 serves as the backbone, the MIoU is the lowest,

reaching 78.58%. Regarding model efficiency, when Resnet50 and

Xception are employed as backbones, the computational cost is

relatively high and the lightweight MobileNetV2 and MV3L have

the lowest computational costs, showing a significant reduction in

the Params, with the maximum reduction rate being 90.7%. Among

them, the Flops of MV3L and MobileNetV2 are 47.024 G and

48.883 G, respectively, and the Params are 4.651 M and 3.856

M, respectively.

Typically, Params and Flops demonstrate a positive correlation

under identical input size. However, in this study, an inverse

relationship was observed when MobileNetV2 was integrated with

DeepLabv3+. This phenomenon stems from discrepancies in the

number of channels of the last layer of feature maps when the two

backbones are transmitted to the ASPP.

Considering both segmentation accuracy and computational

efficiency, MV3L as the backbone achieved the highest accuracy

among the four evaluated architectures. Although Params of the

MV3L was 0.785 M higher than MobileNetV2, it demonstrated

superior performance with a 1.5% increase in MIoU and a 1.36%

improvement in MPA. Collectively, these results indicate that

MV3L strikes a better balance between segmentation accuracy

and model complexity when integrated into the DeepLabv3

+ framework.
3.3 Comparative experiments on different
attention mechanisms

In this study, based on the MV3L feature extraction network, a

multi-level low-feature fusion module was designed, and a

lightweight feature fusion method PagFM-GhostConv was
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adopted. Four lightweight attention mechanisms, namely CA,

CBAM (Woo et al., 2018), CCA (Deng et al., 2022), and ECA,

were respectively added, before feature fusion. As shown in Table 7,

adding lightweight attention mechanisms did not impose significant

computational burdens on the model (within 2.2%). Among them,

the CA attention mechanism achieved the greatest improvement in

model performance, with a 1.21% increase in MIoU and a 0.7%

increase in MPA. The ECA attention mechanism ranked second in

performance improvement, with a 0.42% increase in MIoU and a

0.25% increase in MPA. The CBAM and CCA attention

mechanisms showed limited improvements in model

performance. These results verified the effectiveness of adding the

CA attention mechanism.
3.4 Results and analysis of ablation
experiment

To validate the individual contributions of the key architectural

enhancements in MMPC-DeepLabv3+, a series of ablation

experiments were conducted on the MV3L-based DeepLabv3+

framework. These experiments systematically assessed the impact

of three critical modules: the MSDE module, the PGFF approach,

and the CA attention mechanism. Table 8 presents the detailed

experimental results, highlighting the incremental contributions of

each modification.

In the first group of experiments, the proposed MSDE module

was introduced to replace the conventional 4× downsampled low-

level feature stream in DeepLabv3+. The motivation for this

modification stems from the difficulty in accurately capturing

small lesion regions and fine-grained boundaries using standard

low-level features. By incorporating Haar wavelet decomposition,
TABLE 7 Comparative experiments on different attention mechanisms.

Position Attention mechanism MIoU /% MPA /% Flops /G Params /M

\ 80.02 89.29 9.657 3.549

Before feature fusion

CA 81.23 89.79 9.695 3.556

CBAM 80.19 89.78 9.68 3.558

ECA 80.44 89.54 9.674 3.549

CCA 80.14 89.41 15.076 3.632
CA represents the best-performing among the four attention mechanisms. 81.23 value represents the best performance of the MIou metrics. 89.79 value represents the best performance of the
MPA metrics. 9.695 represents the FLOPS value of the selected attention mechanism. 3.556 represents the value of the Params for the selected attention mechanism.
TABLE 8 Ablation experiment results.

Back bone Experimental groups MSDE PGFF CA MIoU /% MPA /% Flops /G Params /M

Comparison group × × × 80.08 89.66 47.024 4.651

MV3L

Group 1 ✓ × × 81.89 90.28 47.345 4.701

Group 2 ✓ ✓ × 80.02 89.29 9.657 3.549

Group 3 ✓ ✓ ✓ 81.23 89.79 9.695 3.556
"√" indicates adding a module into the the Deeplabv3+ model with MV3L as the Backbone.
"×" indicates the modules that have not yet been incorporated into the model.
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the MSDE module enables more expressive feature encoding of

both primary and directional texture details. As a result, this

enhancement achieved a 1.81% improvement in MIoU and a

0.62% gain in MPA, without significantly increasing the

computational load. This demonstrates the effectiveness of MSDE

in boosting boundary delineation and improving segmentation

accuracy for subtle lesion areas.

In the second group of experiments, the MSDE-enhanced

model was further optimized by integrating the PGFF module,

which replaces the original DeepLabv3+ feature fusion strategy with

a lightweight yet semantically adaptive approach. Unlike the

conventional 4× upsampling and channel concatenation followed

by two standard convolutions—which impose heavy computational

burdens and struggle with semantic gaps between low-level and

high-level features—PGFF first applies PagFM to reduce feature

dimensionality and establish weighted semantic correspondence,

then employs Ghost convolution for efficient refinement. This

design achieves a 79.6% reduction in FLOPs and a 24.5% decrease

in Params compared to the first group. While accuracy dropped

slightly (MIoU −1.87%, MPA −0.99%), this trade-off was

anticipated given the substantial efficiency gains.

Importantly, this design choice was made deliberately to enhance

the suitability of the model for real-world deployment in resource-

constrained agricultural environments, such as mobile phones, tablets,

or embedded systems. In these scenarios, processing power and

memory are often limited, and reducing model complexity is

essential for ensuring smooth operation and real-time inference.

Despite the slight reduction in accuracy, the model still maintained

strong segmentation performance, indicating that the PGFF module

effectively balances accuracy and efficiency. This validates the practical

value of the optimization and supports its adoption in precision

agriculture applications.

In the third group of experiments, the CA attention mechanism

was introduced prior to feature fusion, enhancing both the high-level
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and low-level representations before being processed by PGFF. The

motivation here is to further improve the model’s capacity to focus on

salient lesion regions and suppress background noise under complex

field conditions. This modification yielded a 1.21% improvement in

MIoU and a 0.70% gain in MPA compared to the PGFF-only

configuration, confirming the complementary effect of attention

enhancement on lightweight fusion.

Finally, compared to the control group using MV3L_DeepLabv3+

as the feature extraction network, MMPC-DeepLabv3+ architecture

achieved a 1.15% improvement in MIoU and a 0.13% increase in

MPA while a 79.38% decrease in Flops, and a 23.5% reduction in

Params. This optimization represents a significant advance in

balancing segmentation performance and computational efficiency.
3.5 Performance comparison of different
models

3.5.1 Overall model performance comparison
To evaluate the effectiveness of MMPC-DeepLabv3+ in rice

lesion segmentation, longitudinal comparisons were conducted

against mainstream models of rice lesion segmentation including

Unet, PSPNet, HRNetV2, DeepLabv3+ variants with different

feature extraction networks, and Segformer (Xie et al., 2021).

Figure 10 illustrates training loss evolution across different

models. During the initial 50 epochs of frozen training, the loss

curves of all models decreased as the number of epochs increased

and gradually stabilized. During the subsequent 250 epochs of

unfrozen training, the loss values of each model showed a

downward trend as the training cycles increased and eventually

stabilized, indicating that all models had reached a converged state.

Special for the loss of the MMPC-DeepLabv3+ model, which started

to stabilize after the 150th epoch of unfrozen training. As the

training cycles continued to increase, the decrease in the loss value
FIGURE 10

Training loss evolution across different models.
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of the MMPC-DeepLabv3+ model was smooth, without significant

fluctuations. At the end of the training, the loss value of the MMPC-

DeepLabv3+ model was the lowest among all the compared models.

The relatively low training loss value at convergence reflects its

excellent fitting ability to the training data. This low loss value

further validates the effectiveness of the improvements made in

this study.

To evaluate the effectiveness of the proposed MV3L backbone in

balancing spatial resolution and semantic abstraction, we conducted a

comparative experiment by integrating different backbones into the

DeepLabv3+ framework. Specifically, the reduced downsampling rate

in MV3L helps preserve fine-grained spatial features such as lesion

boundaries, while the optimized dilation configuration enhances the

receptive field without introducing excessive computational cost. This

design enables MV3L to maintain a strong semantic understanding of

lesion structures while retaining edge-level detail, thus achieving a

favorable balance between semantic abstraction and spatial resolution.

As shown in Table 9, MV3L achieved the highest segmentation

accuracy (MIoU = 80.08%, MPA = 89.66%) while significantly

reducing computational cost (FLOPs = 47.02 G, Params = 4.651 M)

compared to ResNet50, Xception, andMobileNetV2. These findings

highlight MV3L’s suitability for field deployment, where lightweight

yet accurate models are essential.

Importantly, the observed performance gains are primarily

attributable to the structural design of MV3L rather than external

training factors such as hyperparameter tuning. The reduction in

downsampling enhances spatial fidelity, while the dilation

configuration improves contextual awareness—both achieved with

minimal computational overhead. That MV3L surpasses deeper

(e.g., Xception) and more compact (e.g., MobileNetV2) networks in

accuracy while maintaining a lower parameter count and FLOPs

strongly supports the claim that its superior performance stems

from architectural innovation rather than experimental bias.

Furthermore, Table 9 presents a broader comparison of the

MMPC-DeepLabv3+ model against mainstream segmentation

networks. When compared with DeepLabv3+ variants and other

models including Unet, PSPNet, and HRNetV2, MMPC-
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DeepLabv3+ achieves the highest segmentation accuracy in terms

of both MIoU (81.23%) and MPA (89.79%), while also

demonstrating the lowest FLOPs (9.695 G) and Params (3.556

M). Compared to the Segformer model, MMPC-DeepLabv3+ shows

a 1.16% gain in MIoU and a slight 0.45% drop in MPA, but only

consumes 71.49% of Segformer’s FLOPs and has fewer parameters

by 0.159 M—demonstrating a superior balance between accuracy

and computational efficiency. This 28.51% reduction in FLOPs is

particularly impactful in real-world agricultural deployments,

where models are expected to operate on mobile or embedded

devices with stringent hardware limitations. Even marginal savings

in FLOPs can directly translate to reduced power consumption,

faster inference, and lower latency—all of which are critical for

enabling real-time disease detection in the field. Thus, MMPC-

DeepLabv3+ not only slightly surpasses Segformer in segmentation

accuracy but does so with significantly lower computational

demand, making it more practical for low-resource precision

agriculture scenarios.

To ensure a fair and unbiased comparison, all baseline models,

including U-Net, PSPNet, HRNetV2, DeepLabv3+ variants, and

Segformer, were trained under the same experimental setup as the

proposed MMPC-DeepLabv3+. This included consistent data

preprocessing steps (such as image resizing and normalization), the

same training-validation split (9:1), the use of the identical data

augmentation pipeline applied only to the training set, and unified

training hyperparameters (optimizer, learning rate, batch size, number

of epochs, and loss function). By maintaining identical training

conditions, this study ensures that performance differences among

models are attributable solely to architectural variations rather than

inconsistencies in training strategy or dataset processing.

3.5.2 Precision-based analysis and disease-
specific challenges

In addition to the overall performance metrics, a detailed class-

wise precision comparison is presented in Table 10. The proposed

MMPC-DeepLabv3+ achieves the highest mean precision (89.43%)

among all models, demonstrating robust performance across all
TABLE 9 Comparative experiments across different models.

Model Backbone MIoU /% MPA /% Flops /G Params /M

DeepLabv3+

ResNet50 79.8 89.63 113.27 27.822

Xception 79.34 88.96 141.21 42.181

MV3L 80.08 89.66 47.024 4.651

MobilenetV2 78.58 88.3 48.883 3.856

Unet ResNet50 79.34 88.96 184.2 43.933

PSPNet ResNet50 75.24 87.41 118.43 46.708

HRNetV2 Hrnetv2_w32 78.26 88.28 90.972 29.54

Segformer B0 80.07 90.24 13.562 3.715

MMPC-DeepLabv3+ MV3L 81.23 89.79 9.695 3.556
MMPC-DeepLabv3+ represents the model with the best performance among all the compared models. MV3L represents the Backbone used by the model with the best performance. 81.23 value
represents the best performance of the MIou metrics. 89.79 value represents the best performance of the MPA metrics. 9.695 value represents the lowest Flops among all the comparison models.
3.556 value represents the lowest Params among all the comparison models.
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lesion categories. Notably, MMPC-DeepLabv3+ exhibits substantial

advantages in the Brown Spot (75.97%) and Bacterial Blight

(89.01%) classes, which are commonly prone to misclassification

due to visual similarities with other lesions.

For instance, Brown Spot and Rice Blast lesions often appear as

circular or elliptical necrotic areas, especially during early infection

stages or under suboptimal imaging conditions, such as uneven

lighting. Similarly, the pale, elongated streaks caused by Bacterial

Blight can resemble senescence symptoms or mechanical injuries on

healthy leaves, leading to increased false positives. These

overlapping visual features pose significant challenges for

segmentation models that lack fine boundary perception or

texture differentiation capabilities.

This challenge is evident in baseline models such as PSPNet and

HRNetV2, which recorded relatively low precision for Brown Spot (56.87%

and 63.18%, respectively). Their traditional fusionmechanisms and limited

contextual adaptability reduce their ability to distinguish between diseases

with subtle morphological differences.

In contrast, MMPC-DeepLabv3+ integrates the MSDE module

to enhance multi-scale boundary detail and texture extraction, while

the PGFF feature fusion mechanism promotes efficient semantic

interaction between high- and low-level features. These design

choices directly improve the model’s capacity to differentiate

visually similar disease symptoms, particularly inss complex,

multi-disease field scenarios. Although Segformer also performs

competitively with a mean precision of 88.23%, its accuracy in

categories with high inter-class ambiguity—such as Bacterial Blight

(86.11%) and Brown Spot (72.99%)—remains slightly inferior to

MMPC-DeepLabv3+.

Overall, this class-level precision analysis highlights the

discriminative strength and robustness of MMPC-DeepLabv3+

under practical agricultural conditions. By effectively handling

inter-class feature overlaps, the model enhances reliability in

field-level disease diagnosis and contributes to more accurate,

data-driven decision-making for precision crop management.
3.6 Visual comparison of segmentation
effects of different models

To visually demonstrate the performance of MMPC-

DeepLabv3+, the segmentation effects of the MMPC-DeepLabv3
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+, DeepLabv3+, HRNetV2, PSPNet, and Unet were compared

under complex scenarios such as background interference, bright

light environments, and blade overlap. In addition, the performance

of segmenting small targets as well as the accuracy and fineness

during boundary segmentation were also compared.

3.6.1 Comparison of model segmentation effects
in complex scenes

Figure 11 illustrates a visual comparison of segmentation results

among five models—MMPC-DeepLabv3+, DeepLabv3+, HRNet,

PSPNet, and UNet—under four challenging scenarios: background

leaf interference, bright light conditions, blade overlap, and

backgrounds similar to rice blast lesions. Specifically, Scenario a

and Scenario b both involve complex background interference, but

Scenario a emphasizes spatial location distractions, while Scenario b

highlights color confusion between the background and

leaf textures.

From left to right, each image group displays the original one,

its corresponding color-mapped label image (ground truth), and the

segmentation outputs of DeepLabv3+, HRNet, PSPNet, UNet, and

MMPC-DeepLabv3+. In the segmentation maps, black represents

the background, yellow denotes rice blast, and blue indicates

bacterial leaf blight.

In the background leaf interference scenario (Scene a), all

models except MMPC-DeepLabv3+ were distracted by the

overlapping rice leaves in the lower-left region, failing to focus on

segmenting the primary leaf and its bacterial leaf blight lesions. In

the background color-texture confusion (Scene b), all models

segmented the bacterial leaf blight on the main leaf in the figure

relatively accurately. However, when segmenting healthy leaves, the

comparative models failed to accurately distinguish other green

leaves in the background.

Under bright light conditions (Scene c), bright spots of

reflection on the upper leaf surface interfered with the models’

recognition of this area, resulting in an under-segmentation

phenomenon for all models in this area and failing to accurately

classify the specific category of this area. Nevertheless, the under-

segmented area of the MMPC-DeepLabv3+ model when dealing

with this interference was the smallest, showing better robustness

compared to other models.

In the scenario of blade overlap (scenario d), the overlapping

leaves increased the difficulty of segmentation. The other four
TABLE 10 Different Model Precision Comparison.

Model Background/% Healthy Leaf/% Brown Spot/% Rice Blast/% BacterialBlight/% mPricision/%

DeepLabv3+ 99.08 94.94 71.87 83.96 86.07 87.18

Unet 99.13 94.97 75.05 80.02 86.98 87.39

PSPNet 99.16 95.07 56.87 81.89 85.14 83.63

HRNetV2 98.99 96.18 63.18 88.17 88.95 87.09

Segformer 99.01 95.96 72.99 87.1 86.11 88.23

MMPC-DeepLabv3+ 99.09 96.16 75.97 87.9 89.01 89.43
MMPC-DeepLabv3+ denotes the improved model proposed in this study.
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models failed to clearly segment the rice blast spots and had under-

segmentation to varying degrees. In contrast, the MMPC-

DeepLabv3+ model segmented the lesion area more accurately,

and the under-segmentation phenomenon was relatively mild.

In the scenario where the background is similar to rice blast

(scenario e), the background is very similar to rice blast, and the

segmentation effects of the comparative models are all

unsatisfactory: The DeepLabv3+ mistakenly identified a part of

the background as rice blast; HRNetV2 misjudged most of the rice

blast areas on the main leaf as bacterial leaf blight; although the

segmentation effect of PSPNet was relatively better, it still

misjudged a small part of the rice blast areas as bacterial leaf

blight; and Unet misidentified the background at the lower right

of the image as bacterial leaf blight. On the contrary, the MMPC-

DeepLabv3+ model did not misjudge the background and

segmented the lesion area on the leaf relatively accurately.

3.6.2 Comparison of small target and boundary
segmentation effects

As illustrated in Figure 12, the image comparison showcases each

performance of the model in small-object segmentation and boundary

delineation. In Scenario a (small target segmentation scenario), the

target region is a tiny healthy leaf patch surrounded by bacterial leaf
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blight lesions. Visual analysis reveals that both DeepLabv3+ and UNet

failed to detect this small region, while MMPC-DeepLabv3+,

HRNetV2, and PSPNet successfully identified it—though with

varying segmentation quality. Notably, only MMPC-DeepLabv3+

achieved a relatively complete segmentation of the small healthy

area, whereas the other two models (HRNetV2 and PSPNet) only

captured partial regions.

In Scenario b (boundary segmentation scenario), the lesion area

consists of two vertically parallel and independent regions.

Although the DeepLabv3+ and HRNetV2 models recognized the

lesion regions of bacterial leaf blight, they exhibited boundary

confusion at the proximity of the nearby patches, failing to clearly

separate the adjacent lesions. In contrast, both MMPC-DeepLabv3+

and UNet successfully distinguished the two lesion areas, producing

comparatively sharp segmentation boundaries.
4 Discussion

For a rice leaf lesion segmentation model intended for practical

field applications, achieving an effective balance between segmentation

accuracy and computational complexity is essential. In the standard

DeepLabv3+, relying solely on the backbone network for 4×
FIGURE 11

Comparison of model segmentation performance in complex scenes. Where (a, b) represent background leaf interference; (c) corresponds to bright
light conditions; (d) indicates blade overlap; and (e) denotes backgrounds similar to rice blast lesions.
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downsampling to extract low-level features is insufficient for tasks

highly sensitive to fine details, such as rice lesion segmentation. The

proposed MSDE module incorporates Haar wavelet downsampling,

decomposing 2D images into primary information and directional

details information (horizontal, vertical, diagonal). This innovation

not only performs downsampling but also decouples one high-

frequency component and three low-frequency components (Waqas

Ahmed et al., 2025). Based on this, the HWD module can achieve

lossless encoding of features while performing downsampling. As a

result, integrating the MSDE module into MMPC-DeepLabv3+

significantly improves segmentation performance for lesion

boundaries and small-scale lesions.

On the other hand, the computational cost of themodel is also a key

consideration in this study. Replacing the backbone of the model with

the optimized lightweight network MV3L not only takes advantage of

the powerful feature extraction ability of MV3L (Nuanmeesri, 2025) but

also reduces the Params and the Flops of MMPC-DeepLabv3+.

However, this is not sufficient for full application in the rice field

environment with limited computing resources. Through research, it is

found that the feature fusion strategy of DeepLabv3+ imposes a

relatively large computational burden on feature integration during

the two operations of 4× upsampling and channel stacking.
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Therefore, this study proposes the PGFF module for the rice leaf

disease spot segmentation task. PagFM reduces the dimension of

the input features through 1×1 convolution, significantly reducing

the Params and the Flops. At the same time, after the initial fusion

of PagFM, feature fusion is carried out through lightweight ghost

convolution, further improving the computational efficiency.

Secondly, the weight coefficients of low-level features and high-

level features allow MMPC-DeepLabv3+ to make adaptive

adjustments based on the semantic contributions of features,

better bridging the semantic gap between features at different levels.

Finally, adding the CA mechanism before the high-level and

low-level features output by the MMPC-DeepLabv3+ model further

enhances the feature representation ability of MMPC-DeepLabv3+

and improves the robustness in complex segmentation scenarios

(Liu et al., 2024). The ablation experiments show that the

improvements made in this study can enable the model to have

higher segmentation accuracy while significantly reducing the Flops

and Params of the model.

In addition, Tassis et al. (2021) used single-stage models of PSPNet

and U-Net to segment coffee leaf disease spots in an outdoor

environment. Among them, the Params and Flops of PSPNet reached

49.06 M and 61.47 G, respectively, and the Params and Flops of U-Net
FIGURE 12

Comparison of small object and boundary segmentation effects. The red boxes delineate the segmentation performance of comparative models in
challenging scenarios: (a) small object segmentation and (b) boundary delineation tasks.
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also reached 31.03 M and 261.84 G. Compared with them, the Params

and Flops ofMMPC-DeepLabv3+ are only 7.24% and 15.77% of those of

PSPNet. At the same time, compared with U-Net, the Params and Flops

ofMMPC-DeepLabv3+ are reduced by 88.52% and 96.29%, respectively.

Wang et al. (2021) utilized the two-stage segmentation model DUNet to

segment cucumber disease spots in natural scenes. In this model,

DeepLabv3+ was used for leaf segmentation in the first stage, and U-

Net was used for disease spot extraction in the second stage. Compared

with this method, the params and Flops of MMPC-DeepLabv3+ are

reduced by 30.22M and 278.48G, respectively.MMPC-DeepLabv3+ has

a smaller model size and computational cost, making it more suitable for

deployment in field environments with limited computing resources.

Similarly, Yang et al. (2024) introduced LT-DeepLab for segmenting

Zanthoxylum bungeanum leaves, achieving 76.58% MIoU and 86.02%

MPA, with 54.68M parameters and 245.76G Flops. In contrast, our

proposed MMPC-DeepLabv3+ achieves superior segmentation

performance (MIoU = 81.23%, MPA = 89.79%) with significantly

lower computational cost (3.556M parameters, 9.695G FLOPs),

demonstrating its enhanced efficiency and suitability for mobile

deployment in real-world agricultural environments.

To ensure practical applicability, the proposed MMPC-

DeepLabv3+ model was designed with lightweight modules to

reduce computational cost, enabling deployment on edge devices

such as mobile phones, tablets, or embedded systems in field

environments. The enhanced segmentation of small lesions and

boundary details can assist agricultural practitioners in early disease

detection and management decisions. Furthermore, the output

segmentation masks can be integrated into mobile applications or

IoT-based agricultural monitoring systems to provide real-time

visual feedback and automated disease assessment, thus

facilitating precise and timely interventions in crop management.

Although MMPC-DeepLabv3+ achieved promising results, several

limitations should still be acknowledged to guide future improvements.

First, although the dataset was expanded through augmentation, the

number of original images was relatively limited and may not fully

capture the diversity of real-world field conditions. Second, the study

focused only on three rice leaf disease types, excluding other relevant

conditions such as sheath blight or tungro virus, which limits the scope

of practical applicability. Third, the robustness of the model across

different imaging devices, resolutions, and environmental variations

was not systematically evaluated, as most images were collected under

relatively controlled conditions.

In future work, efforts will be made to expand the dataset by

collecting a greater number of original field images from diverse

geographic regions and environmental settings. This will help improve

the generalizability and robustness of the model in real-world

scenarios, addressing the current limitation of limited image

diversity. Additionally, the range of disease types will be broadened

to include other important rice leaf conditions such as sheath blight

and tungro virus. This extension will enhance the applicability of the

model across different agronomic regions and disease spectrums.

Furthermore, although the current dataset already includes images

with natural shadows, partial occlusions, and environmental noise
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(e.g., dust, leaf damage), future work will focus on conducting

controlled robustness evaluations. This includes applying artificial

adversarial perturbations (such as shadow simulation, occlusion

overlays, and Gaussian distortions) to systematically assess the

model’s stability under extreme visual disturbances. These tests will

help quantify MMPC-DeepLabv3+’s resilience to real-world image

interference and guide the development of further enhancements to its

feature encoding and fusion strategies.

Additionally, the dataset will be enriched with images of lesions at

different developmental stages to capture intra-class variation, which is

essential for modeling disease progression over time. Lastly,

multimodal learning approaches will be explored by integrating

auxiliary data such as crop growth stages, soil properties, and

environmental factors, aiming to enable a more comprehensive and

accurate quantitative assessment of disease severity.
5 Conclusions

In this study, MMPC-DeepLabv3+ was proposed as an

improved lesion segmentation model based on DeepLabv3+. A

series of lightweight and effective modules—including MV3L for

backbone replacement, MSDE for multi-scale detail enhancement,

PGFF for progressive feature fusion, and CA for attention

refinement—were integrated into the model.

Through comparative experiments with DeepLabv3+, Unet,

PSPNet, and HRNetV2, its effectiveness was validated. The

proposed model achieved an increase of 1.89% in MIoU and

0.83% in MPA, while reducing FLOPs and Params by 93.1% and

91.6%, respectively. Better performance was observed particularly in

segmenting fine boundaries and small disease targets under

complex backgrounds. As a result, MMPC-DeepLabv3+ was

demonstrated to be a promising solution for efficient and accurate

segmentation in resource-constrained agricultural scenarios.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.
Author contributions

JL: Formal Analysis, Validation, Writing – review & editing,

Investigation, Supervision, Funding acquisition. LG: Writing –

original draft, Formal Analysis, Methodology, Investigation,

Validation. XW: Investigation, Writing – original draft, Formal

Analysis, Data curation. JF: Writing – review & editing, Investigation,

Validation. ZS: Validation, Investigation, Writing – review & editing.

YL: Investigation, Writing – review & editing. SC: Supervision,

Conceptualization, Writing – review & editing, Investigation.
frontiersin.org

https://doi.org/10.3389/fpls.2025.1635302
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2025.1635302
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the Yunnan Provincial Major Science and Technology Special

Project (202302AE090024), the Yunnan Revitalization Talent

Support Program (NO. KKRD202223052).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Plant Science 19
Generative AI statement

The authors declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018a).
DeepLab: semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40,
834–848. doi: 10.1109/TPAMI.2017.2699184

Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H. (2017). Rethinking atrous
convolution for semantic image segmentation. arXiv (preprint)

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018b). Encoder-
decoder with atrous separable convolution for semantic image segmentation. Lecture
Notes in Computer Science. 11211, 833–851. doi: 10.1007/978-3-030-01234-2_49

Chen, P., Xu, C., Ji, L., Chen, Z., and Fang, F. (2025). Analysis of China’s Rice
Industry in 2024 and the Outlook for 2025. China Rice. 31, 1–5. doi: 10.3969/
j.issn.1006-8082.2025.02.001

Deng, G., Wu, Z., Wang, C., Xu, M., and Zhong, Y. (2022). CCANet: class-constraint
coarse-to-fine attentional deep network for subdecimeter aerial image semantic
segmentation. IEEE Trans. Geosci. Remote Sens. 60, 1–20. doi: 10.1109/TGRS.2021.3055950

Fu, J., Li, X. X., Chen, F. H., and Wu, G. (2024). Pear leaf disease segmentation method
based on improved DeepLabv3+. Cogent Food Agric. 10. doi: 10.1080/23311932.2024.2310805

Hou, Q., Zhou, D., and Feng, J. (2021). “Coordinate attention for efficient mobile
network design,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). (Nashville, TN, USA: IEEE) 13708–13717. doi: 10.1109/
CVPR46437.2021.01350

Howard, A., Sandler, M., Chen, B., Wang, W., Chen, L.-C., Tan, M., et al. (2019).
“Searching for mobileNetV3,” in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV). (Seoul, South Korea: IEEE) 1314–1324. doi: 10.1109/ICCV.2019.00140

Jia, L., Wang, T., Li, X., Gao, L., Yu, Q., Zhang, X., et al. (2024). DFMA: an improved
DeepLabv3+ based on FasterNet, multi-receptive field, and attention mechanism for high-
throughput phenotyping of seedlings. Front. Plant Sci. 15. doi: 10.3389/fpls.2024.1457360

Liu, S., Huang, Z., Xu, Z., Zhao, F., Xiong, D., Peng, S., et al. (2024). High-throughput
measurement method for rice seedling based on improved UNet model. Comput.
Electron Agric. 219, 108770. doi: 10.1016/j.compag.2024.108770

Li, K., Zhu, X., Ma, J., and Zhang, L. (2023). Estimation method of leaf disease
severity of cucumber based on mixed dilated convolution and attention mechanism.
Transactions of the Chinese Society for Agricultural Machinery. 54, 231–239.
doi: 10.6041/j.issn.1000-1298.2023.02.023

Milletari, F., Navab, N., and Ahmadi, S.-A. (2016). “V-net: fully convolutional neural
networks for volumetric medical image segmentation,” in 2016 Fourth International
Conference on 3D Vision (3DV). (Stanford, CA, USA: IEEE) doi: 10.1109/3DV.2016.79

Mo, L., Fan, Y., Wang, G., Yi, X., Wu, X., and Wu, P. (2022). DeepMDSCBA: an
improved semantic segmentation model based on deepLabV3+ for apple images. Foods
11(24), 3999. doi: 10.3390/foods11243999

Nuanmeesri, S. (2025). Enhanced hybrid attention deep learning for avocado
ripeness classification on resource constrained devices. Sci. Rep. 15, 3719.
doi: 10.1038/s41598-025-87173-7

Pal, A., Kumar, V., Hassan, K. L., and Singh, B. K. (2025). A framework for leaf
disease analysis and estimation using MAML with DeepLabV3. Microsystem Technol.
31, 715–733. doi: 10.1007/s00542-024-05686-z

Ren, S., Jia, F., Gu, X., Yuan, P., Xue, W., and Xu, H. (2020). Recognition and
segmentation model of tomato leaf diseases based on deconvolution guidance. Trans.
Chin. Soc. Agric. Eng.. 36, 186–195. doi: 10.11975/j.issn.1002-6819.2020.12.023
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional networks for
biomedical image segmentation. Lecture Notes in Computer Science. 9351, 234–241.
doi: 10.1007/978-3-319-24574-4_28

Sethy, P. K., Barpanda, N. K., Rath, A. K., and Behera, S. K. (2020). Image processing
techniques for diagnosing rice plant disease: A survey. Proc. Comput. Sci. 167, 516–530.
doi: 10.1016/j.procs.2020.03.308

Tassis, L. M., Tozzi de Souza, J. E., and Krohling, R. A. (2021). A deep learning
approach combining instance and semantic segmentation to identify diseases and pests
of coffee leaves from in-field images. Comput. Electron Agric. 186, 106191. doi: 10.1016/
j.compag.2021.106191

Tian, H., Wang, T., Liu, Y., Qiao, X., and Li, Y. (2020). Computer vision technology
in agricultural automation —A review. Inf. Process. Agric. 7, 1–19. doi: 10.1016/
j.inpa.2019.09.006

Wang, H., Ding, J., He, S., Feng, C., Zhang, C., Fan, G., et al. (2023). MFBP-UNet: A
network for pear leaf disease segmentation in natural agricultural environments. Plants
12, 3209. doi: 10.3390/plants12183209

Wang, C., Du, P., Wu, H., Li, J., Zhao, C., and Zhu, H. (2021). A cucumber leaf
disease severity classification method based on the fusion of DeepLabV3+ and U-Net.
Comput. Electron Agric. 189, 106373. doi: 10.1016/j.compag.2021.106373

Waqas Ahmed, M., Alotaibi, M., Refa Alotaibi, S., Abdulaziz Alhammadi, D.,
Algarni, A., Jalal, A., et al. (2025). A novel remote sensing recognition using
modified GMM segmentation and denseNet. IEEE Access 13, 9372–9390.
doi: 10.1109/ACCESS.2025.3526476

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). CBAM: convolutional block
attention module. Lecture Notes in Computer Science. 11211, 3–19. doi: 10.1007/978-
3-030-01234-2_1

Xie, Z., Ke, Z., Chen, K., Wang, Y., Tang, Y., and Wang, W. (2024). A lightweight
deep learning semantic segmentation model for optical-image-based post-harvest fruit
ripeness analysis of sugar apples (Annona squamosa). Agriculture 14, 591. doi: 10.3390/
agriculture14040591

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., and Luo, P. (2021).
SegFormer: simple and efficient design for semantic segmentation with transformers.
Neural Information Processing Systems. doi: 10.48550/arXiv.2105.15203

Xu, G., Liao,W., Zhang, X., Li, C., He, X., andWu, X. (2023a). Haar wavelet downsampling:
A simple but effective downsampling module for semantic segmentation. Pattern Recognit.
(Vancouver, BC, Canada: IEEE) 143, 109819. doi: 10.1016/j.patcog.2023.109819

Xu, J., Xiong, Z., and Bhattacharyya, S. P. (2023b). “PIDNet: A real-time semantic
segmentation network inspired by PID controllers,” in 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 19529–19539. doi: 10.1109/
CVPR52729.2023.01871

Yang, T., Wei, J., Xiao, Y., Wang, S., Tan, J., Niu, Y., et al. (2024). LT-DeepLab: an
improved DeepLabV3+ cross-scale segmentation algorithm for Zanthoxylum
bungeanum Maxim leaf-trunk diseases in real-world environments. Front. Plant Sci.
15. doi: 10.3389/fpls.2024.1423238

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks?. arXiv. doi: 10.48550/arXiv.1411.1792

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). “Pyramid scene parsing
network,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (Honolulu, HI, USA: IEEE) 6230–6239. doi: 10.1109/CVPR.2017.660
frontiersin.org

https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.3969/j.issn.1006-8082.2025.02.001
https://doi.org/10.3969/j.issn.1006-8082.2025.02.001
https://doi.org/10.1109/TGRS.2021.3055950
https://doi.org/10.1080/23311932.2024.2310805
https://doi.org/10.1109/CVPR46437.2021.01350
https://doi.org/10.1109/CVPR46437.2021.01350
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.3389/fpls.2024.1457360
https://doi.org/10.1016/j.compag.2024.108770
https://doi.org/10.6041/j.issn.1000-1298.2023.02.023
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.3390/foods11243999
https://doi.org/10.1038/s41598-025-87173-7
https://doi.org/10.1007/s00542-024-05686-z
https://doi.org/10.11975/j.issn.1002-6819.2020.12.023
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1016/j.procs.2020.03.308
https://doi.org/10.1016/j.compag.2021.106191
https://doi.org/10.1016/j.compag.2021.106191
https://doi.org/10.1016/j.inpa.2019.09.006
https://doi.org/10.1016/j.inpa.2019.09.006
https://doi.org/10.3390/plants12183209
https://doi.org/10.1016/j.compag.2021.106373
https://doi.org/10.1109/ACCESS.2025.3526476
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.3390/agriculture14040591
https://doi.org/10.3390/agriculture14040591
https://doi.org/10.48550/arXiv.2105.15203
https://doi.org/10.1016/j.patcog.2023.109819
https://doi.org/10.1109/CVPR52729.2023.01871
https://doi.org/10.1109/CVPR52729.2023.01871
https://doi.org/10.3389/fpls.2024.1423238
https://doi.org/10.48550/arXiv.1411.1792
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.3389/fpls.2025.1635302
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Lightweight rice leaf spot segmentation model based on improved DeepLabv3+
	1 Introduction
	2 Materials and methods
	2.1 Dataset construction
	2.2 DeepLabv3+ model
	2.3 Rice leaf disease classification model based on MMPC-DeepLabv3+
	2.3.1 MobileNetV3-large backbone network
	2.3.2 Multi-scale detail enhancement module
	2.3.3 Introduction of the coordinate attention mechanism
	2.3.4 Lightweight high-low feature fusion module
	2.3.5 Improvement of the loss function

	2.4 Model training and testing
	2.4.1 Model training environment
	2.4.2 Test setups
	2.4.3 Model evaluation metrics


	3 Results and analysis
	3.1 Baseline model determination experiments
	3.2 Comparison experiment of different backbone
	3.3 Comparative experiments on different attention mechanisms
	3.4 Results and analysis of ablation experiment
	3.5 Performance comparison of different models
	3.5.1 Overall model performance comparison
	3.5.2 Precision-based analysis and disease-specific challenges

	3.6 Visual comparison of segmentation effects of different models
	3.6.1 Comparison of model segmentation effects in complex scenes
	3.6.2 Comparison of small target and boundary segmentation effects


	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


